/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "../../inc/MarlinConfig.h" #if ENABLED(DELTA_AUTO_CALIBRATION) #include "../gcode.h" #include "../../module/delta.h" #include "../../module/motion.h" #include "../../module/stepper.h" #include "../../module/endstops.h" #include "../../lcd/marlinui.h" #if HAS_BED_PROBE #include "../../module/probe.h" #endif #if HAS_MULTI_HOTEND #include "../../module/tool_change.h" #endif #if HAS_LEVELING #include "../../feature/bedlevel/bedlevel.h" #endif constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points _4P_STEP = _7P_STEP * 2, // 4-point step NPP = _7P_STEP * 6; // number of calibration points on the radius enum CalEnum : char { // the 7 main calibration points - add definitions if needed CEN = 0, __A = 1, _AB = __A + _7P_STEP, __B = _AB + _7P_STEP, _BC = __B + _7P_STEP, __C = _BC + _7P_STEP, _CA = __C + _7P_STEP, }; #define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N) #define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VARCEN+0.9999; VAR-=N) #define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1) #define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP) #define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP) TERN_(HAS_MULTI_HOTEND, const uint8_t old_tool_index = active_extruder); float lcd_probe_pt(const xy_pos_t &xy); void ac_home() { endstops.enable(true); home_delta(); endstops.not_homing(); } void ac_setup(const bool reset_bed) { TERN_(HAS_MULTI_HOTEND, tool_change(0, true)); planner.synchronize(); remember_feedrate_scaling_off(); #if HAS_LEVELING if (reset_bed) reset_bed_level(); // After full calibration bed-level data is no longer valid #endif } void ac_cleanup(TERN_(HAS_MULTI_HOTEND, const uint8_t old_tool_index)) { TERN_(DELTA_HOME_TO_SAFE_ZONE, do_blocking_move_to_z(delta_clip_start_height)); TERN_(HAS_BED_PROBE, probe.stow()); restore_feedrate_and_scaling(); TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index, true)); } void print_signed_float(PGM_P const prefix, const float &f) { SERIAL_ECHOPGM(" "); SERIAL_ECHOPGM_P(prefix); SERIAL_CHAR(':'); if (f >= 0) SERIAL_CHAR('+'); SERIAL_ECHO_F(f, 2); } /** * - Print the delta settings */ static void print_calibration_settings(const bool end_stops, const bool tower_angles) { SERIAL_ECHOPAIR(".Height:", delta_height); if (end_stops) { print_signed_float(PSTR("Ex"), delta_endstop_adj.a); print_signed_float(PSTR("Ey"), delta_endstop_adj.b); print_signed_float(PSTR("Ez"), delta_endstop_adj.c); } if (end_stops && tower_angles) { SERIAL_ECHOPAIR(" Radius:", delta_radius); SERIAL_EOL(); SERIAL_CHAR('.'); SERIAL_ECHO_SP(13); } if (tower_angles) { print_signed_float(PSTR("Tx"), delta_tower_angle_trim.a); print_signed_float(PSTR("Ty"), delta_tower_angle_trim.b); print_signed_float(PSTR("Tz"), delta_tower_angle_trim.c); } if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR SERIAL_ECHOPAIR(" Radius:", delta_radius); } SERIAL_EOL(); } /** * - Print the probe results */ static void print_calibration_results(const float z_pt[NPP + 1], const bool tower_points, const bool opposite_points) { SERIAL_ECHOPGM(". "); print_signed_float(PSTR("c"), z_pt[CEN]); if (tower_points) { print_signed_float(PSTR(" x"), z_pt[__A]); print_signed_float(PSTR(" y"), z_pt[__B]); print_signed_float(PSTR(" z"), z_pt[__C]); } if (tower_points && opposite_points) { SERIAL_EOL(); SERIAL_CHAR('.'); SERIAL_ECHO_SP(13); } if (opposite_points) { print_signed_float(PSTR("yz"), z_pt[_BC]); print_signed_float(PSTR("zx"), z_pt[_CA]); print_signed_float(PSTR("xy"), z_pt[_AB]); } SERIAL_EOL(); } /** * - Calculate the standard deviation from the zero plane */ static float std_dev_points(float z_pt[NPP + 1], const bool _0p_cal, const bool _1p_cal, const bool _4p_cal, const bool _4p_opp) { if (!_0p_cal) { float S2 = sq(z_pt[CEN]); int16_t N = 1; if (!_1p_cal) { // std dev from zero plane LOOP_CAL_ACT(rad, _4p_cal, _4p_opp) { S2 += sq(z_pt[rad]); N++; } return LROUND(SQRT(S2 / N) * 1000.0f) / 1000.0f + 0.00001f; } } return 0.00001f; } /** * - Probe a point */ static float calibration_probe(const xy_pos_t &xy, const bool stow) { #if HAS_BED_PROBE return probe.probe_at_point(xy, stow ? PROBE_PT_STOW : PROBE_PT_RAISE, 0, true, false); #else UNUSED(stow); return lcd_probe_pt(xy); #endif } /** * - Probe a grid */ static bool probe_calibration_points(float z_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) { const bool _0p_calibration = probe_points == 0, _1p_calibration = probe_points == 1 || probe_points == -1, _4p_calibration = probe_points == 2, _4p_opposite_points = _4p_calibration && !towers_set, _7p_calibration = probe_points >= 3, _7p_no_intermediates = probe_points == 3, _7p_1_intermediates = probe_points == 4, _7p_2_intermediates = probe_points == 5, _7p_4_intermediates = probe_points == 6, _7p_6_intermediates = probe_points == 7, _7p_8_intermediates = probe_points == 8, _7p_11_intermediates = probe_points == 9, _7p_14_intermediates = probe_points == 10, _7p_intermed_points = probe_points >= 4, _7p_6_center = probe_points >= 5 && probe_points <= 7, _7p_9_center = probe_points >= 8; LOOP_CAL_ALL(rad) z_pt[rad] = 0.0f; if (!_0p_calibration) { const float dcr = delta_calibration_radius(); if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center const xy_pos_t center{0}; z_pt[CEN] += calibration_probe(center, stow_after_each); if (isnan(z_pt[CEN])) return false; } if (_7p_calibration) { // probe extra center points const float start = _7p_9_center ? float(_CA) + _7P_STEP / 3.0f : _7p_6_center ? float(_CA) : float(__C), steps = _7p_9_center ? _4P_STEP / 3.0f : _7p_6_center ? _7P_STEP : _4P_STEP; I_LOOP_CAL_PT(rad, start, steps) { const float a = RADIANS(210 + (360 / NPP) * (rad - 1)), r = dcr * 0.1; const xy_pos_t vec = { cos(a), sin(a) }; z_pt[CEN] += calibration_probe(vec * r, stow_after_each); if (isnan(z_pt[CEN])) return false; } z_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points); } if (!_1p_calibration) { // probe the radius const CalEnum start = _4p_opposite_points ? _AB : __A; const float steps = _7p_14_intermediates ? _7P_STEP / 15.0f : // 15r * 6 + 10c = 100 _7p_11_intermediates ? _7P_STEP / 12.0f : // 12r * 6 + 9c = 81 _7p_8_intermediates ? _7P_STEP / 9.0f : // 9r * 6 + 10c = 64 _7p_6_intermediates ? _7P_STEP / 7.0f : // 7r * 6 + 7c = 49 _7p_4_intermediates ? _7P_STEP / 5.0f : // 5r * 6 + 6c = 36 _7p_2_intermediates ? _7P_STEP / 3.0f : // 3r * 6 + 7c = 25 _7p_1_intermediates ? _7P_STEP / 2.0f : // 2r * 6 + 4c = 16 _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9 _4P_STEP; // .5r * 6 + 1c = 4 bool zig_zag = true; F_LOOP_CAL_PT(rad, start, _7p_9_center ? steps * 3 : steps) { const int8_t offset = _7p_9_center ? 2 : 0; for (int8_t circle = 0; circle <= offset; circle++) { const float a = RADIANS(210 + (360 / NPP) * (rad - 1)), r = dcr * (1 - 0.1 * (zig_zag ? offset - circle : circle)), interpol = FMOD(rad, 1); const xy_pos_t vec = { cos(a), sin(a) }; const float z_temp = calibration_probe(vec * r, stow_after_each); if (isnan(z_temp)) return false; // split probe point to neighbouring calibration points z_pt[uint8_t(LROUND(rad - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90))); z_pt[uint8_t(LROUND(rad - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90))); } zig_zag = !zig_zag; } if (_7p_intermed_points) LOOP_CAL_RAD(rad) z_pt[rad] /= _7P_STEP / steps; do_blocking_move_to_xy(0.0f, 0.0f); } } return true; } /** * kinematics routines and auto tune matrix scaling parameters: * see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for * - formulae for approximative forward kinematics in the end-stop displacement matrix * - definition of the matrix scaling parameters */ static void reverse_kinematics_probe_points(float z_pt[NPP + 1], abc_float_t mm_at_pt_axis[NPP + 1]) { xyz_pos_t pos{0}; const float dcr = delta_calibration_radius(); LOOP_CAL_ALL(rad) { const float a = RADIANS(210 + (360 / NPP) * (rad - 1)), r = (rad == CEN ? 0.0f : dcr); pos.set(cos(a) * r, sin(a) * r, z_pt[rad]); inverse_kinematics(pos); mm_at_pt_axis[rad] = delta; } } static void forward_kinematics_probe_points(abc_float_t mm_at_pt_axis[NPP + 1], float z_pt[NPP + 1]) { const float r_quot = delta_calibration_radius() / delta_radius; #define ZPP(N,I,A) (((1.0f + r_quot * (N)) / 3.0f) * mm_at_pt_axis[I].A) #define Z00(I, A) ZPP( 0, I, A) #define Zp1(I, A) ZPP(+1, I, A) #define Zm1(I, A) ZPP(-1, I, A) #define Zp2(I, A) ZPP(+2, I, A) #define Zm2(I, A) ZPP(-2, I, A) z_pt[CEN] = Z00(CEN, a) + Z00(CEN, b) + Z00(CEN, c); z_pt[__A] = Zp2(__A, a) + Zm1(__A, b) + Zm1(__A, c); z_pt[__B] = Zm1(__B, a) + Zp2(__B, b) + Zm1(__B, c); z_pt[__C] = Zm1(__C, a) + Zm1(__C, b) + Zp2(__C, c); z_pt[_BC] = Zm2(_BC, a) + Zp1(_BC, b) + Zp1(_BC, c); z_pt[_CA] = Zp1(_CA, a) + Zm2(_CA, b) + Zp1(_CA, c); z_pt[_AB] = Zp1(_AB, a) + Zp1(_AB, b) + Zm2(_AB, c); } static void calc_kinematics_diff_probe_points(float z_pt[NPP + 1], abc_float_t delta_e, const float delta_r, abc_float_t delta_t) { const float z_center = z_pt[CEN]; abc_float_t diff_mm_at_pt_axis[NPP + 1], new_mm_at_pt_axis[NPP + 1]; reverse_kinematics_probe_points(z_pt, diff_mm_at_pt_axis); delta_radius += delta_r; delta_tower_angle_trim += delta_t; recalc_delta_settings(); reverse_kinematics_probe_points(z_pt, new_mm_at_pt_axis); LOOP_CAL_ALL(rad) diff_mm_at_pt_axis[rad] -= new_mm_at_pt_axis[rad] + delta_e; forward_kinematics_probe_points(diff_mm_at_pt_axis, z_pt); LOOP_CAL_RAD(rad) z_pt[rad] -= z_pt[CEN] - z_center; z_pt[CEN] = z_center; delta_radius -= delta_r; delta_tower_angle_trim -= delta_t; recalc_delta_settings(); } static float auto_tune_h() { const float r_quot = delta_calibration_radius() / delta_radius; return RECIPROCAL(r_quot / (2.0f / 3.0f)); // (2/3)/CR } static float auto_tune_r() { constexpr float diff = 0.01f, delta_r = diff; float r_fac = 0.0f, z_pt[NPP + 1] = { 0.0f }; abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f }; calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t); r_fac = -(z_pt[__A] + z_pt[__B] + z_pt[__C] + z_pt[_BC] + z_pt[_CA] + z_pt[_AB]) / 6.0f; r_fac = diff / r_fac / 3.0f; // 1/(3*delta_Z) return r_fac; } static float auto_tune_a() { constexpr float diff = 0.01f, delta_r = 0.0f; float a_fac = 0.0f, z_pt[NPP + 1] = { 0.0f }; abc_float_t delta_e = { 0.0f }, delta_t = { 0.0f }; delta_t.reset(); LOOP_XYZ(axis) { delta_t[axis] = diff; calc_kinematics_diff_probe_points(z_pt, delta_e, delta_r, delta_t); delta_t[axis] = 0; a_fac += z_pt[uint8_t((axis * _4P_STEP) - _7P_STEP + NPP) % NPP + 1] / 6.0f; a_fac -= z_pt[uint8_t((axis * _4P_STEP) + 1 + _7P_STEP)] / 6.0f; } a_fac = diff / a_fac / 3.0f; // 1/(3*delta_Z) return a_fac; } /** * G33 - Delta '1-4-7-point' Auto-Calibration * Calibrate height, z_offset, endstops, delta radius, and tower angles. * * Parameters: * * Pn Number of probe points: * P0 Normalizes calibration. * P1 Calibrates height only with center probe. * P2 Probe center and towers. Calibrate height, endstops and delta radius. * P3 Probe all positions: center, towers and opposite towers. Calibrate all. * P4-P10 Probe all positions at different intermediate locations and average them. * * T Don't calibrate tower angle corrections * * Cn.nn Calibration precision; when omitted calibrates to maximum precision * * Fn Force to run at least n iterations and take the best result * * Vn Verbose level: * V0 Dry-run mode. Report settings and probe results. No calibration. * V1 Report start and end settings only * V2 Report settings at each iteration * V3 Report settings and probe results * * E Engage the probe for each point */ void GcodeSuite::G33() { const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS); if (!WITHIN(probe_points, 0, 10)) { SERIAL_ECHOLNPGM("?(P)oints implausible (0-10)."); return; } const bool towers_set = !parser.seen('T'); const float calibration_precision = parser.floatval('C', 0.0f); if (calibration_precision < 0) { SERIAL_ECHOLNPGM("?(C)alibration precision implausible (>=0)."); return; } const int8_t force_iterations = parser.intval('F', 0); if (!WITHIN(force_iterations, 0, 30)) { SERIAL_ECHOLNPGM("?(F)orce iteration implausible (0-30)."); return; } const int8_t verbose_level = parser.byteval('V', 1); if (!WITHIN(verbose_level, 0, 3)) { SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-3)."); return; } const bool stow_after_each = parser.seen('E'); const bool _0p_calibration = probe_points == 0, _1p_calibration = probe_points == 1 || probe_points == -1, _4p_calibration = probe_points == 2, _4p_opposite_points = _4p_calibration && !towers_set, _7p_9_center = probe_points >= 8, _tower_results = (_4p_calibration && towers_set) || probe_points >= 3, _opposite_results = (_4p_calibration && !towers_set) || probe_points >= 3, _endstop_results = probe_points != 1 && probe_points != -1 && probe_points != 0, _angle_results = probe_points >= 3 && towers_set; int8_t iterations = 0; float test_precision, zero_std_dev = (verbose_level ? 999.0f : 0.0f), // 0.0 in dry-run mode : forced end zero_std_dev_min = zero_std_dev, zero_std_dev_old = zero_std_dev, h_factor, r_factor, a_factor, r_old = delta_radius, h_old = delta_height; abc_pos_t e_old = delta_endstop_adj, a_old = delta_tower_angle_trim; SERIAL_ECHOLNPGM("G33 Auto Calibrate"); const float dcr = delta_calibration_radius(); if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable LOOP_CAL_RAD(axis) { const float a = RADIANS(210 + (360 / NPP) * (axis - 1)); if (!position_is_reachable(cos(a) * dcr, sin(a) * dcr)) { SERIAL_ECHOLNPGM("?Bed calibration radius implausible."); return; } } } // Report settings PGM_P const checkingac = PSTR("Checking... AC"); SERIAL_ECHOPGM_P(checkingac); if (verbose_level == 0) SERIAL_ECHOPGM(" (DRY-RUN)"); SERIAL_EOL(); ui.set_status_P(checkingac); print_calibration_settings(_endstop_results, _angle_results); ac_setup(!_0p_calibration && !_1p_calibration); if (!_0p_calibration) ac_home(); do { // start iterations float z_at_pt[NPP + 1] = { 0.0f }; test_precision = zero_std_dev_old != 999.0f ? (zero_std_dev + zero_std_dev_old) / 2.0f : zero_std_dev; iterations++; // Probe the points zero_std_dev_old = zero_std_dev; if (!probe_calibration_points(z_at_pt, probe_points, towers_set, stow_after_each)) { SERIAL_ECHOLNPGM("Correct delta settings with M665 and M666"); return ac_cleanup(TERN_(HAS_MULTI_HOTEND, old_tool_index)); } zero_std_dev = std_dev_points(z_at_pt, _0p_calibration, _1p_calibration, _4p_calibration, _4p_opposite_points); // Solve matrices if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) { #if !HAS_BED_PROBE test_precision = 0.0f; // forced end #endif if (zero_std_dev < zero_std_dev_min) { // set roll-back point e_old = delta_endstop_adj; r_old = delta_radius; h_old = delta_height; a_old = delta_tower_angle_trim; } abc_float_t e_delta = { 0.0f }, t_delta = { 0.0f }; float r_delta = 0.0f; /** * convergence matrices: * see https://github.com/LVD-AC/Marlin-AC/tree/1.1.x-AC/documentation for * - definition of the matrix scaling parameters * - matrices for 4 and 7 point calibration */ #define ZP(N,I) ((N) * z_at_pt[I] / 4.0f) // 4.0 = divider to normalize to integers #define Z12(I) ZP(12, I) #define Z4(I) ZP(4, I) #define Z2(I) ZP(2, I) #define Z1(I) ZP(1, I) #define Z0(I) ZP(0, I) // calculate factors if (_7p_9_center) calibration_radius_factor = 0.9f; h_factor = auto_tune_h(); r_factor = auto_tune_r(); a_factor = auto_tune_a(); calibration_radius_factor = 1.0f; switch (probe_points) { case 0: test_precision = 0.0f; // forced end break; case 1: test_precision = 0.0f; // forced end LOOP_XYZ(axis) e_delta[axis] = +Z4(CEN); break; case 2: if (towers_set) { // see 4 point calibration (towers) matrix e_delta.set((+Z4(__A) -Z2(__B) -Z2(__C)) * h_factor +Z4(CEN), (-Z2(__A) +Z4(__B) -Z2(__C)) * h_factor +Z4(CEN), (-Z2(__A) -Z2(__B) +Z4(__C)) * h_factor +Z4(CEN)); r_delta = (+Z4(__A) +Z4(__B) +Z4(__C) -Z12(CEN)) * r_factor; } else { // see 4 point calibration (opposites) matrix e_delta.set((-Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor +Z4(CEN), (+Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor +Z4(CEN), (+Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor +Z4(CEN)); r_delta = (+Z4(_BC) +Z4(_CA) +Z4(_AB) -Z12(CEN)) * r_factor; } break; default: // see 7 point calibration (towers & opposites) matrix e_delta.set((+Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor +Z4(CEN), (-Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor +Z4(CEN), (-Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor +Z4(CEN)); r_delta = (+Z2(__A) +Z2(__B) +Z2(__C) +Z2(_BC) +Z2(_CA) +Z2(_AB) -Z12(CEN)) * r_factor; if (towers_set) { // see 7 point tower angle calibration (towers & opposites) matrix t_delta.set((+Z0(__A) -Z4(__B) +Z4(__C) +Z0(_BC) -Z4(_CA) +Z4(_AB) +Z0(CEN)) * a_factor, (+Z4(__A) +Z0(__B) -Z4(__C) +Z4(_BC) +Z0(_CA) -Z4(_AB) +Z0(CEN)) * a_factor, (-Z4(__A) +Z4(__B) +Z0(__C) -Z4(_BC) +Z4(_CA) +Z0(_AB) +Z0(CEN)) * a_factor); } break; } delta_endstop_adj += e_delta; delta_radius += r_delta; delta_tower_angle_trim += t_delta; } else if (zero_std_dev >= test_precision) { // roll back delta_endstop_adj = e_old; delta_radius = r_old; delta_height = h_old; delta_tower_angle_trim = a_old; } if (verbose_level != 0) { // !dry run // Normalize angles to least-squares if (_angle_results) { float a_sum = 0.0f; LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis]; LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0f; } // adjust delta_height and endstops by the max amount const float z_temp = _MAX(delta_endstop_adj.a, delta_endstop_adj.b, delta_endstop_adj.c); delta_height -= z_temp; LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp; } recalc_delta_settings(); NOMORE(zero_std_dev_min, zero_std_dev); // print report if (verbose_level == 3) print_calibration_results(z_at_pt, _tower_results, _opposite_results); if (verbose_level != 0) { // !dry run if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations SERIAL_ECHOPGM("Calibration OK"); SERIAL_ECHO_SP(32); #if HAS_BED_PROBE if (zero_std_dev >= test_precision && !_1p_calibration && !_0p_calibration) SERIAL_ECHOPGM("rolling back."); else #endif { SERIAL_ECHOPAIR_F("std dev:", zero_std_dev_min, 3); } SERIAL_EOL(); char mess[21]; strcpy_P(mess, PSTR("Calibration sd:")); if (zero_std_dev_min < 1) sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev_min * 1000.0f)); else sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev_min)); ui.set_status(mess); print_calibration_settings(_endstop_results, _angle_results); SERIAL_ECHOLNPGM("Save with M500 and/or copy to Configuration.h"); } else { // !end iterations char mess[15]; if (iterations < 31) sprintf_P(mess, PSTR("Iteration : %02i"), (unsigned int)iterations); else strcpy_P(mess, PSTR("No convergence")); SERIAL_ECHO(mess); SERIAL_ECHO_SP(32); SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3); ui.set_status(mess); if (verbose_level > 1) print_calibration_settings(_endstop_results, _angle_results); } } else { // dry run PGM_P const enddryrun = PSTR("End DRY-RUN"); SERIAL_ECHOPGM_P(enddryrun); SERIAL_ECHO_SP(35); SERIAL_ECHOLNPAIR_F("std dev:", zero_std_dev, 3); char mess[21]; strcpy_P(mess, enddryrun); strcpy_P(&mess[11], PSTR(" sd:")); if (zero_std_dev < 1) sprintf_P(&mess[15], PSTR("0.%03i"), (int)LROUND(zero_std_dev * 1000.0f)); else sprintf_P(&mess[15], PSTR("%03i.x"), (int)LROUND(zero_std_dev)); ui.set_status(mess); } ac_home(); } while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision); ac_cleanup(TERN_(HAS_MULTI_HOTEND, old_tool_index)); } #endif // DELTA_AUTO_CALIBRATION