/**
 * Marlin 3D Printer Firmware
 * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 */
#pragma once

/**
 * Configuration.h
 *
 * Basic settings such as:
 *
 * - Type of electronics
 * - Type of temperature sensor
 * - Printer geometry
 * - Endstop configuration
 * - LCD controller
 * - Extra features
 *
 * Advanced settings can be found in Configuration_adv.h
 */
#define CONFIGURATION_H_VERSION 02000903

//===========================================================================
//============================= Getting Started =============================
//===========================================================================

/**
 * Here are some useful links to help get your machine configured and calibrated:
 *
 * Example Configs:     https://github.com/MarlinFirmware/Configurations/branches/all
 *
 * Průša Calculator:    https://blog.prusaprinters.org/calculator_3416/
 *
 * Calibration Guides:  https://reprap.org/wiki/Calibration
 *                      https://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide
 *                      https://sites.google.com/site/repraplogphase/calibration-of-your-reprap
 *                      https://youtu.be/wAL9d7FgInk
 *
 * Calibration Objects: https://www.thingiverse.com/thing:5573
 *                      https://www.thingiverse.com/thing:1278865
 */

//===========================================================================
//========================== DELTA / SCARA / TPARA ==========================
//===========================================================================
//
// Download configurations from the link above and customize for your machine.
// Examples are located in config/examples/delta, .../SCARA, and .../TPARA.
//
//===========================================================================

// @section info

// Author info of this build printed to the host during boot and M115
#define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.
//#define CUSTOM_VERSION_FILE Version.h // Path from the root directory (no quotes)

/**
 * *** VENDORS PLEASE READ ***
 *
 * Marlin allows you to add a custom boot image for Graphical LCDs.
 * With this option Marlin will first show your custom screen followed
 * by the standard Marlin logo with version number and web URL.
 *
 * We encourage you to take advantage of this new feature and we also
 * respectfully request that you retain the unmodified Marlin boot screen.
 */

// Show the Marlin bootscreen on startup. ** ENABLE FOR PRODUCTION **
#define SHOW_BOOTSCREEN

// Show the bitmap in Marlin/_Bootscreen.h on startup.
//#define SHOW_CUSTOM_BOOTSCREEN

// Show the bitmap in Marlin/_Statusscreen.h on the status screen.
//#define CUSTOM_STATUS_SCREEN_IMAGE

// @section machine

/**
 * Select the serial port on the board to use for communication with the host.
 * This allows the connection of wireless adapters (for instance) to non-default port pins.
 * Serial port -1 is the USB emulated serial port, if available.
 * Note: The first serial port (-1 or 0) will always be used by the Arduino bootloader.
 *
 * :[-1, 0, 1, 2, 3, 4, 5, 6, 7]
 */
#define SERIAL_PORT 0

/**
 * Serial Port Baud Rate
 * This is the default communication speed for all serial ports.
 * Set the baud rate defaults for additional serial ports below.
 *
 * 250000 works in most cases, but you might try a lower speed if
 * you commonly experience drop-outs during host printing.
 * You may try up to 1000000 to speed up SD file transfer.
 *
 * :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000]
 */
#define BAUDRATE 250000
//#define BAUD_RATE_GCODE     // Enable G-code M575 to set the baud rate

/**
 * Select a secondary serial port on the board to use for communication with the host.
 * Currently Ethernet (-2) is only supported on Teensy 4.1 boards.
 * :[-2, -1, 0, 1, 2, 3, 4, 5, 6, 7]
 */
//#define SERIAL_PORT_2 -1
//#define BAUDRATE_2 250000   // Enable to override BAUDRATE

/**
 * Select a third serial port on the board to use for communication with the host.
 * Currently only supported for AVR, DUE, LPC1768/9 and STM32/STM32F1
 * :[-1, 0, 1, 2, 3, 4, 5, 6, 7]
 */
//#define SERIAL_PORT_3 1
//#define BAUDRATE_3 250000   // Enable to override BAUDRATE

// Enable the Bluetooth serial interface on AT90USB devices
//#define BLUETOOTH

// Choose the name from boards.h that matches your setup
#ifndef MOTHERBOARD
  #define MOTHERBOARD BOARD_RAMPS_14_EFB
#endif

// Name displayed in the LCD "Ready" message and Info menu
//#define CUSTOM_MACHINE_NAME "3D Printer"

// Printer's unique ID, used by some programs to differentiate between machines.
// Choose your own or use a service like https://www.uuidgenerator.net/version4
//#define MACHINE_UUID "00000000-0000-0000-0000-000000000000"

/**
 * Define the number of coordinated linear axes.
 * See https://github.com/DerAndere1/Marlin/wiki
 * Each linear axis gets its own stepper control and endstop:
 *
 *   Steppers: *_STEP_PIN, *_ENABLE_PIN, *_DIR_PIN, *_ENABLE_ON
 *   Endstops: *_STOP_PIN, USE_*MIN_PLUG, USE_*MAX_PLUG
 *       Axes: *_MIN_POS, *_MAX_POS, INVERT_*_DIR
 *    Planner: DEFAULT_AXIS_STEPS_PER_UNIT, DEFAULT_MAX_FEEDRATE
 *             DEFAULT_MAX_ACCELERATION, AXIS_RELATIVE_MODES,
 *             MICROSTEP_MODES, MANUAL_FEEDRATE
 *
 * :[3, 4, 5, 6]
 */
//#define LINEAR_AXES 3

/**
 * Axis codes for additional axes:
 * This defines the axis code that is used in G-code commands to
 * reference a specific axis.
 * 'A' for rotational axis parallel to X
 * 'B' for rotational axis parallel to Y
 * 'C' for rotational axis parallel to Z
 * 'U' for secondary linear axis parallel to X
 * 'V' for secondary linear axis parallel to Y
 * 'W' for secondary linear axis parallel to Z
 * Regardless of the settings, firmware-internal axis IDs are
 * I (AXIS4), J (AXIS5), K (AXIS6).
 */
#if LINEAR_AXES >= 4
  #define AXIS4_NAME 'A' // :['A', 'B', 'C', 'U', 'V', 'W']
#endif
#if LINEAR_AXES >= 5
  #define AXIS5_NAME 'B' // :['A', 'B', 'C', 'U', 'V', 'W']
#endif
#if LINEAR_AXES >= 6
  #define AXIS6_NAME 'C' // :['A', 'B', 'C', 'U', 'V', 'W']
#endif

// @section extruder

// This defines the number of extruders
// :[0, 1, 2, 3, 4, 5, 6, 7, 8]
#define EXTRUDERS 1

// Generally expected filament diameter (1.75, 2.85, 3.0, ...). Used for Volumetric, Filament Width Sensor, etc.
#define DEFAULT_NOMINAL_FILAMENT_DIA 1.75

// For Cyclops or any "multi-extruder" that shares a single nozzle.
//#define SINGLENOZZLE

// Save and restore temperature and fan speed on tool-change.
// Set standby for the unselected tool with M104/106/109 T...
#if ENABLED(SINGLENOZZLE)
  //#define SINGLENOZZLE_STANDBY_TEMP
  //#define SINGLENOZZLE_STANDBY_FAN
#endif

/**
 * Multi-Material Unit
 * Set to one of these predefined models:
 *
 *   PRUSA_MMU1           : Průša MMU1 (The "multiplexer" version)
 *   PRUSA_MMU2           : Průša MMU2
 *   PRUSA_MMU2S          : Průša MMU2S (Requires MK3S extruder with motion sensor, EXTRUDERS = 5)
 *   EXTENDABLE_EMU_MMU2  : MMU with configurable number of filaments (ERCF, SMuFF or similar with Průša MMU2 compatible firmware)
 *   EXTENDABLE_EMU_MMU2S : MMUS with configurable number of filaments (ERCF, SMuFF or similar with Průša MMU2 compatible firmware)
 *
 * Requires NOZZLE_PARK_FEATURE to park print head in case MMU unit fails.
 * See additional options in Configuration_adv.h.
 */
//#define MMU_MODEL PRUSA_MMU2

// A dual extruder that uses a single stepper motor
//#define SWITCHING_EXTRUDER
#if ENABLED(SWITCHING_EXTRUDER)
  #define SWITCHING_EXTRUDER_SERVO_NR 0
  #define SWITCHING_EXTRUDER_SERVO_ANGLES { 0, 90 } // Angles for E0, E1[, E2, E3]
  #if EXTRUDERS > 3
    #define SWITCHING_EXTRUDER_E23_SERVO_NR 1
  #endif
#endif

// A dual-nozzle that uses a servomotor to raise/lower one (or both) of the nozzles
//#define SWITCHING_NOZZLE
#if ENABLED(SWITCHING_NOZZLE)
  #define SWITCHING_NOZZLE_SERVO_NR 0
  //#define SWITCHING_NOZZLE_E1_SERVO_NR 1          // If two servos are used, the index of the second
  #define SWITCHING_NOZZLE_SERVO_ANGLES { 0, 90 }   // Angles for E0, E1 (single servo) or lowered/raised (dual servo)
#endif

/**
 * Two separate X-carriages with extruders that connect to a moving part
 * via a solenoid docking mechanism. Requires SOL1_PIN and SOL2_PIN.
 */
//#define PARKING_EXTRUDER

/**
 * Two separate X-carriages with extruders that connect to a moving part
 * via a magnetic docking mechanism using movements and no solenoid
 *
 * project   : https://www.thingiverse.com/thing:3080893
 * movements : https://youtu.be/0xCEiG9VS3k
 *             https://youtu.be/Bqbcs0CU2FE
 */
//#define MAGNETIC_PARKING_EXTRUDER

#if EITHER(PARKING_EXTRUDER, MAGNETIC_PARKING_EXTRUDER)

  #define PARKING_EXTRUDER_PARKING_X { -78, 184 }     // X positions for parking the extruders
  #define PARKING_EXTRUDER_GRAB_DISTANCE 1            // (mm) Distance to move beyond the parking point to grab the extruder

  #if ENABLED(PARKING_EXTRUDER)

    #define PARKING_EXTRUDER_SOLENOIDS_INVERT           // If enabled, the solenoid is NOT magnetized with applied voltage
    #define PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE LOW  // LOW or HIGH pin signal energizes the coil
    #define PARKING_EXTRUDER_SOLENOIDS_DELAY 250        // (ms) Delay for magnetic field. No delay if 0 or not defined.
    //#define MANUAL_SOLENOID_CONTROL                   // Manual control of docking solenoids with M380 S / M381

  #elif ENABLED(MAGNETIC_PARKING_EXTRUDER)

    #define MPE_FAST_SPEED      9000      // (mm/min) Speed for travel before last distance point
    #define MPE_SLOW_SPEED      4500      // (mm/min) Speed for last distance travel to park and couple
    #define MPE_TRAVEL_DISTANCE   10      // (mm) Last distance point
    #define MPE_COMPENSATION       0      // Offset Compensation -1 , 0 , 1 (multiplier) only for coupling

  #endif

#endif

/**
 * Switching Toolhead
 *
 * Support for swappable and dockable toolheads, such as
 * the E3D Tool Changer. Toolheads are locked with a servo.
 */
//#define SWITCHING_TOOLHEAD

/**
 * Magnetic Switching Toolhead
 *
 * Support swappable and dockable toolheads with a magnetic
 * docking mechanism using movement and no servo.
 */
//#define MAGNETIC_SWITCHING_TOOLHEAD

/**
 * Electromagnetic Switching Toolhead
 *
 * Parking for CoreXY / HBot kinematics.
 * Toolheads are parked at one edge and held with an electromagnet.
 * Supports more than 2 Toolheads. See https://youtu.be/JolbsAKTKf4
 */
//#define ELECTROMAGNETIC_SWITCHING_TOOLHEAD

#if ANY(SWITCHING_TOOLHEAD, MAGNETIC_SWITCHING_TOOLHEAD, ELECTROMAGNETIC_SWITCHING_TOOLHEAD)
  #define SWITCHING_TOOLHEAD_Y_POS          235         // (mm) Y position of the toolhead dock
  #define SWITCHING_TOOLHEAD_Y_SECURITY      10         // (mm) Security distance Y axis
  #define SWITCHING_TOOLHEAD_Y_CLEAR         60         // (mm) Minimum distance from dock for unobstructed X axis
  #define SWITCHING_TOOLHEAD_X_POS          { 215, 0 }  // (mm) X positions for parking the extruders
  #if ENABLED(SWITCHING_TOOLHEAD)
    #define SWITCHING_TOOLHEAD_SERVO_NR       2         // Index of the servo connector
    #define SWITCHING_TOOLHEAD_SERVO_ANGLES { 0, 180 }  // (degrees) Angles for Lock, Unlock
  #elif ENABLED(MAGNETIC_SWITCHING_TOOLHEAD)
    #define SWITCHING_TOOLHEAD_Y_RELEASE      5         // (mm) Security distance Y axis
    #define SWITCHING_TOOLHEAD_X_SECURITY   { 90, 150 } // (mm) Security distance X axis (T0,T1)
    //#define PRIME_BEFORE_REMOVE                       // Prime the nozzle before release from the dock
    #if ENABLED(PRIME_BEFORE_REMOVE)
      #define SWITCHING_TOOLHEAD_PRIME_MM           20  // (mm)   Extruder prime length
      #define SWITCHING_TOOLHEAD_RETRACT_MM         10  // (mm)   Retract after priming length
      #define SWITCHING_TOOLHEAD_PRIME_FEEDRATE    300  // (mm/min) Extruder prime feedrate
      #define SWITCHING_TOOLHEAD_RETRACT_FEEDRATE 2400  // (mm/min) Extruder retract feedrate
    #endif
  #elif ENABLED(ELECTROMAGNETIC_SWITCHING_TOOLHEAD)
    #define SWITCHING_TOOLHEAD_Z_HOP          2         // (mm) Z raise for switching
  #endif
#endif

/**
 * "Mixing Extruder"
 *   - Adds G-codes M163 and M164 to set and "commit" the current mix factors.
 *   - Extends the stepping routines to move multiple steppers in proportion to the mix.
 *   - Optional support for Repetier Firmware's 'M164 S<index>' supporting virtual tools.
 *   - This implementation supports up to two mixing extruders.
 *   - Enable DIRECT_MIXING_IN_G1 for M165 and mixing in G1 (from Pia Taubert's reference implementation).
 */
//#define MIXING_EXTRUDER
#if ENABLED(MIXING_EXTRUDER)
  #define MIXING_STEPPERS 2        // Number of steppers in your mixing extruder
  #define MIXING_VIRTUAL_TOOLS 16  // Use the Virtual Tool method with M163 and M164
  //#define DIRECT_MIXING_IN_G1    // Allow ABCDHI mix factors in G1 movement commands
  //#define GRADIENT_MIX           // Support for gradient mixing with M166 and LCD
  //#define MIXING_PRESETS         // Assign 8 default V-tool presets for 2 or 3 MIXING_STEPPERS
  #if ENABLED(GRADIENT_MIX)
    //#define GRADIENT_VTOOL       // Add M166 T to use a V-tool index as a Gradient alias
  #endif
#endif

// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
//#define HOTEND_OFFSET_X { 0.0, 20.00 } // (mm) relative X-offset for each nozzle
//#define HOTEND_OFFSET_Y { 0.0, 5.00 }  // (mm) relative Y-offset for each nozzle
//#define HOTEND_OFFSET_Z { 0.0, 0.00 }  // (mm) relative Z-offset for each nozzle

// @section machine

/**
 * Power Supply Control
 *
 * Enable and connect the power supply to the PS_ON_PIN.
 * Specify whether the power supply is active HIGH or active LOW.
 */
//#define PSU_CONTROL
//#define PSU_NAME "Power Supply"

#if ENABLED(PSU_CONTROL)
  //#define MKS_PWC                 // Using the MKS PWC add-on
  //#define PS_OFF_CONFIRM          // Confirm dialog when power off
  //#define PS_OFF_SOUND            // Beep 1s when power off
  #define PSU_ACTIVE_STATE LOW      // Set 'LOW' for ATX, 'HIGH' for X-Box

  //#define PSU_DEFAULT_OFF         // Keep power off until enabled directly with M80
  //#define PSU_POWERUP_DELAY 250   // (ms) Delay for the PSU to warm up to full power

  //#define PSU_POWERUP_GCODE  "M355 S1"  // G-code to run after power-on (e.g., case light on)
  //#define PSU_POWEROFF_GCODE "M355 S0"  // G-code to run before power-off (e.g., case light off)

  //#define AUTO_POWER_CONTROL      // Enable automatic control of the PS_ON pin
  #if ENABLED(AUTO_POWER_CONTROL)
    #define AUTO_POWER_FANS         // Turn on PSU if fans need power
    #define AUTO_POWER_E_FANS
    #define AUTO_POWER_CONTROLLERFAN
    #define AUTO_POWER_CHAMBER_FAN
    #define AUTO_POWER_COOLER_FAN
    //#define AUTO_POWER_E_TEMP        50 // (°C) Turn on PSU if any extruder is over this temperature
    //#define AUTO_POWER_CHAMBER_TEMP  30 // (°C) Turn on PSU if the chamber is over this temperature
    //#define AUTO_POWER_COOLER_TEMP   26 // (°C) Turn on PSU if the cooler is over this temperature
    #define POWER_TIMEOUT              30 // (s) Turn off power if the machine is idle for this duration
    //#define POWER_OFF_DELAY          60 // (s) Delay of poweroff after M81 command. Useful to let fans run for extra time.
  #endif
#endif

//===========================================================================
//============================= Thermal Settings ============================
//===========================================================================
// @section temperature

/**
 * --NORMAL IS 4.7kΩ PULLUP!-- 1kΩ pullup can be used on hotend sensor, using correct resistor and table
 *
 * Temperature sensors available:
 *
 *  SPI RTD/Thermocouple Boards - IMPORTANT: Read the NOTE below!
 *  -------
 *    -5 : MAX31865 with Pt100/Pt1000, 2, 3, or 4-wire  (only for sensors 0-1)
 *                  NOTE: You must uncomment/set the MAX31865_*_OHMS_n defines below.
 *    -3 : MAX31855 with Thermocouple, -200°C to +700°C (only for sensors 0-1)
 *    -2 : MAX6675  with Thermocouple, 0°C to +700°C    (only for sensors 0-1)
 *
 *  NOTE: Ensure TEMP_n_CS_PIN is set in your pins file for each TEMP_SENSOR_n using an SPI Thermocouple. By default,
 *        Hardware SPI on the default serial bus is used. If you have also set TEMP_n_SCK_PIN and TEMP_n_MISO_PIN,
 *        Software SPI will be used on those ports instead. You can force Hardware SPI on the default bus in the
 *        Configuration_adv.h file. At this time, separate Hardware SPI buses for sensors are not supported.
 *
 *  Analog Themocouple Boards
 *  -------
 *    -4 : AD8495 with Thermocouple
 *    -1 : AD595  with Thermocouple
 *
 *  Analog Thermistors - 4.7kΩ pullup - Normal
 *  -------
 *     1 : 100kΩ  EPCOS - Best choice for EPCOS thermistors
 *   331 : 100kΩ  Same as #1, but 3.3V scaled for MEGA
 *   332 : 100kΩ  Same as #1, but 3.3V scaled for DUE
 *     2 : 200kΩ  ATC Semitec 204GT-2
 *   202 : 200kΩ  Copymaster 3D
 *     3 : ???Ω   Mendel-parts thermistor
 *     4 : 10kΩ   Generic Thermistor !! DO NOT use for a hotend - it gives bad resolution at high temp. !!
 *     5 : 100kΩ  ATC Semitec 104GT-2/104NT-4-R025H42G - Used in ParCan, J-Head, and E3D, SliceEngineering 300°C
 *   501 : 100kΩ  Zonestar - Tronxy X3A
 *   502 : 100kΩ  Zonestar - used by hot bed in Zonestar Průša P802M
 *   512 : 100kΩ  RPW-Ultra hotend
 *     6 : 100kΩ  EPCOS - Not as accurate as table #1 (created using a fluke thermocouple)
 *     7 : 100kΩ  Honeywell 135-104LAG-J01
 *    71 : 100kΩ  Honeywell 135-104LAF-J01
 *     8 : 100kΩ  Vishay 0603 SMD NTCS0603E3104FXT
 *     9 : 100kΩ  GE Sensing AL03006-58.2K-97-G1
 *    10 : 100kΩ  RS PRO 198-961
 *    11 : 100kΩ  Keenovo AC silicone mats, most Wanhao i3 machines - beta 3950, 1%
 *    12 : 100kΩ  Vishay 0603 SMD NTCS0603E3104FXT (#8) - calibrated for Makibox hot bed
 *    13 : 100kΩ  Hisens up to 300°C - for "Simple ONE" & "All In ONE" hotend - beta 3950, 1%
 *    15 : 100kΩ  Calibrated for JGAurora A5 hotend
 *    18 : 200kΩ  ATC Semitec 204GT-2 Dagoma.Fr - MKS_Base_DKU001327
 *    22 : 100kΩ  GTM32 Pro vB - hotend - 4.7kΩ pullup to 3.3V and 220Ω to analog input
 *    23 : 100kΩ  GTM32 Pro vB - bed - 4.7kΩ pullup to 3.3v and 220Ω to analog input
 *    30 : 100kΩ  Kis3d Silicone heating mat 200W/300W with 6mm precision cast plate (EN AW 5083) NTC100K - beta 3950
 *    60 : 100kΩ  Maker's Tool Works Kapton Bed Thermistor - beta 3950
 *    61 : 100kΩ  Formbot/Vivedino 350°C Thermistor - beta 3950
 *    66 : 4.7MΩ  Dyze Design High Temperature Thermistor
 *    67 : 500kΩ  SliceEngineering 450°C Thermistor
 *    70 : 100kΩ  bq Hephestos 2
 *    75 : 100kΩ  Generic Silicon Heat Pad with NTC100K MGB18-104F39050L32
 *  2000 : 100kΩ  Ultimachine Rambo TDK NTCG104LH104KT1 NTC100K motherboard Thermistor
 *
 *  Analog Thermistors - 1kΩ pullup - Atypical, and requires changing out the 4.7kΩ pullup for 1kΩ.
 *  -------                           (but gives greater accuracy and more stable PID)
 *    51 : 100kΩ  EPCOS (1kΩ pullup)
 *    52 : 200kΩ  ATC Semitec 204GT-2 (1kΩ pullup)
 *    55 : 100kΩ  ATC Semitec 104GT-2 - Used in ParCan & J-Head (1kΩ pullup)
 *
 *  Analog Thermistors - 10kΩ pullup - Atypical
 *  -------
 *    99 : 100kΩ  Found on some Wanhao i3 machines with a 10kΩ pull-up resistor
 *
 *  Analog RTDs (Pt100/Pt1000)
 *  -------
 *   110 : Pt100  with 1kΩ pullup (atypical)
 *   147 : Pt100  with 4.7kΩ pullup
 *  1010 : Pt1000 with 1kΩ pullup (atypical)
 *  1047 : Pt1000 with 4.7kΩ pullup (E3D)
 *    20 : Pt100  with circuit in the Ultimainboard V2.x with mainboard ADC reference voltage = INA826 amplifier-board supply voltage.
 *                NOTE: (1) Must use an ADC input with no pullup. (2) Some INA826 amplifiers are unreliable at 3.3V so consider using sensor 147, 110, or 21.
 *    21 : Pt100  with circuit in the Ultimainboard V2.x with 3.3v ADC reference voltage (STM32, LPC176x....) and 5V INA826 amplifier board supply.
 *                NOTE: ADC pins are not 5V tolerant. Not recommended because it's possible to damage the CPU by going over 500°C.
 *   201 : Pt100  with circuit in Overlord, similar to Ultimainboard V2.x
 *
 *  Custom/Dummy/Other Thermal Sensors
 *  ------
 *     0 : not used
 *  1000 : Custom - Specify parameters in Configuration_adv.h
 *
 *   !!! Use these for Testing or Development purposes. NEVER for production machine. !!!
 *   998 : Dummy Table that ALWAYS reads 25°C or the temperature defined below.
 *   999 : Dummy Table that ALWAYS reads 100°C or the temperature defined below.
 *
 */
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_4 0
#define TEMP_SENSOR_5 0
#define TEMP_SENSOR_6 0
#define TEMP_SENSOR_7 0
#define TEMP_SENSOR_BED 0
#define TEMP_SENSOR_PROBE 0
#define TEMP_SENSOR_CHAMBER 0
#define TEMP_SENSOR_COOLER 0
#define TEMP_SENSOR_BOARD 0
#define TEMP_SENSOR_REDUNDANT 0

// Dummy thermistor constant temperature readings, for use with 998 and 999
#define DUMMY_THERMISTOR_998_VALUE  25
#define DUMMY_THERMISTOR_999_VALUE 100

// Resistor values when using MAX31865 sensors (-5) on TEMP_SENSOR_0 / 1
//#define MAX31865_SENSOR_OHMS_0      100   // (Ω) Typically 100 or 1000 (PT100 or PT1000)
//#define MAX31865_CALIBRATION_OHMS_0 430   // (Ω) Typically 430 for Adafruit PT100; 4300 for Adafruit PT1000
//#define MAX31865_SENSOR_OHMS_1      100
//#define MAX31865_CALIBRATION_OHMS_1 430

#define TEMP_RESIDENCY_TIME         10  // (seconds) Time to wait for hotend to "settle" in M109
#define TEMP_WINDOW                  1  // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_HYSTERESIS              3  // (°C) Temperature proximity considered "close enough" to the target

#define TEMP_BED_RESIDENCY_TIME     10  // (seconds) Time to wait for bed to "settle" in M190
#define TEMP_BED_WINDOW              1  // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_BED_HYSTERESIS          3  // (°C) Temperature proximity considered "close enough" to the target

#define TEMP_CHAMBER_RESIDENCY_TIME 10  // (seconds) Time to wait for chamber to "settle" in M191
#define TEMP_CHAMBER_WINDOW          1  // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_CHAMBER_HYSTERESIS      3  // (°C) Temperature proximity considered "close enough" to the target

/**
 * Redundant Temperature Sensor (TEMP_SENSOR_REDUNDANT)
 *
 * Use a temp sensor as a redundant sensor for another reading. Select an unused temperature sensor, and another
 * sensor you'd like it to be redundant for. If the two thermistors differ by TEMP_SENSOR_REDUNDANT_MAX_DIFF (°C),
 * the print will be aborted. Whichever sensor is selected will have its normal functions disabled; i.e. selecting
 * the Bed sensor (-1) will disable bed heating/monitoring.
 *
 * For selecting source/target use: COOLER, PROBE, BOARD, CHAMBER, BED, E0, E1, E2, E3, E4, E5, E6, E7
 */
#if TEMP_SENSOR_REDUNDANT
  #define TEMP_SENSOR_REDUNDANT_SOURCE    E1  // The sensor that will provide the redundant reading.
  #define TEMP_SENSOR_REDUNDANT_TARGET    E0  // The sensor that we are providing a redundant reading for.
  #define TEMP_SENSOR_REDUNDANT_MAX_DIFF  10  // (°C) Temperature difference that will trigger a print abort.
#endif

// Below this temperature the heater will be switched off
// because it probably indicates a broken thermistor wire.
#define HEATER_0_MINTEMP   5
#define HEATER_1_MINTEMP   5
#define HEATER_2_MINTEMP   5
#define HEATER_3_MINTEMP   5
#define HEATER_4_MINTEMP   5
#define HEATER_5_MINTEMP   5
#define HEATER_6_MINTEMP   5
#define HEATER_7_MINTEMP   5
#define BED_MINTEMP        5
#define CHAMBER_MINTEMP    5

// Above this temperature the heater will be switched off.
// This can protect components from overheating, but NOT from shorts and failures.
// (Use MINTEMP for thermistor short/failure protection.)
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define HEATER_4_MAXTEMP 275
#define HEATER_5_MAXTEMP 275
#define HEATER_6_MAXTEMP 275
#define HEATER_7_MAXTEMP 275
#define BED_MAXTEMP      150
#define CHAMBER_MAXTEMP  60

/**
 * Thermal Overshoot
 * During heatup (and printing) the temperature can often "overshoot" the target by many degrees
 * (especially before PID tuning). Setting the target temperature too close to MAXTEMP guarantees
 * a MAXTEMP shutdown! Use these values to forbid temperatures being set too close to MAXTEMP.
 */
#define HOTEND_OVERSHOOT 15   // (°C) Forbid temperatures over MAXTEMP - OVERSHOOT
#define BED_OVERSHOOT    10   // (°C) Forbid temperatures over MAXTEMP - OVERSHOOT
#define COOLER_OVERSHOOT  2   // (°C) Forbid temperatures closer than OVERSHOOT

//===========================================================================
//============================= PID Settings ================================
//===========================================================================
// PID Tuning Guide here: https://reprap.org/wiki/PID_Tuning

// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255     // Limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX BANG_MAX // Limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#define PID_K1 0.95      // Smoothing factor within any PID loop

#if ENABLED(PIDTEMP)
  //#define PID_EDIT_MENU         // Add PID editing to the "Advanced Settings" menu. (~700 bytes of PROGMEM)
  //#define PID_AUTOTUNE_MENU     // Add PID auto-tuning to the "Advanced Settings" menu. (~250 bytes of PROGMEM)
  //#define PID_PARAMS_PER_HOTEND // Uses separate PID parameters for each extruder (useful for mismatched extruders)
                                  // Set/get with gcode: M301 E[extruder number, 0-2]

  #if ENABLED(PID_PARAMS_PER_HOTEND)
    // Specify up to one value per hotend here, according to your setup.
    // If there are fewer values, the last one applies to the remaining hotends.
    #define DEFAULT_Kp_LIST {  22.20,  22.20 }
    #define DEFAULT_Ki_LIST {   1.08,   1.08 }
    #define DEFAULT_Kd_LIST { 114.00, 114.00 }
  #else
    #define DEFAULT_Kp  22.20
    #define DEFAULT_Ki   1.08
    #define DEFAULT_Kd 114.00
  #endif
#endif // PIDTEMP

//===========================================================================
//====================== PID > Bed Temperature Control ======================
//===========================================================================

/**
 * PID Bed Heating
 *
 * If this option is enabled set PID constants below.
 * If this option is disabled, bang-bang will be used and BED_LIMIT_SWITCHING will enable hysteresis.
 *
 * The PID frequency will be the same as the extruder PWM.
 * If PID_dT is the default, and correct for the hardware/configuration, that means 7.689Hz,
 * which is fine for driving a square wave into a resistive load and does not significantly
 * impact FET heating. This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W
 * heater. If your configuration is significantly different than this and you don't understand
 * the issues involved, don't use bed PID until someone else verifies that your hardware works.
 */
//#define PIDTEMPBED

//#define BED_LIMIT_SWITCHING

/**
 * Max Bed Power
 * Applies to all forms of bed control (PID, bang-bang, and bang-bang with hysteresis).
 * When set to any value below 255, enables a form of PWM to the bed that acts like a divider
 * so don't use it unless you are OK with PWM on your bed. (See the comment on enabling PIDTEMPBED)
 */
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current

#if ENABLED(PIDTEMPBED)
  //#define MIN_BED_POWER 0
  //#define PID_BED_DEBUG // Sends debug data to the serial port.

  // 120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
  // from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
  #define DEFAULT_bedKp 10.00
  #define DEFAULT_bedKi .023
  #define DEFAULT_bedKd 305.4

  // FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED

//===========================================================================
//==================== PID > Chamber Temperature Control ====================
//===========================================================================

/**
 * PID Chamber Heating
 *
 * If this option is enabled set PID constants below.
 * If this option is disabled, bang-bang will be used and CHAMBER_LIMIT_SWITCHING will enable
 * hysteresis.
 *
 * The PID frequency will be the same as the extruder PWM.
 * If PID_dT is the default, and correct for the hardware/configuration, that means 7.689Hz,
 * which is fine for driving a square wave into a resistive load and does not significantly
 * impact FET heating. This also works fine on a Fotek SSR-10DA Solid State Relay into a 200W
 * heater. If your configuration is significantly different than this and you don't understand
 * the issues involved, don't use chamber PID until someone else verifies that your hardware works.
 */
//#define PIDTEMPCHAMBER
//#define CHAMBER_LIMIT_SWITCHING

/**
 * Max Chamber Power
 * Applies to all forms of chamber control (PID, bang-bang, and bang-bang with hysteresis).
 * When set to any value below 255, enables a form of PWM to the chamber heater that acts like a divider
 * so don't use it unless you are OK with PWM on your heater. (See the comment on enabling PIDTEMPCHAMBER)
 */
#define MAX_CHAMBER_POWER 255 // limits duty cycle to chamber heater; 255=full current

#if ENABLED(PIDTEMPCHAMBER)
  #define MIN_CHAMBER_POWER 0
  //#define PID_CHAMBER_DEBUG // Sends debug data to the serial port.

  // Lasko "MyHeat Personal Heater" (200w) modified with a Fotek SSR-10DA to control only the heating element
  // and placed inside the small Creality printer enclosure tent.
  //
  #define DEFAULT_chamberKp 37.04
  #define DEFAULT_chamberKi 1.40
  #define DEFAULT_chamberKd 655.17
  // M309 P37.04 I1.04 D655.17

  // FIND YOUR OWN: "M303 E-2 C8 S50" to run autotune on the chamber at 50 degreesC for 8 cycles.
#endif // PIDTEMPCHAMBER

#if ANY(PIDTEMP, PIDTEMPBED, PIDTEMPCHAMBER)
  //#define PID_DEBUG             // Sends debug data to the serial port. Use 'M303 D' to toggle activation.
  //#define PID_OPENLOOP          // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
  //#define SLOW_PWM_HEATERS      // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
  #define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
                                  // is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#endif

// @section extruder

/**
 * Prevent extrusion if the temperature is below EXTRUDE_MINTEMP.
 * Add M302 to set the minimum extrusion temperature and/or turn
 * cold extrusion prevention on and off.
 *
 * *** IT IS HIGHLY RECOMMENDED TO LEAVE THIS OPTION ENABLED! ***
 */
#define PREVENT_COLD_EXTRUSION
#define EXTRUDE_MINTEMP 170

/**
 * Prevent a single extrusion longer than EXTRUDE_MAXLENGTH.
 * Note: For Bowden Extruders make this large enough to allow load/unload.
 */
#define PREVENT_LENGTHY_EXTRUDE
#define EXTRUDE_MAXLENGTH 200

//===========================================================================
//======================== Thermal Runaway Protection =======================
//===========================================================================

/**
 * Thermal Protection provides additional protection to your printer from damage
 * and fire. Marlin always includes safe min and max temperature ranges which
 * protect against a broken or disconnected thermistor wire.
 *
 * The issue: If a thermistor falls out, it will report the much lower
 * temperature of the air in the room, and the the firmware will keep
 * the heater on.
 *
 * If you get "Thermal Runaway" or "Heating failed" errors the
 * details can be tuned in Configuration_adv.h
 */

#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED     // Enable thermal protection for the heated bed
#define THERMAL_PROTECTION_CHAMBER // Enable thermal protection for the heated chamber
#define THERMAL_PROTECTION_COOLER  // Enable thermal protection for the laser cooling

//===========================================================================
//============================= Mechanical Settings =========================
//===========================================================================

// @section machine

// Enable one of the options below for CoreXY, CoreXZ, or CoreYZ kinematics,
// either in the usual order or reversed
//#define COREXY
//#define COREXZ
//#define COREYZ
//#define COREYX
//#define COREZX
//#define COREZY
//#define MARKFORGED_XY  // MarkForged. See https://reprap.org/forum/read.php?152,504042

// Enable for a belt style printer with endless "Z" motion
//#define BELTPRINTER

// Enable for Polargraph Kinematics
//#define POLARGRAPH
#if ENABLED(POLARGRAPH)
  #define POLARGRAPH_MAX_BELT_LEN 1035.0
  #define POLAR_SEGMENTS_PER_SECOND 5
#endif

//===========================================================================
//============================== Endstop Settings ===========================
//===========================================================================

// @section homing

// Specify here all the endstop connectors that are connected to any endstop or probe.
// Almost all printers will be using one per axis. Probes will use one or more of the
// extra connectors. Leave undefined any used for non-endstop and non-probe purposes.
#define USE_XMIN_PLUG
#define USE_YMIN_PLUG
#define USE_ZMIN_PLUG
//#define USE_IMIN_PLUG
//#define USE_JMIN_PLUG
//#define USE_KMIN_PLUG
//#define USE_XMAX_PLUG
//#define USE_YMAX_PLUG
//#define USE_ZMAX_PLUG
//#define USE_IMAX_PLUG
//#define USE_JMAX_PLUG
//#define USE_KMAX_PLUG

// Enable pullup for all endstops to prevent a floating state
#define ENDSTOPPULLUPS
#if DISABLED(ENDSTOPPULLUPS)
  // Disable ENDSTOPPULLUPS to set pullups individually
  //#define ENDSTOPPULLUP_XMIN
  //#define ENDSTOPPULLUP_YMIN
  //#define ENDSTOPPULLUP_ZMIN
  //#define ENDSTOPPULLUP_IMIN
  //#define ENDSTOPPULLUP_JMIN
  //#define ENDSTOPPULLUP_KMIN
  //#define ENDSTOPPULLUP_XMAX
  //#define ENDSTOPPULLUP_YMAX
  //#define ENDSTOPPULLUP_ZMAX
  //#define ENDSTOPPULLUP_IMAX
  //#define ENDSTOPPULLUP_JMAX
  //#define ENDSTOPPULLUP_KMAX
  //#define ENDSTOPPULLUP_ZMIN_PROBE
#endif

// Enable pulldown for all endstops to prevent a floating state
//#define ENDSTOPPULLDOWNS
#if DISABLED(ENDSTOPPULLDOWNS)
  // Disable ENDSTOPPULLDOWNS to set pulldowns individually
  //#define ENDSTOPPULLDOWN_XMIN
  //#define ENDSTOPPULLDOWN_YMIN
  //#define ENDSTOPPULLDOWN_ZMIN
  //#define ENDSTOPPULLDOWN_IMIN
  //#define ENDSTOPPULLDOWN_JMIN
  //#define ENDSTOPPULLDOWN_KMIN
  //#define ENDSTOPPULLDOWN_XMAX
  //#define ENDSTOPPULLDOWN_YMAX
  //#define ENDSTOPPULLDOWN_ZMAX
  //#define ENDSTOPPULLDOWN_IMAX
  //#define ENDSTOPPULLDOWN_JMAX
  //#define ENDSTOPPULLDOWN_KMAX
  //#define ENDSTOPPULLDOWN_ZMIN_PROBE
#endif

// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).
#define X_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Y_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Z_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define I_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define J_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define K_MIN_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define X_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Y_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Z_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define I_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define J_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define K_MAX_ENDSTOP_INVERTING false // Set to true to invert the logic of the endstop.
#define Z_MIN_PROBE_ENDSTOP_INVERTING false // Set to true to invert the logic of the probe.

/**
 * Stepper Drivers
 *
 * These settings allow Marlin to tune stepper driver timing and enable advanced options for
 * stepper drivers that support them. You may also override timing options in Configuration_adv.h.
 *
 * A4988 is assumed for unspecified drivers.
 *
 * Use TMC2208/TMC2208_STANDALONE for TMC2225 drivers and TMC2209/TMC2209_STANDALONE for TMC2226 drivers.
 *
 * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
 *          TB6560, TB6600, TMC2100,
 *          TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
 *          TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
 *          TMC26X,  TMC26X_STANDALONE,  TMC2660, TMC2660_STANDALONE,
 *          TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
 * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
 */
#define X_DRIVER_TYPE  A4988
#define Y_DRIVER_TYPE  A4988
#define Z_DRIVER_TYPE  A4988
//#define X2_DRIVER_TYPE A4988
//#define Y2_DRIVER_TYPE A4988
//#define Z2_DRIVER_TYPE A4988
//#define Z3_DRIVER_TYPE A4988
//#define Z4_DRIVER_TYPE A4988
//#define I_DRIVER_TYPE  A4988
//#define J_DRIVER_TYPE  A4988
//#define K_DRIVER_TYPE  A4988
#define E0_DRIVER_TYPE A4988
//#define E1_DRIVER_TYPE A4988
//#define E2_DRIVER_TYPE A4988
//#define E3_DRIVER_TYPE A4988
//#define E4_DRIVER_TYPE A4988
//#define E5_DRIVER_TYPE A4988
//#define E6_DRIVER_TYPE A4988
//#define E7_DRIVER_TYPE A4988

// Enable this feature if all enabled endstop pins are interrupt-capable.
// This will remove the need to poll the interrupt pins, saving many CPU cycles.
//#define ENDSTOP_INTERRUPTS_FEATURE

/**
 * Endstop Noise Threshold
 *
 * Enable if your probe or endstops falsely trigger due to noise.
 *
 * - Higher values may affect repeatability or accuracy of some bed probes.
 * - To fix noise install a 100nF ceramic capacitor in parallel with the switch.
 * - This feature is not required for common micro-switches mounted on PCBs
 *   based on the Makerbot design, which already have the 100nF capacitor.
 *
 * :[2,3,4,5,6,7]
 */
//#define ENDSTOP_NOISE_THRESHOLD 2

// Check for stuck or disconnected endstops during homing moves.
//#define DETECT_BROKEN_ENDSTOP

//=============================================================================
//============================== Movement Settings ============================
//=============================================================================
// @section motion

/**
 * Default Settings
 *
 * These settings can be reset by M502
 *
 * Note that if EEPROM is enabled, saved values will override these.
 */

/**
 * With this option each E stepper can have its own factors for the
 * following movement settings. If fewer factors are given than the
 * total number of extruders, the last value applies to the rest.
 */
//#define DISTINCT_E_FACTORS

/**
 * Default Axis Steps Per Unit (steps/mm)
 * Override with M92
 *                                      X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
 */
#define DEFAULT_AXIS_STEPS_PER_UNIT   { 80, 80, 400, 500 }

/**
 * Default Max Feed Rate (mm/s)
 * Override with M203
 *                                      X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
 */
#define DEFAULT_MAX_FEEDRATE          { 300, 300, 5, 25 }

//#define LIMITED_MAX_FR_EDITING        // Limit edit via M203 or LCD to DEFAULT_MAX_FEEDRATE * 2
#if ENABLED(LIMITED_MAX_FR_EDITING)
  #define MAX_FEEDRATE_EDIT_VALUES    { 600, 600, 10, 50 } // ...or, set your own edit limits
#endif

/**
 * Default Max Acceleration (change/s) change = mm/s
 * (Maximum start speed for accelerated moves)
 * Override with M201
 *                                      X, Y, Z [, I [, J [, K]]], E0 [, E1[, E2...]]
 */
#define DEFAULT_MAX_ACCELERATION      { 3000, 3000, 100, 10000 }

//#define LIMITED_MAX_ACCEL_EDITING     // Limit edit via M201 or LCD to DEFAULT_MAX_ACCELERATION * 2
#if ENABLED(LIMITED_MAX_ACCEL_EDITING)
  #define MAX_ACCEL_EDIT_VALUES       { 6000, 6000, 200, 20000 } // ...or, set your own edit limits
#endif

/**
 * Default Acceleration (change/s) change = mm/s
 * Override with M204
 *
 *   M204 P    Acceleration
 *   M204 R    Retract Acceleration
 *   M204 T    Travel Acceleration
 */
#define DEFAULT_ACCELERATION          3000    // X, Y, Z and E acceleration for printing moves
#define DEFAULT_RETRACT_ACCELERATION  3000    // E acceleration for retracts
#define DEFAULT_TRAVEL_ACCELERATION   3000    // X, Y, Z acceleration for travel (non printing) moves

/**
 * Default Jerk limits (mm/s)
 * Override with M205 X Y Z E
 *
 * "Jerk" specifies the minimum speed change that requires acceleration.
 * When changing speed and direction, if the difference is less than the
 * value set here, it may happen instantaneously.
 */
//#define CLASSIC_JERK
#if ENABLED(CLASSIC_JERK)
  #define DEFAULT_XJERK 10.0
  #define DEFAULT_YJERK 10.0
  #define DEFAULT_ZJERK  0.3
  //#define DEFAULT_IJERK  0.3
  //#define DEFAULT_JJERK  0.3
  //#define DEFAULT_KJERK  0.3

  //#define TRAVEL_EXTRA_XYJERK 0.0     // Additional jerk allowance for all travel moves

  //#define LIMITED_JERK_EDITING        // Limit edit via M205 or LCD to DEFAULT_aJERK * 2
  #if ENABLED(LIMITED_JERK_EDITING)
    #define MAX_JERK_EDIT_VALUES { 20, 20, 0.6, 10 } // ...or, set your own edit limits
  #endif
#endif

#define DEFAULT_EJERK    5.0  // May be used by Linear Advance

/**
 * Junction Deviation Factor
 *
 * See:
 *   https://reprap.org/forum/read.php?1,739819
 *   https://blog.kyneticcnc.com/2018/10/computing-junction-deviation-for-marlin.html
 */
#if DISABLED(CLASSIC_JERK)
  #define JUNCTION_DEVIATION_MM 0.013 // (mm) Distance from real junction edge
  #define JD_HANDLE_SMALL_SEGMENTS    // Use curvature estimation instead of just the junction angle
                                      // for small segments (< 1mm) with large junction angles (> 135°).
#endif

/**
 * S-Curve Acceleration
 *
 * This option eliminates vibration during printing by fitting a Bézier
 * curve to move acceleration, producing much smoother direction changes.
 *
 * See https://github.com/synthetos/TinyG/wiki/Jerk-Controlled-Motion-Explained
 */
//#define S_CURVE_ACCELERATION

//===========================================================================
//============================= Z Probe Options =============================
//===========================================================================
// @section probes

//
// See https://marlinfw.org/docs/configuration/probes.html
//

/**
 * Enable this option for a probe connected to the Z-MIN pin.
 * The probe replaces the Z-MIN endstop and is used for Z homing.
 * (Automatically enables USE_PROBE_FOR_Z_HOMING.)
 */
#define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN

// Force the use of the probe for Z-axis homing
//#define USE_PROBE_FOR_Z_HOMING

/**
 * Z_MIN_PROBE_PIN
 *
 * Define this pin if the probe is not connected to Z_MIN_PIN.
 * If not defined the default pin for the selected MOTHERBOARD
 * will be used. Most of the time the default is what you want.
 *
 *  - The simplest option is to use a free endstop connector.
 *  - Use 5V for powered (usually inductive) sensors.
 *
 *  - RAMPS 1.3/1.4 boards may use the 5V, GND, and Aux4->D32 pin:
 *    - For simple switches connect...
 *      - normally-closed switches to GND and D32.
 *      - normally-open switches to 5V and D32.
 */
//#define Z_MIN_PROBE_PIN 32 // Pin 32 is the RAMPS default

/**
 * Probe Type
 *
 * Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc.
 * Activate one of these to use Auto Bed Leveling below.
 */

/**
 * The "Manual Probe" provides a means to do "Auto" Bed Leveling without a probe.
 * Use G29 repeatedly, adjusting the Z height at each point with movement commands
 * or (with LCD_BED_LEVELING) the LCD controller.
 */
//#define PROBE_MANUALLY

/**
 * A Fix-Mounted Probe either doesn't deploy or needs manual deployment.
 *   (e.g., an inductive probe or a nozzle-based probe-switch.)
 */
//#define FIX_MOUNTED_PROBE

/**
 * Use the nozzle as the probe, as with a conductive
 * nozzle system or a piezo-electric smart effector.
 */
//#define NOZZLE_AS_PROBE

/**
 * Z Servo Probe, such as an endstop switch on a rotating arm.
 */
//#define Z_PROBE_SERVO_NR 0       // Defaults to SERVO 0 connector.
//#define Z_SERVO_ANGLES { 70, 0 } // Z Servo Deploy and Stow angles

/**
 * The BLTouch probe uses a Hall effect sensor and emulates a servo.
 */
//#define BLTOUCH

/**
 * Touch-MI Probe by hotends.fr
 *
 * This probe is deployed and activated by moving the X-axis to a magnet at the edge of the bed.
 * By default, the magnet is assumed to be on the left and activated by a home. If the magnet is
 * on the right, enable and set TOUCH_MI_DEPLOY_XPOS to the deploy position.
 *
 * Also requires: BABYSTEPPING, BABYSTEP_ZPROBE_OFFSET, Z_SAFE_HOMING,
 *                and a minimum Z_HOMING_HEIGHT of 10.
 */
//#define TOUCH_MI_PROBE
#if ENABLED(TOUCH_MI_PROBE)
  #define TOUCH_MI_RETRACT_Z 0.5                  // Height at which the probe retracts
  //#define TOUCH_MI_DEPLOY_XPOS (X_MAX_BED + 2)  // For a magnet on the right side of the bed
  //#define TOUCH_MI_MANUAL_DEPLOY                // For manual deploy (LCD menu)
#endif

// A probe that is deployed and stowed with a solenoid pin (SOL1_PIN)
//#define SOLENOID_PROBE

// A sled-mounted probe like those designed by Charles Bell.
//#define Z_PROBE_SLED
//#define SLED_DOCKING_OFFSET 5  // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.

// A probe deployed by moving the x-axis, such as the Wilson II's rack-and-pinion probe designed by Marty Rice.
//#define RACK_AND_PINION_PROBE
#if ENABLED(RACK_AND_PINION_PROBE)
  #define Z_PROBE_DEPLOY_X  X_MIN_POS
  #define Z_PROBE_RETRACT_X X_MAX_POS
#endif

// Duet Smart Effector (for delta printers) - https://bit.ly/2ul5U7J
// When the pin is defined you can use M672 to set/reset the probe sensitivity.
//#define DUET_SMART_EFFECTOR
#if ENABLED(DUET_SMART_EFFECTOR)
  #define SMART_EFFECTOR_MOD_PIN  -1  // Connect a GPIO pin to the Smart Effector MOD pin
#endif

/**
 * Use StallGuard2 to probe the bed with the nozzle.
 * Requires stallGuard-capable Trinamic stepper drivers.
 * CAUTION: This can damage machines with Z lead screws.
 *          Take extreme care when setting up this feature.
 */
//#define SENSORLESS_PROBING

//
// For Z_PROBE_ALLEN_KEY see the Delta example configurations.
//

/**
 * Nozzle-to-Probe offsets { X, Y, Z }
 *
 * X and Y offset
 *   Use a caliper or ruler to measure the distance from the tip of
 *   the Nozzle to the center-point of the Probe in the X and Y axes.
 *
 * Z offset
 * - For the Z offset use your best known value and adjust at runtime.
 * - Common probes trigger below the nozzle and have negative values for Z offset.
 * - Probes triggering above the nozzle height are uncommon but do exist. When using
 *   probes such as this, carefully set Z_CLEARANCE_DEPLOY_PROBE and Z_CLEARANCE_BETWEEN_PROBES
 *   to avoid collisions during probing.
 *
 * Tune and Adjust
 * -  Probe Offsets can be tuned at runtime with 'M851', LCD menus, babystepping, etc.
 * -  PROBE_OFFSET_WIZARD (configuration_adv.h) can be used for setting the Z offset.
 *
 * Assuming the typical work area orientation:
 *  - Probe to RIGHT of the Nozzle has a Positive X offset
 *  - Probe to LEFT  of the Nozzle has a Negative X offset
 *  - Probe in BACK  of the Nozzle has a Positive Y offset
 *  - Probe in FRONT of the Nozzle has a Negative Y offset
 *
 * Some examples:
 *   #define NOZZLE_TO_PROBE_OFFSET { 10, 10, -1 }   // Example "1"
 *   #define NOZZLE_TO_PROBE_OFFSET {-10,  5, -1 }   // Example "2"
 *   #define NOZZLE_TO_PROBE_OFFSET {  5, -5, -1 }   // Example "3"
 *   #define NOZZLE_TO_PROBE_OFFSET {-15,-10, -1 }   // Example "4"
 *
 *     +-- BACK ---+
 *     |    [+]    |
 *   L |        1  | R <-- Example "1" (right+,  back+)
 *   E |  2        | I <-- Example "2" ( left-,  back+)
 *   F |[-]  N  [+]| G <-- Nozzle
 *   T |       3   | H <-- Example "3" (right+, front-)
 *     | 4         | T <-- Example "4" ( left-, front-)
 *     |    [-]    |
 *     O-- FRONT --+
 */
#define NOZZLE_TO_PROBE_OFFSET { 10, 10, 0 }

// Most probes should stay away from the edges of the bed, but
// with NOZZLE_AS_PROBE this can be negative for a wider probing area.
#define PROBING_MARGIN 10

// X and Y axis travel speed (mm/min) between probes
#define XY_PROBE_FEEDRATE (133*60)

// Feedrate (mm/min) for the first approach when double-probing (MULTIPLE_PROBING == 2)
#define Z_PROBE_FEEDRATE_FAST (4*60)

// Feedrate (mm/min) for the "accurate" probe of each point
#define Z_PROBE_FEEDRATE_SLOW (Z_PROBE_FEEDRATE_FAST / 2)

/**
 * Probe Activation Switch
 * A switch indicating proper deployment, or an optical
 * switch triggered when the carriage is near the bed.
 */
//#define PROBE_ACTIVATION_SWITCH
#if ENABLED(PROBE_ACTIVATION_SWITCH)
  #define PROBE_ACTIVATION_SWITCH_STATE LOW // State indicating probe is active
  //#define PROBE_ACTIVATION_SWITCH_PIN PC6 // Override default pin
#endif

/**
 * Tare Probe (determine zero-point) prior to each probe.
 * Useful for a strain gauge or piezo sensor that needs to factor out
 * elements such as cables pulling on the carriage.
 */
//#define PROBE_TARE
#if ENABLED(PROBE_TARE)
  #define PROBE_TARE_TIME  200    // (ms) Time to hold tare pin
  #define PROBE_TARE_DELAY 200    // (ms) Delay after tare before
  #define PROBE_TARE_STATE HIGH   // State to write pin for tare
  //#define PROBE_TARE_PIN PA5    // Override default pin
  #if ENABLED(PROBE_ACTIVATION_SWITCH)
    //#define PROBE_TARE_ONLY_WHILE_INACTIVE  // Fail to tare/probe if PROBE_ACTIVATION_SWITCH is active
  #endif
#endif

/**
 * Multiple Probing
 *
 * You may get improved results by probing 2 or more times.
 * With EXTRA_PROBING the more atypical reading(s) will be disregarded.
 *
 * A total of 2 does fast/slow probes with a weighted average.
 * A total of 3 or more adds more slow probes, taking the average.
 */
//#define MULTIPLE_PROBING 2
//#define EXTRA_PROBING    1

/**
 * Z probes require clearance when deploying, stowing, and moving between
 * probe points to avoid hitting the bed and other hardware.
 * Servo-mounted probes require extra space for the arm to rotate.
 * Inductive probes need space to keep from triggering early.
 *
 * Use these settings to specify the distance (mm) to raise the probe (or
 * lower the bed). The values set here apply over and above any (negative)
 * probe Z Offset set with NOZZLE_TO_PROBE_OFFSET, M851, or the LCD.
 * Only integer values >= 1 are valid here.
 *
 * Example: `M851 Z-5` with a CLEARANCE of 4  =>  9mm from bed to nozzle.
 *     But: `M851 Z+1` with a CLEARANCE of 2  =>  2mm from bed to nozzle.
 */
#define Z_CLEARANCE_DEPLOY_PROBE   10 // Z Clearance for Deploy/Stow
#define Z_CLEARANCE_BETWEEN_PROBES  5 // Z Clearance between probe points
#define Z_CLEARANCE_MULTI_PROBE     5 // Z Clearance between multiple probes
//#define Z_AFTER_PROBING           5 // Z position after probing is done

#define Z_PROBE_LOW_POINT          -2 // Farthest distance below the trigger-point to go before stopping

// For M851 give a range for adjusting the Z probe offset
#define Z_PROBE_OFFSET_RANGE_MIN -20
#define Z_PROBE_OFFSET_RANGE_MAX 20

// Enable the M48 repeatability test to test probe accuracy
//#define Z_MIN_PROBE_REPEATABILITY_TEST

// Before deploy/stow pause for user confirmation
//#define PAUSE_BEFORE_DEPLOY_STOW
#if ENABLED(PAUSE_BEFORE_DEPLOY_STOW)
  //#define PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED // For Manual Deploy Allenkey Probe
#endif

/**
 * Enable one or more of the following if probing seems unreliable.
 * Heaters and/or fans can be disabled during probing to minimize electrical
 * noise. A delay can also be added to allow noise and vibration to settle.
 * These options are most useful for the BLTouch probe, but may also improve
 * readings with inductive probes and piezo sensors.
 */
//#define PROBING_HEATERS_OFF       // Turn heaters off when probing
#if ENABLED(PROBING_HEATERS_OFF)
  //#define WAIT_FOR_BED_HEATER     // Wait for bed to heat back up between probes (to improve accuracy)
  //#define WAIT_FOR_HOTEND         // Wait for hotend to heat back up between probes (to improve accuracy & prevent cold extrude)
#endif
//#define PROBING_FANS_OFF          // Turn fans off when probing
//#define PROBING_ESTEPPERS_OFF     // Turn all extruder steppers off when probing
//#define PROBING_STEPPERS_OFF      // Turn all steppers off (unless needed to hold position) when probing (including extruders)
//#define DELAY_BEFORE_PROBING 200  // (ms) To prevent vibrations from triggering piezo sensors

// Require minimum nozzle and/or bed temperature for probing
//#define PREHEAT_BEFORE_PROBING
#if ENABLED(PREHEAT_BEFORE_PROBING)
  #define PROBING_NOZZLE_TEMP 120   // (°C) Only applies to E0 at this time
  #define PROBING_BED_TEMP     50
#endif

// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
// :{ 0:'Low', 1:'High' }
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders
//#define I_ENABLE_ON 0
//#define J_ENABLE_ON 0
//#define K_ENABLE_ON 0

// Disable axis steppers immediately when they're not being stepped.
// WARNING: When motors turn off there is a chance of losing position accuracy!
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
//#define DISABLE_I false
//#define DISABLE_J false
//#define DISABLE_K false

// Turn off the display blinking that warns about possible accuracy reduction
//#define DISABLE_REDUCED_ACCURACY_WARNING

// @section extruder

#define DISABLE_E false             // Disable the extruder when not stepping
#define DISABLE_INACTIVE_EXTRUDER   // Keep only the active extruder enabled

// @section machine

// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR false
#define INVERT_Y_DIR true
#define INVERT_Z_DIR false
//#define INVERT_I_DIR false
//#define INVERT_J_DIR false
//#define INVERT_K_DIR false

// @section extruder

// For direct drive extruder v9 set to true, for geared extruder set to false.
#define INVERT_E0_DIR false
#define INVERT_E1_DIR false
#define INVERT_E2_DIR false
#define INVERT_E3_DIR false
#define INVERT_E4_DIR false
#define INVERT_E5_DIR false
#define INVERT_E6_DIR false
#define INVERT_E7_DIR false

// @section homing

//#define NO_MOTION_BEFORE_HOMING // Inhibit movement until all axes have been homed. Also enable HOME_AFTER_DEACTIVATE for extra safety.
//#define HOME_AFTER_DEACTIVATE   // Require rehoming after steppers are deactivated. Also enable NO_MOTION_BEFORE_HOMING for extra safety.

/**
 * Set Z_IDLE_HEIGHT if the Z-Axis moves on its own when steppers are disabled.
 *  - Use a low value (i.e., Z_MIN_POS) if the nozzle falls down to the bed.
 *  - Use a large value (i.e., Z_MAX_POS) if the bed falls down, away from the nozzle.
 */
//#define Z_IDLE_HEIGHT Z_HOME_POS

//#define Z_HOMING_HEIGHT  4      // (mm) Minimal Z height before homing (G28) for Z clearance above the bed, clamps, ...
                                  // Be sure to have this much clearance over your Z_MAX_POS to prevent grinding.

//#define Z_AFTER_HOMING  10      // (mm) Height to move to after homing Z

// Direction of endstops when homing; 1=MAX, -1=MIN
// :[-1,1]
#define X_HOME_DIR -1
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1
//#define I_HOME_DIR -1
//#define J_HOME_DIR -1
//#define K_HOME_DIR -1

// @section machine

// The size of the printable area
#define X_BED_SIZE 200
#define Y_BED_SIZE 200

// Travel limits (mm) after homing, corresponding to endstop positions.
#define X_MIN_POS 0
#define Y_MIN_POS 0
#define Z_MIN_POS 0
#define X_MAX_POS X_BED_SIZE
#define Y_MAX_POS Y_BED_SIZE
#define Z_MAX_POS 200
//#define I_MIN_POS 0
//#define I_MAX_POS 50
//#define J_MIN_POS 0
//#define J_MAX_POS 50
//#define K_MIN_POS 0
//#define K_MAX_POS 50

/**
 * Software Endstops
 *
 * - Prevent moves outside the set machine bounds.
 * - Individual axes can be disabled, if desired.
 * - X and Y only apply to Cartesian robots.
 * - Use 'M211' to set software endstops on/off or report current state
 */

// Min software endstops constrain movement within minimum coordinate bounds
#define MIN_SOFTWARE_ENDSTOPS
#if ENABLED(MIN_SOFTWARE_ENDSTOPS)
  #define MIN_SOFTWARE_ENDSTOP_X
  #define MIN_SOFTWARE_ENDSTOP_Y
  #define MIN_SOFTWARE_ENDSTOP_Z
  #define MIN_SOFTWARE_ENDSTOP_I
  #define MIN_SOFTWARE_ENDSTOP_J
  #define MIN_SOFTWARE_ENDSTOP_K
#endif

// Max software endstops constrain movement within maximum coordinate bounds
#define MAX_SOFTWARE_ENDSTOPS
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  #define MAX_SOFTWARE_ENDSTOP_X
  #define MAX_SOFTWARE_ENDSTOP_Y
  #define MAX_SOFTWARE_ENDSTOP_Z
  #define MAX_SOFTWARE_ENDSTOP_I
  #define MAX_SOFTWARE_ENDSTOP_J
  #define MAX_SOFTWARE_ENDSTOP_K
#endif

#if EITHER(MIN_SOFTWARE_ENDSTOPS, MAX_SOFTWARE_ENDSTOPS)
  //#define SOFT_ENDSTOPS_MENU_ITEM  // Enable/Disable software endstops from the LCD
#endif

/**
 * Filament Runout Sensors
 * Mechanical or opto endstops are used to check for the presence of filament.
 *
 * IMPORTANT: Runout will only trigger if Marlin is aware that a print job is running.
 * Marlin knows a print job is running when:
 *  1. Running a print job from media started with M24.
 *  2. The Print Job Timer has been started with M75.
 *  3. The heaters were turned on and PRINTJOB_TIMER_AUTOSTART is enabled.
 *
 * RAMPS-based boards use SERVO3_PIN for the first runout sensor.
 * For other boards you may need to define FIL_RUNOUT_PIN, FIL_RUNOUT2_PIN, etc.
 */
//#define FILAMENT_RUNOUT_SENSOR
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
  #define FIL_RUNOUT_ENABLED_DEFAULT true // Enable the sensor on startup. Override with M412 followed by M500.
  #define NUM_RUNOUT_SENSORS   1          // Number of sensors, up to one per extruder. Define a FIL_RUNOUT#_PIN for each.

  #define FIL_RUNOUT_STATE     LOW        // Pin state indicating that filament is NOT present.
  #define FIL_RUNOUT_PULLUP               // Use internal pullup for filament runout pins.
  //#define FIL_RUNOUT_PULLDOWN           // Use internal pulldown for filament runout pins.
  //#define WATCH_ALL_RUNOUT_SENSORS      // Execute runout script on any triggering sensor, not only for the active extruder.
                                          // This is automatically enabled for MIXING_EXTRUDERs.

  // Override individually if the runout sensors vary
  //#define FIL_RUNOUT1_STATE LOW
  //#define FIL_RUNOUT1_PULLUP
  //#define FIL_RUNOUT1_PULLDOWN

  //#define FIL_RUNOUT2_STATE LOW
  //#define FIL_RUNOUT2_PULLUP
  //#define FIL_RUNOUT2_PULLDOWN

  //#define FIL_RUNOUT3_STATE LOW
  //#define FIL_RUNOUT3_PULLUP
  //#define FIL_RUNOUT3_PULLDOWN

  //#define FIL_RUNOUT4_STATE LOW
  //#define FIL_RUNOUT4_PULLUP
  //#define FIL_RUNOUT4_PULLDOWN

  //#define FIL_RUNOUT5_STATE LOW
  //#define FIL_RUNOUT5_PULLUP
  //#define FIL_RUNOUT5_PULLDOWN

  //#define FIL_RUNOUT6_STATE LOW
  //#define FIL_RUNOUT6_PULLUP
  //#define FIL_RUNOUT6_PULLDOWN

  //#define FIL_RUNOUT7_STATE LOW
  //#define FIL_RUNOUT7_PULLUP
  //#define FIL_RUNOUT7_PULLDOWN

  //#define FIL_RUNOUT8_STATE LOW
  //#define FIL_RUNOUT8_PULLUP
  //#define FIL_RUNOUT8_PULLDOWN

  // Commands to execute on filament runout.
  // With multiple runout sensors use the %c placeholder for the current tool in commands (e.g., "M600 T%c")
  // NOTE: After 'M412 H1' the host handles filament runout and this script does not apply.
  #define FILAMENT_RUNOUT_SCRIPT "M600"

  // After a runout is detected, continue printing this length of filament
  // before executing the runout script. Useful for a sensor at the end of
  // a feed tube. Requires 4 bytes SRAM per sensor, plus 4 bytes overhead.
  //#define FILAMENT_RUNOUT_DISTANCE_MM 25

  #ifdef FILAMENT_RUNOUT_DISTANCE_MM
    // Enable this option to use an encoder disc that toggles the runout pin
    // as the filament moves. (Be sure to set FILAMENT_RUNOUT_DISTANCE_MM
    // large enough to avoid false positives.)
    //#define FILAMENT_MOTION_SENSOR
  #endif
#endif

//===========================================================================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section calibrate

/**
 * Choose one of the options below to enable G29 Bed Leveling. The parameters
 * and behavior of G29 will change depending on your selection.
 *
 *  If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
 *
 * - AUTO_BED_LEVELING_3POINT
 *   Probe 3 arbitrary points on the bed (that aren't collinear)
 *   You specify the XY coordinates of all 3 points.
 *   The result is a single tilted plane. Best for a flat bed.
 *
 * - AUTO_BED_LEVELING_LINEAR
 *   Probe several points in a grid.
 *   You specify the rectangle and the density of sample points.
 *   The result is a single tilted plane. Best for a flat bed.
 *
 * - AUTO_BED_LEVELING_BILINEAR
 *   Probe several points in a grid.
 *   You specify the rectangle and the density of sample points.
 *   The result is a mesh, best for large or uneven beds.
 *
 * - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
 *   A comprehensive bed leveling system combining the features and benefits
 *   of other systems. UBL also includes integrated Mesh Generation, Mesh
 *   Validation and Mesh Editing systems.
 *
 * - MESH_BED_LEVELING
 *   Probe a grid manually
 *   The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
 *   For machines without a probe, Mesh Bed Leveling provides a method to perform
 *   leveling in steps so you can manually adjust the Z height at each grid-point.
 *   With an LCD controller the process is guided step-by-step.
 */
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING

/**
 * Normally G28 leaves leveling disabled on completion. Enable one of
 * these options to restore the prior leveling state or to always enable
 * leveling immediately after G28.
 */
//#define RESTORE_LEVELING_AFTER_G28
//#define ENABLE_LEVELING_AFTER_G28

/**
 * Auto-leveling needs preheating
 */
//#define PREHEAT_BEFORE_LEVELING
#if ENABLED(PREHEAT_BEFORE_LEVELING)
  #define LEVELING_NOZZLE_TEMP 120   // (°C) Only applies to E0 at this time
  #define LEVELING_BED_TEMP     50
#endif

/**
 * Enable detailed logging of G28, G29, M48, etc.
 * Turn on with the command 'M111 S32'.
 * NOTE: Requires a lot of PROGMEM!
 */
//#define DEBUG_LEVELING_FEATURE

#if ANY(MESH_BED_LEVELING, AUTO_BED_LEVELING_UBL, PROBE_MANUALLY)
  // Set a height for the start of manual adjustment
  #define MANUAL_PROBE_START_Z 0.2  // (mm) Comment out to use the last-measured height
#endif

#if ANY(MESH_BED_LEVELING, AUTO_BED_LEVELING_BILINEAR, AUTO_BED_LEVELING_UBL)
  // Gradually reduce leveling correction until a set height is reached,
  // at which point movement will be level to the machine's XY plane.
  // The height can be set with M420 Z<height>
  #define ENABLE_LEVELING_FADE_HEIGHT
  #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
    #define DEFAULT_LEVELING_FADE_HEIGHT 10.0 // (mm) Default fade height.
  #endif

  // For Cartesian machines, instead of dividing moves on mesh boundaries,
  // split up moves into short segments like a Delta. This follows the
  // contours of the bed more closely than edge-to-edge straight moves.
  #define SEGMENT_LEVELED_MOVES
  #define LEVELED_SEGMENT_LENGTH 5.0 // (mm) Length of all segments (except the last one)

  /**
   * Enable the G26 Mesh Validation Pattern tool.
   */
  //#define G26_MESH_VALIDATION
  #if ENABLED(G26_MESH_VALIDATION)
    #define MESH_TEST_NOZZLE_SIZE    0.4  // (mm) Diameter of primary nozzle.
    #define MESH_TEST_LAYER_HEIGHT   0.2  // (mm) Default layer height for G26.
    #define MESH_TEST_HOTEND_TEMP  205    // (°C) Default nozzle temperature for G26.
    #define MESH_TEST_BED_TEMP      60    // (°C) Default bed temperature for G26.
    #define G26_XY_FEEDRATE         20    // (mm/s) Feedrate for G26 XY moves.
    #define G26_XY_FEEDRATE_TRAVEL 100    // (mm/s) Feedrate for G26 XY travel moves.
    #define G26_RETRACT_MULTIPLIER   1.0  // G26 Q (retraction) used by default between mesh test elements.
  #endif

#endif

#if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_BILINEAR)

  // Set the number of grid points per dimension.
  #define GRID_MAX_POINTS_X 3
  #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

  // Probe along the Y axis, advancing X after each column
  //#define PROBE_Y_FIRST

  #if ENABLED(AUTO_BED_LEVELING_BILINEAR)

    // Beyond the probed grid, continue the implied tilt?
    // Default is to maintain the height of the nearest edge.
    //#define EXTRAPOLATE_BEYOND_GRID

    //
    // Experimental Subdivision of the grid by Catmull-Rom method.
    // Synthesizes intermediate points to produce a more detailed mesh.
    //
    //#define ABL_BILINEAR_SUBDIVISION
    #if ENABLED(ABL_BILINEAR_SUBDIVISION)
      // Number of subdivisions between probe points
      #define BILINEAR_SUBDIVISIONS 3
    #endif

  #endif

#elif ENABLED(AUTO_BED_LEVELING_UBL)

  //===========================================================================
  //========================= Unified Bed Leveling ============================
  //===========================================================================

  //#define MESH_EDIT_GFX_OVERLAY   // Display a graphics overlay while editing the mesh

  #define MESH_INSET 1              // Set Mesh bounds as an inset region of the bed
  #define GRID_MAX_POINTS_X 10      // Don't use more than 15 points per axis, implementation limited.
  #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

  //#define UBL_HILBERT_CURVE       // Use Hilbert distribution for less travel when probing multiple points

  #define UBL_MESH_EDIT_MOVES_Z     // Sophisticated users prefer no movement of nozzle
  #define UBL_SAVE_ACTIVE_ON_M500   // Save the currently active mesh in the current slot on M500

  //#define UBL_Z_RAISE_WHEN_OFF_MESH 2.5 // When the nozzle is off the mesh, this value is used
                                          // as the Z-Height correction value.

  //#define UBL_MESH_WIZARD         // Run several commands in a row to get a complete mesh

#elif ENABLED(MESH_BED_LEVELING)

  //===========================================================================
  //=================================== Mesh ==================================
  //===========================================================================

  #define MESH_INSET 10          // Set Mesh bounds as an inset region of the bed
  #define GRID_MAX_POINTS_X 3    // Don't use more than 7 points per axis, implementation limited.
  #define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X

  //#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS

#endif // BED_LEVELING

/**
 * Add a bed leveling sub-menu for ABL or MBL.
 * Include a guided procedure if manual probing is enabled.
 */
//#define LCD_BED_LEVELING

#if ENABLED(LCD_BED_LEVELING)
  #define MESH_EDIT_Z_STEP  0.025 // (mm) Step size while manually probing Z axis.
  #define LCD_PROBE_Z_RANGE 4     // (mm) Z Range centered on Z_MIN_POS for LCD Z adjustment
  //#define MESH_EDIT_MENU        // Add a menu to edit mesh points
#endif

// Add a menu item to move between bed corners for manual bed adjustment
//#define LEVEL_BED_CORNERS

#if ENABLED(LEVEL_BED_CORNERS)
  #define LEVEL_CORNERS_INSET_LFRB { 30, 30, 30, 30 } // (mm) Left, Front, Right, Back insets
  #define LEVEL_CORNERS_HEIGHT      0.0   // (mm) Z height of nozzle at leveling points
  #define LEVEL_CORNERS_Z_HOP       4.0   // (mm) Z height of nozzle between leveling points
  //#define LEVEL_CENTER_TOO              // Move to the center after the last corner
  //#define LEVEL_CORNERS_USE_PROBE
  #if ENABLED(LEVEL_CORNERS_USE_PROBE)
    #define LEVEL_CORNERS_PROBE_TOLERANCE 0.1
    #define LEVEL_CORNERS_VERIFY_RAISED   // After adjustment triggers the probe, re-probe to verify
    //#define LEVEL_CORNERS_AUDIO_FEEDBACK
  #endif

  /**
   * Corner Leveling Order
   *
   * Set 2 or 4 points. When 2 points are given, the 3rd is the center of the opposite edge.
   *
   *  LF  Left-Front    RF  Right-Front
   *  LB  Left-Back     RB  Right-Back
   *
   * Examples:
   *
   *      Default        {LF,RB,LB,RF}         {LF,RF}           {LB,LF}
   *  LB --------- RB   LB --------- RB    LB --------- RB   LB --------- RB
   *  |  4       3  |   | 3         2 |    |     <3>     |   | 1           |
   *  |             |   |             |    |             |   |          <3>|
   *  |  1       2  |   | 1         4 |    | 1         2 |   | 2           |
   *  LF --------- RF   LF --------- RF    LF --------- RF   LF --------- RF
   */
  #define LEVEL_CORNERS_LEVELING_ORDER { LF, RF, RB, LB }
#endif

/**
 * Commands to execute at the end of G29 probing.
 * Useful to retract or move the Z probe out of the way.
 */
//#define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10"

// @section homing

// The center of the bed is at (X=0, Y=0)
//#define BED_CENTER_AT_0_0

// Manually set the home position. Leave these undefined for automatic settings.
// For DELTA this is the top-center of the Cartesian print volume.
//#define MANUAL_X_HOME_POS 0
//#define MANUAL_Y_HOME_POS 0
//#define MANUAL_Z_HOME_POS 0
//#define MANUAL_I_HOME_POS 0
//#define MANUAL_J_HOME_POS 0
//#define MANUAL_K_HOME_POS 0

/**
 * Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.
 *
 * - Moves the Z probe (or nozzle) to a defined XY point before Z homing.
 * - Allows Z homing only when XY positions are known and trusted.
 * - If stepper drivers sleep, XY homing may be required again before Z homing.
 */
//#define Z_SAFE_HOMING

#if ENABLED(Z_SAFE_HOMING)
  #define Z_SAFE_HOMING_X_POINT X_CENTER  // X point for Z homing
  #define Z_SAFE_HOMING_Y_POINT Y_CENTER  // Y point for Z homing
#endif

// Homing speeds (mm/min)
#define HOMING_FEEDRATE_MM_M { (50*60), (50*60), (4*60) }

// Validate that endstops are triggered on homing moves
#define VALIDATE_HOMING_ENDSTOPS

// @section calibrate

/**
 * Bed Skew Compensation
 *
 * This feature corrects for misalignment in the XYZ axes.
 *
 * Take the following steps to get the bed skew in the XY plane:
 *  1. Print a test square (e.g., https://www.thingiverse.com/thing:2563185)
 *  2. For XY_DIAG_AC measure the diagonal A to C
 *  3. For XY_DIAG_BD measure the diagonal B to D
 *  4. For XY_SIDE_AD measure the edge A to D
 *
 * Marlin automatically computes skew factors from these measurements.
 * Skew factors may also be computed and set manually:
 *
 *  - Compute AB     : SQRT(2*AC*AC+2*BD*BD-4*AD*AD)/2
 *  - XY_SKEW_FACTOR : TAN(PI/2-ACOS((AC*AC-AB*AB-AD*AD)/(2*AB*AD)))
 *
 * If desired, follow the same procedure for XZ and YZ.
 * Use these diagrams for reference:
 *
 *    Y                     Z                     Z
 *    ^     B-------C       ^     B-------C       ^     B-------C
 *    |    /       /        |    /       /        |    /       /
 *    |   /       /         |   /       /         |   /       /
 *    |  A-------D          |  A-------D          |  A-------D
 *    +-------------->X     +-------------->X     +-------------->Y
 *     XY_SKEW_FACTOR        XZ_SKEW_FACTOR        YZ_SKEW_FACTOR
 */
//#define SKEW_CORRECTION

#if ENABLED(SKEW_CORRECTION)
  // Input all length measurements here:
  #define XY_DIAG_AC 282.8427124746
  #define XY_DIAG_BD 282.8427124746
  #define XY_SIDE_AD 200

  // Or, set the default skew factors directly here
  // to override the above measurements:
  #define XY_SKEW_FACTOR 0.0

  //#define SKEW_CORRECTION_FOR_Z
  #if ENABLED(SKEW_CORRECTION_FOR_Z)
    #define XZ_DIAG_AC 282.8427124746
    #define XZ_DIAG_BD 282.8427124746
    #define YZ_DIAG_AC 282.8427124746
    #define YZ_DIAG_BD 282.8427124746
    #define YZ_SIDE_AD 200
    #define XZ_SKEW_FACTOR 0.0
    #define YZ_SKEW_FACTOR 0.0
  #endif

  // Enable this option for M852 to set skew at runtime
  //#define SKEW_CORRECTION_GCODE
#endif

//=============================================================================
//============================= Additional Features ===========================
//=============================================================================

// @section extras

/**
 * EEPROM
 *
 * Persistent storage to preserve configurable settings across reboots.
 *
 *   M500 - Store settings to EEPROM.
 *   M501 - Read settings from EEPROM. (i.e., Throw away unsaved changes)
 *   M502 - Revert settings to "factory" defaults. (Follow with M500 to init the EEPROM.)
 */
//#define EEPROM_SETTINGS     // Persistent storage with M500 and M501
//#define DISABLE_M503        // Saves ~2700 bytes of PROGMEM. Disable for release!
#define EEPROM_CHITCHAT       // Give feedback on EEPROM commands. Disable to save PROGMEM.
#define EEPROM_BOOT_SILENT    // Keep M503 quiet and only give errors during first load
#if ENABLED(EEPROM_SETTINGS)
  //#define EEPROM_AUTO_INIT  // Init EEPROM automatically on any errors.
#endif

//
// Host Keepalive
//
// When enabled Marlin will send a busy status message to the host
// every couple of seconds when it can't accept commands.
//
#define HOST_KEEPALIVE_FEATURE        // Disable this if your host doesn't like keepalive messages
#define DEFAULT_KEEPALIVE_INTERVAL 2  // Number of seconds between "busy" messages. Set with M113.
#define BUSY_WHILE_HEATING            // Some hosts require "busy" messages even during heating

//
// G20/G21 Inch mode support
//
//#define INCH_MODE_SUPPORT

//
// M149 Set temperature units support
//
//#define TEMPERATURE_UNITS_SUPPORT

// @section temperature

//
// Preheat Constants - Up to 5 are supported without changes
//
#define PREHEAT_1_LABEL       "PLA"
#define PREHEAT_1_TEMP_HOTEND 180
#define PREHEAT_1_TEMP_BED     70
#define PREHEAT_1_TEMP_CHAMBER 35
#define PREHEAT_1_FAN_SPEED     0 // Value from 0 to 255

#define PREHEAT_2_LABEL       "ABS"
#define PREHEAT_2_TEMP_HOTEND 240
#define PREHEAT_2_TEMP_BED    110
#define PREHEAT_2_TEMP_CHAMBER 35
#define PREHEAT_2_FAN_SPEED     0 // Value from 0 to 255

/**
 * Nozzle Park
 *
 * Park the nozzle at the given XYZ position on idle or G27.
 *
 * The "P" parameter controls the action applied to the Z axis:
 *
 *    P0  (Default) If Z is below park Z raise the nozzle.
 *    P1  Raise the nozzle always to Z-park height.
 *    P2  Raise the nozzle by Z-park amount, limited to Z_MAX_POS.
 */
//#define NOZZLE_PARK_FEATURE

#if ENABLED(NOZZLE_PARK_FEATURE)
  // Specify a park position as { X, Y, Z_raise }
  #define NOZZLE_PARK_POINT { (X_MIN_POS + 10), (Y_MAX_POS - 10), 20 }
  //#define NOZZLE_PARK_X_ONLY          // X move only is required to park
  //#define NOZZLE_PARK_Y_ONLY          // Y move only is required to park
  #define NOZZLE_PARK_Z_RAISE_MIN   2   // (mm) Always raise Z by at least this distance
  #define NOZZLE_PARK_XY_FEEDRATE 100   // (mm/s) X and Y axes feedrate (also used for delta Z axis)
  #define NOZZLE_PARK_Z_FEEDRATE    5   // (mm/s) Z axis feedrate (not used for delta printers)
#endif

/**
 * Clean Nozzle Feature -- EXPERIMENTAL
 *
 * Adds the G12 command to perform a nozzle cleaning process.
 *
 * Parameters:
 *   P  Pattern
 *   S  Strokes / Repetitions
 *   T  Triangles (P1 only)
 *
 * Patterns:
 *   P0  Straight line (default). This process requires a sponge type material
 *       at a fixed bed location. "S" specifies strokes (i.e. back-forth motions)
 *       between the start / end points.
 *
 *   P1  Zig-zag pattern between (X0, Y0) and (X1, Y1), "T" specifies the
 *       number of zig-zag triangles to do. "S" defines the number of strokes.
 *       Zig-zags are done in whichever is the narrower dimension.
 *       For example, "G12 P1 S1 T3" will execute:
 *
 *          --
 *         |  (X0, Y1) |     /\        /\        /\     | (X1, Y1)
 *         |           |    /  \      /  \      /  \    |
 *       A |           |   /    \    /    \    /    \   |
 *         |           |  /      \  /      \  /      \  |
 *         |  (X0, Y0) | /        \/        \/        \ | (X1, Y0)
 *          --         +--------------------------------+
 *                       |________|_________|_________|
 *                           T1        T2        T3
 *
 *   P2  Circular pattern with middle at NOZZLE_CLEAN_CIRCLE_MIDDLE.
 *       "R" specifies the radius. "S" specifies the stroke count.
 *       Before starting, the nozzle moves to NOZZLE_CLEAN_START_POINT.
 *
 *   Caveats: The ending Z should be the same as starting Z.
 * Attention: EXPERIMENTAL. G-code arguments may change.
 */
//#define NOZZLE_CLEAN_FEATURE

#if ENABLED(NOZZLE_CLEAN_FEATURE)
  // Default number of pattern repetitions
  #define NOZZLE_CLEAN_STROKES  12

  // Default number of triangles
  #define NOZZLE_CLEAN_TRIANGLES  3

  // Specify positions for each tool as { { X, Y, Z }, { X, Y, Z } }
  // Dual hotend system may use { {  -20, (Y_BED_SIZE / 2), (Z_MIN_POS + 1) },  {  420, (Y_BED_SIZE / 2), (Z_MIN_POS + 1) }}
  #define NOZZLE_CLEAN_START_POINT { {  30, 30, (Z_MIN_POS + 1) } }
  #define NOZZLE_CLEAN_END_POINT   { { 100, 60, (Z_MIN_POS + 1) } }

  // Circular pattern radius
  #define NOZZLE_CLEAN_CIRCLE_RADIUS 6.5
  // Circular pattern circle fragments number
  #define NOZZLE_CLEAN_CIRCLE_FN 10
  // Middle point of circle
  #define NOZZLE_CLEAN_CIRCLE_MIDDLE NOZZLE_CLEAN_START_POINT

  // Move the nozzle to the initial position after cleaning
  #define NOZZLE_CLEAN_GOBACK

  // For a purge/clean station that's always at the gantry height (thus no Z move)
  //#define NOZZLE_CLEAN_NO_Z

  // For a purge/clean station mounted on the X axis
  //#define NOZZLE_CLEAN_NO_Y

  // Require a minimum hotend temperature for cleaning
  #define NOZZLE_CLEAN_MIN_TEMP 170
  //#define NOZZLE_CLEAN_HEATUP       // Heat up the nozzle instead of skipping wipe

  // Explicit wipe G-code script applies to a G12 with no arguments.
  //#define WIPE_SEQUENCE_COMMANDS "G1 X-17 Y25 Z10 F4000\nG1 Z1\nM114\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 Z15\nM400\nG0 X-10.0 Y-9.0"

#endif

/**
 * Print Job Timer
 *
 * Automatically start and stop the print job timer on M104/M109/M140/M190/M141/M191.
 * The print job timer will only be stopped if the bed/chamber target temp is
 * below BED_MINTEMP/CHAMBER_MINTEMP.
 *
 *   M104 (hotend, no wait)  - high temp = none,        low temp = stop timer
 *   M109 (hotend, wait)     - high temp = start timer, low temp = stop timer
 *   M140 (bed, no wait)     - high temp = none,        low temp = stop timer
 *   M190 (bed, wait)        - high temp = start timer, low temp = none
 *   M141 (chamber, no wait) - high temp = none,        low temp = stop timer
 *   M191 (chamber, wait)    - high temp = start timer, low temp = none
 *
 * For M104/M109, high temp is anything over EXTRUDE_MINTEMP / 2.
 * For M140/M190, high temp is anything over BED_MINTEMP.
 * For M141/M191, high temp is anything over CHAMBER_MINTEMP.
 *
 * The timer can also be controlled with the following commands:
 *
 *   M75 - Start the print job timer
 *   M76 - Pause the print job timer
 *   M77 - Stop the print job timer
 */
#define PRINTJOB_TIMER_AUTOSTART

/**
 * Print Counter
 *
 * Track statistical data such as:
 *
 *  - Total print jobs
 *  - Total successful print jobs
 *  - Total failed print jobs
 *  - Total time printing
 *
 * View the current statistics with M78.
 */
//#define PRINTCOUNTER
#if ENABLED(PRINTCOUNTER)
  #define PRINTCOUNTER_SAVE_INTERVAL 60 // (minutes) EEPROM save interval during print
#endif

/**
 * Password
 *
 * Set a numerical password for the printer which can be requested:
 *
 *  - When the printer boots up
 *  - Upon opening the 'Print from Media' Menu
 *  - When SD printing is completed or aborted
 *
 * The following G-codes can be used:
 *
 *  M510 - Lock Printer. Blocks all commands except M511.
 *  M511 - Unlock Printer.
 *  M512 - Set, Change and Remove Password.
 *
 * If you forget the password and get locked out you'll need to re-flash
 * the firmware with the feature disabled, reset EEPROM, and (optionally)
 * re-flash the firmware again with this feature enabled.
 */
//#define PASSWORD_FEATURE
#if ENABLED(PASSWORD_FEATURE)
  #define PASSWORD_LENGTH 4                 // (#) Number of digits (1-9). 3 or 4 is recommended
  #define PASSWORD_ON_STARTUP
  #define PASSWORD_UNLOCK_GCODE             // Unlock with the M511 P<password> command. Disable to prevent brute-force attack.
  #define PASSWORD_CHANGE_GCODE             // Change the password with M512 P<old> S<new>.
  //#define PASSWORD_ON_SD_PRINT_MENU       // This does not prevent gcodes from running
  //#define PASSWORD_AFTER_SD_PRINT_END
  //#define PASSWORD_AFTER_SD_PRINT_ABORT
  //#include "Configuration_Secure.h"       // External file with PASSWORD_DEFAULT_VALUE
#endif

//=============================================================================
//============================= LCD and SD support ============================
//=============================================================================

// @section lcd

/**
 * LCD LANGUAGE
 *
 * Select the language to display on the LCD. These languages are available:
 *
 *   en, an, bg, ca, cz, da, de, el, el_CY, es, eu, fi, fr, gl, hr, hu, it,
 *   jp_kana, ko_KR, nl, pl, pt, pt_br, ro, ru, sk, sv, tr, uk, vi, zh_CN, zh_TW
 *
 * :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cz':'Czech', 'da':'Danish', 'de':'German', 'el':'Greek (Greece)', 'el_CY':'Greek (Cyprus)', 'es':'Spanish', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'gl':'Galician', 'hr':'Croatian', 'hu':'Hungarian', 'it':'Italian', 'jp_kana':'Japanese', 'ko_KR':'Korean (South Korea)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt_br':'Portuguese (Brazilian)', 'ro':'Romanian', 'ru':'Russian', 'sk':'Slovak', 'sv':'Swedish', 'tr':'Turkish', 'uk':'Ukrainian', 'vi':'Vietnamese', 'zh_CN':'Chinese (Simplified)', 'zh_TW':'Chinese (Traditional)' }
 */
#define LCD_LANGUAGE en

/**
 * LCD Character Set
 *
 * Note: This option is NOT applicable to Graphical Displays.
 *
 * All character-based LCDs provide ASCII plus one of these
 * language extensions:
 *
 *  - JAPANESE ... the most common
 *  - WESTERN  ... with more accented characters
 *  - CYRILLIC ... for the Russian language
 *
 * To determine the language extension installed on your controller:
 *
 *  - Compile and upload with LCD_LANGUAGE set to 'test'
 *  - Click the controller to view the LCD menu
 *  - The LCD will display Japanese, Western, or Cyrillic text
 *
 * See https://marlinfw.org/docs/development/lcd_language.html
 *
 * :['JAPANESE', 'WESTERN', 'CYRILLIC']
 */
#define DISPLAY_CHARSET_HD44780 JAPANESE

/**
 * Info Screen Style (0:Classic, 1:Průša)
 *
 * :[0:'Classic', 1:'Průša']
 */
#define LCD_INFO_SCREEN_STYLE 0

/**
 * SD CARD
 *
 * SD Card support is disabled by default. If your controller has an SD slot,
 * you must uncomment the following option or it won't work.
 */
//#define SDSUPPORT

/**
 * SD CARD: ENABLE CRC
 *
 * Use CRC checks and retries on the SD communication.
 */
//#define SD_CHECK_AND_RETRY

/**
 * LCD Menu Items
 *
 * Disable all menus and only display the Status Screen, or
 * just remove some extraneous menu items to recover space.
 */
//#define NO_LCD_MENUS
//#define SLIM_LCD_MENUS

//
// ENCODER SETTINGS
//
// This option overrides the default number of encoder pulses needed to
// produce one step. Should be increased for high-resolution encoders.
//
//#define ENCODER_PULSES_PER_STEP 4

//
// Use this option to override the number of step signals required to
// move between next/prev menu items.
//
//#define ENCODER_STEPS_PER_MENU_ITEM 1

/**
 * Encoder Direction Options
 *
 * Test your encoder's behavior first with both options disabled.
 *
 *  Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION.
 *  Reversed Menu Navigation only?    Enable REVERSE_MENU_DIRECTION.
 *  Reversed Value Editing only?      Enable BOTH options.
 */

//
// This option reverses the encoder direction everywhere.
//
//  Set this option if CLOCKWISE causes values to DECREASE
//
//#define REVERSE_ENCODER_DIRECTION

//
// This option reverses the encoder direction for navigating LCD menus.
//
//  If CLOCKWISE normally moves DOWN this makes it go UP.
//  If CLOCKWISE normally moves UP this makes it go DOWN.
//
//#define REVERSE_MENU_DIRECTION

//
// This option reverses the encoder direction for Select Screen.
//
//  If CLOCKWISE normally moves LEFT this makes it go RIGHT.
//  If CLOCKWISE normally moves RIGHT this makes it go LEFT.
//
//#define REVERSE_SELECT_DIRECTION

//
// Individual Axis Homing
//
// Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu.
//
//#define INDIVIDUAL_AXIS_HOMING_MENU
//#define INDIVIDUAL_AXIS_HOMING_SUBMENU

//
// SPEAKER/BUZZER
//
// If you have a speaker that can produce tones, enable it here.
// By default Marlin assumes you have a buzzer with a fixed frequency.
//
//#define SPEAKER

//
// The duration and frequency for the UI feedback sound.
// Set these to 0 to disable audio feedback in the LCD menus.
//
// Note: Test audio output with the G-Code:
//  M300 S<frequency Hz> P<duration ms>
//
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2
//#define LCD_FEEDBACK_FREQUENCY_HZ 5000

//=============================================================================
//======================== LCD / Controller Selection =========================
//========================   (Character-based LCDs)   =========================
//=============================================================================

//
// RepRapDiscount Smart Controller.
// https://reprap.org/wiki/RepRapDiscount_Smart_Controller
//
// Note: Usually sold with a white PCB.
//
//#define REPRAP_DISCOUNT_SMART_CONTROLLER

//
// GT2560 (YHCB2004) LCD Display
//
// Requires Testato, Koepel softwarewire library and
// Andriy Golovnya's LiquidCrystal_AIP31068 library.
//
//#define YHCB2004

//
// Original RADDS LCD Display+Encoder+SDCardReader
// http://doku.radds.org/dokumentation/lcd-display/
//
//#define RADDS_DISPLAY

//
// ULTIMAKER Controller.
//
//#define ULTIMAKERCONTROLLER

//
// ULTIPANEL as seen on Thingiverse.
//
//#define ULTIPANEL

//
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// https://reprap.org/wiki/PanelOne
//
//#define PANEL_ONE

//
// GADGETS3D G3D LCD/SD Controller
// https://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel
//
// Note: Usually sold with a blue PCB.
//
//#define G3D_PANEL

//
// RigidBot Panel V1.0
// http://www.inventapart.com/
//
//#define RIGIDBOT_PANEL

//
// Makeboard 3D Printer Parts 3D Printer Mini Display 1602 Mini Controller
// https://www.aliexpress.com/item/32765887917.html
//
//#define MAKEBOARD_MINI_2_LINE_DISPLAY_1602

//
// ANET and Tronxy 20x4 Controller
//
//#define ZONESTAR_LCD            // Requires ADC_KEYPAD_PIN to be assigned to an analog pin.
                                  // This LCD is known to be susceptible to electrical interference
                                  // which scrambles the display.  Pressing any button clears it up.
                                  // This is a LCD2004 display with 5 analog buttons.

//
// Generic 16x2, 16x4, 20x2, or 20x4 character-based LCD.
//
//#define ULTRA_LCD

//=============================================================================
//======================== LCD / Controller Selection =========================
//=====================   (I2C and Shift-Register LCDs)   =====================
//=============================================================================

//
// CONTROLLER TYPE: I2C
//
// Note: These controllers require the installation of Arduino's LiquidCrystal_I2C
// library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C
//

//
// Elefu RA Board Control Panel
// http://www.elefu.com/index.php?route=product/product&product_id=53
//
//#define RA_CONTROL_PANEL

//
// Sainsmart (YwRobot) LCD Displays
//
// These require F.Malpartida's LiquidCrystal_I2C library
// https://bitbucket.org/fmalpartida/new-liquidcrystal/wiki/Home
//
//#define LCD_SAINSMART_I2C_1602
//#define LCD_SAINSMART_I2C_2004

//
// Generic LCM1602 LCD adapter
//
//#define LCM1602

//
// PANELOLU2 LCD with status LEDs,
// separate encoder and click inputs.
//
// Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later.
// For more info: https://github.com/lincomatic/LiquidTWI2
//
// Note: The PANELOLU2 encoder click input can either be directly connected to
// a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
//
//#define LCD_I2C_PANELOLU2

//
// Panucatt VIKI LCD with status LEDs,
// integrated click & L/R/U/D buttons, separate encoder inputs.
//
//#define LCD_I2C_VIKI

//
// CONTROLLER TYPE: Shift register panels
//

//
// 2-wire Non-latching LCD SR from https://goo.gl/aJJ4sH
// LCD configuration: https://reprap.org/wiki/SAV_3D_LCD
//
//#define SAV_3DLCD

//
// 3-wire SR LCD with strobe using 74HC4094
// https://github.com/mikeshub/SailfishLCD
// Uses the code directly from Sailfish
//
//#define FF_INTERFACEBOARD

//
// TFT GLCD Panel with Marlin UI
// Panel connected to main board by SPI or I2C interface.
// See https://github.com/Serhiy-K/TFTGLCDAdapter
//
//#define TFTGLCD_PANEL_SPI
//#define TFTGLCD_PANEL_I2C

//=============================================================================
//=======================   LCD / Controller Selection  =======================
//=========================      (Graphical LCDs)      ========================
//=============================================================================

//
// CONTROLLER TYPE: Graphical 128x64 (DOGM)
//
// IMPORTANT: The U8glib library is required for Graphical Display!
//            https://github.com/olikraus/U8glib_Arduino
//
// NOTE: If the LCD is unresponsive you may need to reverse the plugs.
//

//
// RepRapDiscount FULL GRAPHIC Smart Controller
// https://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller
//
//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER

//
// K.3D Full Graphic Smart Controller
//
//#define K3D_FULL_GRAPHIC_SMART_CONTROLLER

//
// ReprapWorld Graphical LCD
// https://reprapworld.com/?products_details&products_id/1218
//
//#define REPRAPWORLD_GRAPHICAL_LCD

//
// Activate one of these if you have a Panucatt Devices
// Viki 2.0 or mini Viki with Graphic LCD
// https://www.panucatt.com
//
//#define VIKI2
//#define miniVIKI

//
// Alfawise Ex8 printer LCD marked as WYH L12864 COG
//
//#define WYH_L12864

//
// MakerLab Mini Panel with graphic
// controller and SD support - https://reprap.org/wiki/Mini_panel
//
//#define MINIPANEL

//
// MaKr3d Makr-Panel with graphic controller and SD support.
// https://reprap.org/wiki/MaKr3d_MaKrPanel
//
//#define MAKRPANEL

//
// Adafruit ST7565 Full Graphic Controller.
// https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/
//
//#define ELB_FULL_GRAPHIC_CONTROLLER

//
// BQ LCD Smart Controller shipped by
// default with the BQ Hephestos 2 and Witbox 2.
//
//#define BQ_LCD_SMART_CONTROLLER

//
// Cartesio UI
// http://mauk.cc/webshop/cartesio-shop/electronics/user-interface
//
//#define CARTESIO_UI

//
// LCD for Melzi Card with Graphical LCD
//
//#define LCD_FOR_MELZI

//
// Original Ulticontroller from Ultimaker 2 printer with SSD1309 I2C display and encoder
// https://github.com/Ultimaker/Ultimaker2/tree/master/1249_Ulticontroller_Board_(x1)
//
//#define ULTI_CONTROLLER

//
// MKS MINI12864 with graphic controller and SD support
// https://reprap.org/wiki/MKS_MINI_12864
//
//#define MKS_MINI_12864

//
// MKS MINI12864 V3 is an alias for FYSETC_MINI_12864_2_1. Type A/B. NeoPixel RGB Backlight.
//
//#define MKS_MINI_12864_V3

//
// MKS LCD12864A/B with graphic controller and SD support. Follows MKS_MINI_12864 pinout.
// https://www.aliexpress.com/item/33018110072.html
//
//#define MKS_LCD12864A
//#define MKS_LCD12864B

//
// FYSETC variant of the MINI12864 graphic controller with SD support
// https://wiki.fysetc.com/Mini12864_Panel/
//
//#define FYSETC_MINI_12864_X_X    // Type C/D/E/F. No tunable RGB Backlight by default
//#define FYSETC_MINI_12864_1_2    // Type C/D/E/F. Simple RGB Backlight (always on)
//#define FYSETC_MINI_12864_2_0    // Type A/B. Discreet RGB Backlight
//#define FYSETC_MINI_12864_2_1    // Type A/B. NeoPixel RGB Backlight
//#define FYSETC_GENERIC_12864_1_1 // Larger display with basic ON/OFF backlight.

//
// Factory display for Creality CR-10
// https://www.aliexpress.com/item/32833148327.html
//
// This is RAMPS-compatible using a single 10-pin connector.
// (For CR-10 owners who want to replace the Melzi Creality board but retain the display)
//
//#define CR10_STOCKDISPLAY

//
// Ender-2 OEM display, a variant of the MKS_MINI_12864
//
//#define ENDER2_STOCKDISPLAY

//
// ANET and Tronxy Graphical Controller
//
// Anet 128x64 full graphics lcd with rotary encoder as used on Anet A6
// A clone of the RepRapDiscount full graphics display but with
// different pins/wiring (see pins_ANET_10.h). Enable one of these.
//
//#define ANET_FULL_GRAPHICS_LCD
//#define ANET_FULL_GRAPHICS_LCD_ALT_WIRING

//
// AZSMZ 12864 LCD with SD
// https://www.aliexpress.com/item/32837222770.html
//
//#define AZSMZ_12864

//
// Silvergate GLCD controller
// https://github.com/android444/Silvergate
//
//#define SILVER_GATE_GLCD_CONTROLLER

//=============================================================================
//==============================  OLED Displays  ==============================
//=============================================================================

//
// SSD1306 OLED full graphics generic display
//
//#define U8GLIB_SSD1306

//
// SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules
//
//#define SAV_3DGLCD
#if ENABLED(SAV_3DGLCD)
  #define U8GLIB_SSD1306
  //#define U8GLIB_SH1106
#endif

//
// TinyBoy2 128x64 OLED / Encoder Panel
//
//#define OLED_PANEL_TINYBOY2

//
// MKS OLED 1.3" 128×64 Full Graphics Controller
// https://reprap.org/wiki/MKS_12864OLED
//
// Tiny, but very sharp OLED display
//
//#define MKS_12864OLED          // Uses the SH1106 controller (default)
//#define MKS_12864OLED_SSD1306  // Uses the SSD1306 controller

//
// Zonestar OLED 128×64 Full Graphics Controller
//
//#define ZONESTAR_12864LCD           // Graphical (DOGM) with ST7920 controller
//#define ZONESTAR_12864OLED          // 1.3" OLED with SH1106 controller (default)
//#define ZONESTAR_12864OLED_SSD1306  // 0.96" OLED with SSD1306 controller

//
// Einstart S OLED SSD1306
//
//#define U8GLIB_SH1106_EINSTART

//
// Overlord OLED display/controller with i2c buzzer and LEDs
//
//#define OVERLORD_OLED

//
// FYSETC OLED 2.42" 128×64 Full Graphics Controller with WS2812 RGB
// Where to find : https://www.aliexpress.com/item/4000345255731.html
//#define FYSETC_242_OLED_12864   // Uses the SSD1309 controller

//
// K.3D SSD1309 OLED 2.42" 128×64 Full Graphics Controller
//
//#define K3D_242_OLED_CONTROLLER   // Software SPI

//=============================================================================
//========================== Extensible UI Displays ===========================
//=============================================================================

//
// DGUS Touch Display with DWIN OS. (Choose one.)
// ORIGIN : https://www.aliexpress.com/item/32993409517.html
// FYSETC : https://www.aliexpress.com/item/32961471929.html
// MKS    : https://www.aliexpress.com/item/1005002008179262.html
//
// Flash display with DGUS Displays for Marlin:
//  - Format the SD card to FAT32 with an allocation size of 4kb.
//  - Download files as specified for your type of display.
//  - Plug the microSD card into the back of the display.
//  - Boot the display and wait for the update to complete.
//
// ORIGIN (Marlin DWIN_SET)
//  - Download https://github.com/coldtobi/Marlin_DGUS_Resources
//  - Copy the downloaded DWIN_SET folder to the SD card.
//
// FYSETC (Supplier default)
//  - Download https://github.com/FYSETC/FYSTLCD-2.0
//  - Copy the downloaded SCREEN folder to the SD card.
//
// HIPRECY (Supplier default)
//  - Download https://github.com/HiPrecy/Touch-Lcd-LEO
//  - Copy the downloaded DWIN_SET folder to the SD card.
//
// MKS (MKS-H43) (Supplier default)
//  - Download https://github.com/makerbase-mks/MKS-H43
//  - Copy the downloaded DWIN_SET folder to the SD card.
//
// RELOADED (T5UID1)
//  - Download https://github.com/Desuuuu/DGUS-reloaded/releases
//  - Copy the downloaded DWIN_SET folder to the SD card.
//
//#define DGUS_LCD_UI_ORIGIN
//#define DGUS_LCD_UI_FYSETC
//#define DGUS_LCD_UI_HIPRECY
//#define DGUS_LCD_UI_MKS
//#define DGUS_LCD_UI_RELOADED
#if ENABLED(DGUS_LCD_UI_MKS)
  #define USE_MKS_GREEN_UI
#endif

//
// Touch-screen LCD for Malyan M200/M300 printers
//
//#define MALYAN_LCD
#if ENABLED(MALYAN_LCD)
  #define LCD_SERIAL_PORT 1  // Default is 1 for Malyan M200
#endif

//
// Touch UI for FTDI EVE (FT800/FT810) displays
// See Configuration_adv.h for all configuration options.
//
//#define TOUCH_UI_FTDI_EVE

//
// Touch-screen LCD for Anycubic printers
//
//#define ANYCUBIC_LCD_I3MEGA
//#define ANYCUBIC_LCD_CHIRON
#if EITHER(ANYCUBIC_LCD_I3MEGA, ANYCUBIC_LCD_CHIRON)
  #define LCD_SERIAL_PORT 3  // Default is 3 for Anycubic
  //#define ANYCUBIC_LCD_DEBUG
#endif

//
// 320x240 Nextion 2.8" serial TFT Resistive Touch Screen NX3224T028
//
//#define NEXTION_TFT
#if ENABLED(NEXTION_TFT)
  #define LCD_SERIAL_PORT 1  // Default is 1 for Nextion
#endif

//
// Third-party or vendor-customized controller interfaces.
// Sources should be installed in 'src/lcd/extui'.
//
//#define EXTENSIBLE_UI

#if ENABLED(EXTENSIBLE_UI)
  //#define EXTUI_LOCAL_BEEPER // Enables use of local Beeper pin with external display
#endif

//=============================================================================
//=============================== Graphical TFTs ==============================
//=============================================================================

/**
 * Specific TFT Model Presets. Enable one of the following options
 * or enable TFT_GENERIC and set sub-options.
 */

//
// 480x320, 3.5", SPI Display with Rotary Encoder from MKS
// Usually paired with MKS Robin Nano V2 & V3
//
//#define MKS_TS35_V2_0

//
// 320x240, 2.4", FSMC Display From MKS
// Usually paired with MKS Robin Nano V1.2
//
//#define MKS_ROBIN_TFT24

//
// 320x240, 2.8", FSMC Display From MKS
// Usually paired with MKS Robin Nano V1.2
//
//#define MKS_ROBIN_TFT28

//
// 320x240, 3.2", FSMC Display From MKS
// Usually paired with MKS Robin Nano V1.2
//
//#define MKS_ROBIN_TFT32

//
// 480x320, 3.5", FSMC Display From MKS
// Usually paired with MKS Robin Nano V1.2
//
//#define MKS_ROBIN_TFT35

//
// 480x272, 4.3", FSMC Display From MKS
//
//#define MKS_ROBIN_TFT43

//
// 320x240, 3.2", FSMC Display From MKS
// Usually paired with MKS Robin
//
//#define MKS_ROBIN_TFT_V1_1R

//
// 480x320, 3.5", FSMC Stock Display from TronxXY
//
//#define TFT_TRONXY_X5SA

//
// 480x320, 3.5", FSMC Stock Display from AnyCubic
//
//#define ANYCUBIC_TFT35

//
// 320x240, 2.8", FSMC Stock Display from Longer/Alfawise
//
//#define LONGER_LK_TFT28

//
// 320x240, 2.8", FSMC Stock Display from ET4
//
//#define ANET_ET4_TFT28

//
// 480x320, 3.5", FSMC Stock Display from ET5
//
//#define ANET_ET5_TFT35

//
// 1024x600, 7", RGB Stock Display with Rotary Encoder from BIQU-BX
//
//#define BIQU_BX_TFT70

//
// 480x320, 3.5", SPI Stock Display with Rotary Encoder from BIQU B1 SE Series
//
//#define BTT_TFT35_SPI_V1_0

//
// Generic TFT with detailed options
//
//#define TFT_GENERIC
#if ENABLED(TFT_GENERIC)
  // :[ 'AUTO', 'ST7735', 'ST7789', 'ST7796', 'R61505', 'ILI9328', 'ILI9341', 'ILI9488' ]
  #define TFT_DRIVER AUTO

  // Interface. Enable one of the following options:
  //#define TFT_INTERFACE_FSMC
  //#define TFT_INTERFACE_SPI

  // TFT Resolution. Enable one of the following options:
  //#define TFT_RES_320x240
  //#define TFT_RES_480x272
  //#define TFT_RES_480x320
  //#define TFT_RES_1024x600
#endif

/**
 * TFT UI - User Interface Selection. Enable one of the following options:
 *
 *   TFT_CLASSIC_UI - Emulated DOGM - 128x64 Upscaled
 *   TFT_COLOR_UI   - Marlin Default Menus, Touch Friendly, using full TFT capabilities
 *   TFT_LVGL_UI    - A Modern UI using LVGL
 *
 *   For LVGL_UI also copy the 'assets' folder from the build directory to the
 *   root of your SD card, together with the compiled firmware.
 */
//#define TFT_CLASSIC_UI
//#define TFT_COLOR_UI
//#define TFT_LVGL_UI

#if ENABLED(TFT_LVGL_UI)
  //#define MKS_WIFI_MODULE  // MKS WiFi module
#endif

/**
 * TFT Rotation. Set to one of the following values:
 *
 *   TFT_ROTATE_90,  TFT_ROTATE_90_MIRROR_X,  TFT_ROTATE_90_MIRROR_Y,
 *   TFT_ROTATE_180, TFT_ROTATE_180_MIRROR_X, TFT_ROTATE_180_MIRROR_Y,
 *   TFT_ROTATE_270, TFT_ROTATE_270_MIRROR_X, TFT_ROTATE_270_MIRROR_Y,
 *   TFT_MIRROR_X, TFT_MIRROR_Y, TFT_NO_ROTATION
 */
//#define TFT_ROTATION TFT_NO_ROTATION

//=============================================================================
//============================  Other Controllers  ============================
//=============================================================================

//
// Ender-3 v2 OEM display. A DWIN display with Rotary Encoder.
//
//#define DWIN_CREALITY_LCD           // Creality UI
//#define DWIN_CREALITY_LCD_ENHANCED  // Enhanced UI
//#define DWIN_CREALITY_LCD_JYERSUI   // Jyers UI by Jacob Myers
//#define DWIN_MARLINUI_PORTRAIT      // MarlinUI (portrait orientation)
//#define DWIN_MARLINUI_LANDSCAPE     // MarlinUI (landscape orientation)

//
// Touch Screen Settings
//
//#define TOUCH_SCREEN
#if ENABLED(TOUCH_SCREEN)
  #define BUTTON_DELAY_EDIT  50 // (ms) Button repeat delay for edit screens
  #define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus

  //#define TOUCH_IDLE_SLEEP 300 // (secs) Turn off the TFT backlight if set (5mn)

  #define TOUCH_SCREEN_CALIBRATION

  //#define TOUCH_CALIBRATION_X 12316
  //#define TOUCH_CALIBRATION_Y -8981
  //#define TOUCH_OFFSET_X        -43
  //#define TOUCH_OFFSET_Y        257
  //#define TOUCH_ORIENTATION TOUCH_LANDSCAPE

  #if BOTH(TOUCH_SCREEN_CALIBRATION, EEPROM_SETTINGS)
    #define TOUCH_CALIBRATION_AUTO_SAVE // Auto save successful calibration values to EEPROM
  #endif

  #if ENABLED(TFT_COLOR_UI)
    //#define SINGLE_TOUCH_NAVIGATION
  #endif
#endif

//
// RepRapWorld REPRAPWORLD_KEYPAD v1.1
// https://reprapworld.com/products/electronics/ramps/keypad_v1_0_fully_assembled/
//
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // (mm) Distance to move per key-press

//=============================================================================
//=============================== Extra Features ==============================
//=============================================================================

// @section extras

// Set number of user-controlled fans. Disable to use all board-defined fans.
// :[1,2,3,4,5,6,7,8]
//#define NUM_M106_FANS 1

// Increase the FAN PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN

// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not as annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM

// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
// :[0,1,2,3,4,5,6,7]
#define SOFT_PWM_SCALE 0

// If SOFT_PWM_SCALE is set to a value higher than 0, dithering can
// be used to mitigate the associated resolution loss. If enabled,
// some of the PWM cycles are stretched so on average the desired
// duty cycle is attained.
//#define SOFT_PWM_DITHER

// Temperature status LEDs that display the hotend and bed temperature.
// If all hotends, bed temperature, and target temperature are under 54C
// then the BLUE led is on. Otherwise the RED led is on. (1C hysteresis)
//#define TEMP_STAT_LEDS

// Support for the BariCUDA Paste Extruder
//#define BARICUDA

// Support for BlinkM/CyzRgb
//#define BLINKM

// Support for PCA9632 PWM LED driver
//#define PCA9632

// Support for PCA9533 PWM LED driver
//#define PCA9533

/**
 * RGB LED / LED Strip Control
 *
 * Enable support for an RGB LED connected to 5V digital pins, or
 * an RGB Strip connected to MOSFETs controlled by digital pins.
 *
 * Adds the M150 command to set the LED (or LED strip) color.
 * If pins are PWM capable (e.g., 4, 5, 6, 11) then a range of
 * luminance values can be set from 0 to 255.
 * For NeoPixel LED an overall brightness parameter is also available.
 *
 * *** CAUTION ***
 *  LED Strips require a MOSFET Chip between PWM lines and LEDs,
 *  as the Arduino cannot handle the current the LEDs will require.
 *  Failure to follow this precaution can destroy your Arduino!
 *  NOTE: A separate 5V power supply is required! The NeoPixel LED needs
 *  more current than the Arduino 5V linear regulator can produce.
 * *** CAUTION ***
 *
 * LED Type. Enable only one of the following two options.
 */
//#define RGB_LED
//#define RGBW_LED

#if EITHER(RGB_LED, RGBW_LED)
  //#define RGB_LED_R_PIN 34
  //#define RGB_LED_G_PIN 43
  //#define RGB_LED_B_PIN 35
  //#define RGB_LED_W_PIN -1
#endif

// Support for Adafruit NeoPixel LED driver
//#define NEOPIXEL_LED
#if ENABLED(NEOPIXEL_LED)
  #define NEOPIXEL_TYPE   NEO_GRBW // NEO_GRBW / NEO_GRB - four/three channel driver type (defined in Adafruit_NeoPixel.h)
  //#define NEOPIXEL_PIN     4     // LED driving pin
  //#define NEOPIXEL2_TYPE NEOPIXEL_TYPE
  //#define NEOPIXEL2_PIN    5
  #define NEOPIXEL_PIXELS 30       // Number of LEDs in the strip. (Longest strip when NEOPIXEL2_SEPARATE is disabled.)
  #define NEOPIXEL_IS_SEQUENTIAL   // Sequential display for temperature change - LED by LED. Disable to change all LEDs at once.
  #define NEOPIXEL_BRIGHTNESS 127  // Initial brightness (0-255)
  //#define NEOPIXEL_STARTUP_TEST  // Cycle through colors at startup

  // Support for second Adafruit NeoPixel LED driver controlled with M150 S1 ...
  //#define NEOPIXEL2_SEPARATE
  #if ENABLED(NEOPIXEL2_SEPARATE)
    #define NEOPIXEL2_PIXELS      15  // Number of LEDs in the second strip
    #define NEOPIXEL2_BRIGHTNESS 127  // Initial brightness (0-255)
    #define NEOPIXEL2_STARTUP_TEST    // Cycle through colors at startup
  #else
    //#define NEOPIXEL2_INSERIES      // Default behavior is NeoPixel 2 in parallel
  #endif

  // Use some of the NeoPixel LEDs for static (background) lighting
  //#define NEOPIXEL_BKGD_INDEX_FIRST  0              // Index of the first background LED
  //#define NEOPIXEL_BKGD_INDEX_LAST   5              // Index of the last background LED
  //#define NEOPIXEL_BKGD_COLOR { 255, 255, 255, 0 }  // R, G, B, W
  //#define NEOPIXEL_BKGD_ALWAYS_ON                   // Keep the backlight on when other NeoPixels are off
#endif

/**
 * Printer Event LEDs
 *
 * During printing, the LEDs will reflect the printer status:
 *
 *  - Gradually change from blue to violet as the heated bed gets to target temp
 *  - Gradually change from violet to red as the hotend gets to temperature
 *  - Change to white to illuminate work surface
 *  - Change to green once print has finished
 *  - Turn off after the print has finished and the user has pushed a button
 */
#if ANY(BLINKM, RGB_LED, RGBW_LED, PCA9632, PCA9533, NEOPIXEL_LED)
  #define PRINTER_EVENT_LEDS
#endif

/**
 * Number of servos
 *
 * For some servo-related options NUM_SERVOS will be set automatically.
 * Set this manually if there are extra servos needing manual control.
 * Set to 0 to turn off servo support.
 */
//#define NUM_SERVOS 3 // Note: Servo index starts with 0 for M280-M282 commands

// (ms) Delay before the next move will start, to give the servo time to reach its target angle.
// 300ms is a good value but you can try less delay.
// If the servo can't reach the requested position, increase it.
#define SERVO_DELAY { 300 }

// Only power servos during movement, otherwise leave off to prevent jitter
//#define DEACTIVATE_SERVOS_AFTER_MOVE

// Edit servo angles with M281 and save to EEPROM with M500
//#define EDITABLE_SERVO_ANGLES

// Disable servo with M282 to reduce power consumption, noise, and heat when not in use
//#define SERVO_DETACH_GCODE