/** * Marlin 3D Printer Firmware * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #pragma once #include "../inc/MarlinConfigPre.h" #include "macros.h" #if ENABLED(EMERGENCY_PARSER) #include "../feature/e_parser.h" #endif // flushTX is not implemented in all HAL, so use SFINAE to call the method where it is. CALL_IF_EXISTS_IMPL(void, flushTX); CALL_IF_EXISTS_IMPL(bool, connected, true); // In order to catch usage errors in code, we make the base to encode number explicit // If given a number (and not this enum), the compiler will reject the overload, falling back to the (double, digit) version // We don't want hidden conversion of the first parameter to double, so it has to be as hard to do for the compiler as creating this enum enum class PrintBase { Dec = 10, Hex = 16, Oct = 8, Bin = 2 }; // A simple forward struct that prevent the compiler to select print(double, int) as a default overload for any type different than // double or float. For double or float, a conversion exists so the call will be transparent struct EnsureDouble { double a; FORCE_INLINE operator double() { return a; } // If the compiler breaks on ambiguity here, it's likely because you're calling print(X, base) with X not a double or a float, and a // base that's not one of PrintBase's value. This exact code is made to detect such error, you NEED to set a base explicitely like this: // SERIAL_PRINT(v, PrintBase::Hex) FORCE_INLINE EnsureDouble(double a) : a(a) {} FORCE_INLINE EnsureDouble(float a) : a(a) {} }; // Using Curiously Recurring Template Pattern here to avoid virtual table cost when compiling. // Since the real serial class is known at compile time, this results in the compiler writing // a completely efficient code. template struct SerialBase { #if ENABLED(EMERGENCY_PARSER) const bool ep_enabled; EmergencyParser::State emergency_state; inline bool emergency_parser_enabled() { return ep_enabled; } SerialBase(bool ep_capable) : ep_enabled(ep_capable), emergency_state(EmergencyParser::State::EP_RESET) {} #else SerialBase(const bool) {} #endif // Static dispatch methods below: // The most important method here is where it all ends to: size_t write(uint8_t c) { return static_cast(this)->write(c); } // Called when the parser finished processing an instruction, usually build to nothing void msgDone() { static_cast(this)->msgDone(); } // Called upon initialization void begin(const long baudRate) { static_cast(this)->begin(baudRate); } // Called upon destruction void end() { static_cast(this)->end(); } /** Check for available data from the port @param index The port index, usually 0 */ bool available(uint8_t index = 0) { return static_cast(this)->available(index); } /** Read a value from the port @param index The port index, usually 0 */ int read(uint8_t index = 0) { return static_cast(this)->read(index); } // Check if the serial port is connected (usually bypassed) bool connected() { return static_cast(this)->connected(); } // Redirect flush void flush() { static_cast(this)->flush(); } // Not all implementation have a flushTX, so let's call them only if the child has the implementation void flushTX() { CALL_IF_EXISTS(void, static_cast(this), flushTX); } // Glue code here FORCE_INLINE void write(const char* str) { while (*str) write(*str++); } FORCE_INLINE void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); } FORCE_INLINE void print(const char* str) { write(str); } // No default argument to avoid ambiguity NO_INLINE void print(char c, PrintBase base) { printNumber((signed long)c, (uint8_t)base); } NO_INLINE void print(unsigned char c, PrintBase base) { printNumber((unsigned long)c, (uint8_t)base); } NO_INLINE void print(int c, PrintBase base) { printNumber((signed long)c, (uint8_t)base); } NO_INLINE void print(unsigned int c, PrintBase base) { printNumber((unsigned long)c, (uint8_t)base); } void print(unsigned long c, PrintBase base) { printNumber((unsigned long)c, (uint8_t)base); } void print(long c, PrintBase base) { printNumber((signed long)c, (uint8_t)base); } void print(EnsureDouble c, int digits) { printFloat(c, digits); } // Forward the call to the former's method FORCE_INLINE void print(char c) { print(c, PrintBase::Dec); } FORCE_INLINE void print(unsigned char c) { print(c, PrintBase::Dec); } FORCE_INLINE void print(int c) { print(c, PrintBase::Dec); } FORCE_INLINE void print(unsigned int c) { print(c, PrintBase::Dec); } FORCE_INLINE void print(unsigned long c) { print(c, PrintBase::Dec); } FORCE_INLINE void print(long c) { print(c, PrintBase::Dec); } FORCE_INLINE void print(double c) { print(c, 2); } FORCE_INLINE void println(const char s[]) { print(s); println(); } FORCE_INLINE void println(char c, PrintBase base) { print(c, base); println(); } FORCE_INLINE void println(unsigned char c, PrintBase base) { print(c, base); println(); } FORCE_INLINE void println(int c, PrintBase base) { print(c, base); println(); } FORCE_INLINE void println(unsigned int c, PrintBase base) { print(c, base); println(); } FORCE_INLINE void println(long c, PrintBase base) { print(c, base); println(); } FORCE_INLINE void println(unsigned long c, PrintBase base) { print(c, base); println(); } FORCE_INLINE void println(double c, int digits) { print(c, digits); println(); } FORCE_INLINE void println() { write('\r'); write('\n'); } // Forward the call to the former's method FORCE_INLINE void println(char c) { println(c, PrintBase::Dec); } FORCE_INLINE void println(unsigned char c) { println(c, PrintBase::Dec); } FORCE_INLINE void println(int c) { println(c, PrintBase::Dec); } FORCE_INLINE void println(unsigned int c) { println(c, PrintBase::Dec); } FORCE_INLINE void println(unsigned long c) { println(c, PrintBase::Dec); } FORCE_INLINE void println(long c) { println(c, PrintBase::Dec); } FORCE_INLINE void println(double c) { println(c, 2); } // Print a number with the given base NO_INLINE void printNumber(unsigned long n, const uint8_t base) { if (!base) return; // Hopefully, this should raise visible bug immediately if (n) { unsigned char buf[8 * sizeof(long)]; // Enough space for base 2 int8_t i = 0; while (n) { buf[i++] = n % base; n /= base; } while (i--) write((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10))); } else write('0'); } void printNumber(signed long n, const uint8_t base) { if (base == 10 && n < 0) { n = -n; // This works because all platforms Marlin's builds on are using 2-complement encoding for negative number // On such CPU, changing the sign of a number is done by inverting the bits and adding one, so if n = 0x80000000 = -2147483648 then // -n = 0x7FFFFFFF + 1 => 0x80000000 = 2147483648 (if interpreted as unsigned) or -2147483648 if interpreted as signed. // On non 2-complement CPU, there would be no possible representation for 2147483648. write('-'); } printNumber((unsigned long)n , base); } // Print a decimal number NO_INLINE void printFloat(double number, uint8_t digits) { // Handle negative numbers if (number < 0.0) { write('-'); number = -number; } // Round correctly so that print(1.999, 2) prints as "2.00" double rounding = 0.5; LOOP_L_N(i, digits) rounding *= 0.1; number += rounding; // Extract the integer part of the number and print it unsigned long int_part = (unsigned long)number; double remainder = number - (double)int_part; printNumber(int_part, 10); // Print the decimal point, but only if there are digits beyond if (digits) { write('.'); // Extract digits from the remainder one at a time while (digits--) { remainder *= 10.0; unsigned long toPrint = (unsigned long)remainder; printNumber(toPrint, 10); remainder -= toPrint; } } } }; // All serial instances will be built by chaining the features required // for the function in the form of a template type definition.