/** * Marlin 3D Printer Firmware * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * joystick.cpp - joystick input / jogging */ #include "../inc/MarlinConfigPre.h" #if ENABLED(JOYSTICK) #include "joystick.h" #include "../inc/MarlinConfig.h" // for pins #include "../module/planner.h" #include "../module/temperature.h" Joystick joystick; #if HAS_JOY_ADC_X temp_info_t Joystick::x; // = { 0 } #endif #if HAS_JOY_ADC_Y temp_info_t Joystick::y; // = { 0 } #endif #if HAS_JOY_ADC_Z temp_info_t Joystick::z; // = { 0 } #endif #if ENABLED(JOYSTICK_DEBUG) void Joystick::report() { SERIAL_ECHOPGM("Joystick"); #if HAS_JOY_ADC_X SERIAL_ECHOPAIR(" X", x.raw); #endif #if HAS_JOY_ADC_Y SERIAL_ECHOPAIR(" Y", y.raw); #endif #if HAS_JOY_ADC_Z SERIAL_ECHOPAIR(" Z", z.raw); #endif #if HAS_JOY_ADC_EN SERIAL_ECHO_TERNARY(READ(JOY_EN_PIN), " EN=", "HIGH (dis", "LOW (en", "abled)"); #endif SERIAL_EOL(); } #endif void Joystick::calculate(float norm_jog[XYZ]) { // Do nothing if enable pin (active-low) is not LOW #if HAS_JOY_ADC_EN if (READ(JOY_EN_PIN)) return; #endif auto _normalize_joy = [](float &adc, const int16_t raw, const int16_t (&joy_limits)[4]) { if (WITHIN(raw, joy_limits[0], joy_limits[3])) { // within limits, check deadzone if (raw > joy_limits[2]) adc = (raw - joy_limits[2]) / float(joy_limits[3] - joy_limits[2]); else if (raw < joy_limits[1]) adc = (raw - joy_limits[1]) / float(joy_limits[1] - joy_limits[0]); // negative value } }; #if HAS_JOY_ADC_X static constexpr int16_t joy_x_limits[4] = JOY_X_LIMITS; _normalize_joy(norm_jog[X_AXIS], x.raw, joy_x_limits); #endif #if HAS_JOY_ADC_Y static constexpr int16_t joy_y_limits[4] = JOY_Y_LIMITS; _normalize_joy(norm_jog[Y_AXIS], y.raw, joy_y_limits); #endif #if HAS_JOY_ADC_Z static constexpr int16_t joy_z_limits[4] = JOY_Z_LIMITS; _normalize_joy(norm_jog[Z_AXIS], z.raw, joy_z_limits); #endif } #if ENABLED(POLL_JOG) void Joystick::inject_jog_moves() { // Recursion barrier static bool injecting_now; // = false; if (injecting_now) return; static constexpr int QUEUE_DEPTH = 5; // Insert up to this many movements static constexpr float target_lag = 0.25f, // Aim for 1/4 second lag seg_time = target_lag / QUEUE_DEPTH; // 0.05 seconds, short segments inserted every 1/20th of a second static constexpr millis_t timer_limit_ms = millis_t(seg_time * 500); // 25 ms minimum delay between insertions // The planner can merge/collapse small moves, so the movement queue is unreliable to control the lag static millis_t next_run = 0; if (PENDING(millis(), next_run)) return; next_run = millis() + timer_limit_ms; // Only inject a command if the planner has fewer than 5 moves and there are no unparsed commands if (planner.movesplanned() >= QUEUE_DEPTH || queue.has_commands_queued()) return; // Normalized jog values are 0 for no movement and -1 or +1 for as max feedrate (nonlinear relationship) // Jog are initialized to zero and handling input can update values but doesn't have to // You could use a two-axis joystick and a one-axis keypad and they might work together float norm_jog[XYZ] = { 0 }; // Use ADC values and defined limits. The active zone is normalized: -1..0 (dead) 0..1 joystick.calculate(norm_jog); // Other non-joystick poll-based jogging could be implemented here // with "jogging" encapsulated as a more general class. // Jogging value maps continuously (quadratic relationship) to feedrate float move_dist[XYZ] = { 0 }, hypot2 = 0; LOOP_XYZ(i) if (norm_jog[i]) { move_dist[i] = seg_time * sq(norm_jog[i]) * planner.settings.max_feedrate_mm_s[i]; // Very small movements disappear when printed as decimal with 4 digits of precision NOLESS(move_dist[i], 0.0002f); if (norm_jog[i] < 0) move_dist[i] *= -1; // preserve sign hypot2 += sq(move_dist[i]); } if (!UNEAR_ZERO(hypot2)) { LOOP_XYZ(i) current_position[i] += move_dist[i]; const float length = sqrt(hypot2); injecting_now = true; planner.buffer_line(current_position, length / seg_time, active_extruder, length); injecting_now = false; } } #endif // POLL_JOG #endif // JOYSTICK