/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
/**
* malyan_lcd.cpp
*
* LCD implementation for Malyan's LCD, a separate ESP8266 MCU running
* on Serial1 for the M200 board. This module outputs a pseudo-gcode
* wrapped in curly braces which the LCD implementation translates into
* actual G-code commands.
*
* Added to Marlin for Mini/Malyan M200
* Unknown commands as of Jan 2018: {H:}
* Not currently implemented:
* {E:} when sent by LCD. Meaning unknown.
*
* Notes for connecting to boards that are not Malyan:
* The LCD is 3.3v, so if powering from a RAMPS 1.4 board or
* other 5v/12v board, use a buck converter to power the LCD and
* the 3.3v side of a logic level shifter. Aux1 on the RAMPS board
* has Serial1 and 12v, making it perfect for this.
* Copyright (c) 2017 Jason Nelson (xC0000005)
*/
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(MALYAN_LCD)
//#define DEBUG_MALYAN_LCD
#include "ui_api.h"
#include "../ultralcd.h"
#include "../../sd/cardreader.h"
#include "../../module/temperature.h"
#include "../../module/stepper.h"
#include "../../module/motion.h"
#include "../../libs/duration_t.h"
#include "../../module/printcounter.h"
#include "../../gcode/queue.h"
#define DEBUG_OUT ENABLED(DEBUG_MALYAN_LCD)
#include "../../core/debug_out.h"
// This is based on longest sys command + a filename, plus some buffer
// in case we encounter some data we don't recognize
// There is no evidence a line will ever be this long, but better safe than sorry
#define MAX_CURLY_COMMAND (32 + LONG_FILENAME_LENGTH) * 2
// Track incoming command bytes from the LCD
uint16_t inbound_count;
// For sending print completion messages
bool last_printing_status = false;
// Everything written needs the high bit set.
void write_to_lcd_P(PGM_P const message) {
char encoded_message[MAX_CURLY_COMMAND];
uint8_t message_length = _MIN(strlen_P(message), sizeof(encoded_message));
LOOP_L_N(i, message_length)
encoded_message[i] = pgm_read_byte(&message[i]) | 0x80;
LCD_SERIAL.Print::write(encoded_message, message_length);
}
void write_to_lcd(const char * const message) {
char encoded_message[MAX_CURLY_COMMAND];
const uint8_t message_length = _MIN(strlen(message), sizeof(encoded_message));
LOOP_L_N(i, message_length)
encoded_message[i] = message[i] | 0x80;
LCD_SERIAL.Print::write(encoded_message, message_length);
}
// {E:} is for error states.
void set_lcd_error_P(PGM_P const error, PGM_P const component=nullptr) {
write_to_lcd_P(PSTR("{E:"));
write_to_lcd_P(error);
if (component) {
write_to_lcd_P(PSTR(" "));
write_to_lcd_P(component);
}
write_to_lcd_P(PSTR("}"));
}
/**
* Process an LCD 'C' command.
* These are currently all temperature commands
* {C:T0190}
* Set temp for hotend to 190
* {C:P050}
* Set temp for bed to 50
*
* {C:S09} set feedrate to 90 %.
* {C:S12} set feedrate to 120 %.
*
* the command portion begins after the :
*/
void process_lcd_c_command(const char* command) {
const int target_val = command[1] ? atoi(command + 1) : -1;
if (target_val < 0) {
DEBUG_ECHOLNPAIR("UNKNOWN C COMMAND ", command);
return;
}
switch (command[0]) {
case 'C': // Cope with both V1 early rev and later LCDs.
case 'S':
feedrate_percentage = target_val * 10;
LIMIT(feedrate_percentage, 10, 999);
break;
case 'T':
// Sometimes the LCD will send commands to turn off both extruder and bed, though
// this should not happen since the printing screen is up. Better safe than sorry.
if (!print_job_timer.isRunning() || target_val > 0)
ExtUI::setTargetTemp_celsius(target_val, ExtUI::extruder_t::E0);
break;
#if HAS_HEATED_BED
case 'P': ExtUI::setTargetTemp_celsius(target_val, ExtUI::heater_t::BED); break;
#endif
default: DEBUG_ECHOLNPAIR("UNKNOWN C COMMAND ", command);
}
}
/**
* Process an LCD 'B' command.
* {B:0} results in: {T0:008/195}{T1:000/000}{TP:000/000}{TQ:000C}{TT:000000}
* T0/T1 are hot end temperatures, TP is bed, TQ is percent, and TT is probably
* time remaining (HH:MM:SS). The UI can't handle displaying a second hotend,
* but the stock firmware always sends it, and it's always zero.
*/
void process_lcd_eb_command(const char* command) {
char elapsed_buffer[10];
static uint8_t iteration = 0;
duration_t elapsed;
switch (command[0]) {
case '0': {
elapsed = print_job_timer.duration();
sprintf_P(elapsed_buffer, PSTR("%02u%02u%02u"), uint16_t(elapsed.hour()), uint16_t(elapsed.minute()) % 60, uint16_t(elapsed.second()) % 60);
char message_buffer[MAX_CURLY_COMMAND];
uint8_t done_pct = print_job_timer.isRunning() ? (iteration * 10) : 100;
iteration = (iteration + 1) % 10; // Provide progress animation
#if ENABLED(SDSUPPORT)
if (ExtUI::isPrintingFromMedia() || ExtUI::isPrintingFromMediaPaused())
done_pct = card.percentDone();
#endif
sprintf_P(message_buffer,
PSTR("{T0:%03i/%03i}{T1:000/000}{TP:%03i/%03i}{TQ:%03i}{TT:%s}"),
int(thermalManager.degHotend(0)), thermalManager.degTargetHotend(0),
#if HAS_HEATED_BED
int(thermalManager.degBed()), thermalManager.degTargetBed(),
#else
0, 0,
#endif
#if ENABLED(SDSUPPORT)
done_pct,
#else
0,
#endif
elapsed_buffer
);
write_to_lcd(message_buffer);
} break;
default: DEBUG_ECHOLNPAIR("UNKNOWN E/B COMMAND ", command);
}
}
/**
* Process an LCD 'J' command.
* These are currently all movement commands.
* The command portion begins after the :
* Move X Axis
*
* {J:E}{J:X-200}{J:E}
* {J:E}{J:X+200}{J:E}
* X, Y, Z, A (extruder)
*/
template
void j_move_axis(const char* command, const T axis) {
const float dist = atof(command + 1) / 10.0;
ExtUI::setAxisPosition_mm(ExtUI::getAxisPosition_mm(axis) + dist, axis);
};
void process_lcd_j_command(const char* command) {
switch (command[0]) {
case 'E': break;
case 'A': j_move_axis(command, ExtUI::extruder_t::E0); break;
case 'Y': j_move_axis(command, ExtUI::axis_t::Y); break;
case 'Z': j_move_axis(command, ExtUI::axis_t::Z); break;
case 'X': j_move_axis(command, ExtUI::axis_t::X); break;
default: DEBUG_ECHOLNPAIR("UNKNOWN J COMMAND ", command);
}
}
/**
* Process an LCD 'P' command, related to homing and printing.
* Cancel:
* {P:X}
*
* Home all axes:
* {P:H}
*
* Print a file:
* {P:000}
* The File number is specified as a three digit value.
* Printer responds with:
* {PRINTFILE:Mini_SNES_Bottom.gcode}
* {SYS:BUILD}echo:Now fresh file: Mini_SNES_Bottom.gcode
* File opened: Mini_SNES_Bottom.gcode Size: 5805813
* File selected
* {SYS:BUILD}
* T:-2526.8 E:0
* T:-2533.0 E:0
* T:-2537.4 E:0
* Note only the curly brace stuff matters.
*/
void process_lcd_p_command(const char* command) {
switch (command[0]) {
case 'P':
ExtUI::pausePrint();
write_to_lcd_P(PSTR("{SYS:PAUSED}"));
break;
case 'R':
ExtUI::resumePrint();
write_to_lcd_P(PSTR("{SYS:RESUMED}"));
break;
case 'X':
write_to_lcd_P(PSTR("{SYS:CANCELING}"));
ExtUI::stopPrint();
write_to_lcd_P(PSTR("{SYS:STARTED}"));
break;
case 'H': queue.enqueue_now_P(G28_STR); break; // Home all axes
default: {
#if ENABLED(SDSUPPORT)
// Print file 000 - a three digit number indicating which
// file to print in the SD card. If it's a directory,
// then switch to the directory.
// Find the name of the file to print.
// It's needed to echo the PRINTFILE option.
// The {S:L} command should've ensured the SD card was mounted.
card.selectFileByIndex(atoi(command));
// There may be a difference in how V1 and V2 LCDs handle subdirectory
// prints. Investigate more. This matches the V1 motion controller actions
// but the V2 LCD switches to "print" mode on {SYS:DIR} response.
if (card.flag.filenameIsDir) {
card.cd(card.filename);
write_to_lcd_P(PSTR("{SYS:DIR}"));
}
else {
char message_buffer[MAX_CURLY_COMMAND];
sprintf_P(message_buffer, PSTR("{PRINTFILE:%s}"), card.longest_filename());
write_to_lcd(message_buffer);
write_to_lcd_P(PSTR("{SYS:BUILD}"));
card.openAndPrintFile(card.filename);
}
#endif
} break; // default
} // switch
}
/**
* Handle an lcd 'S' command
* {S:I} - Temperature request
* {T0:999/000}{T1:000/000}{TP:004/000}
*
* {S:L} - File Listing request
* Printer Response:
* {FILE:buttons.gcode}
* {FILE:update.bin}
* {FILE:nupdate.bin}
* {FILE:fcupdate.flg}
* {SYS:OK}
*/
void process_lcd_s_command(const char* command) {
switch (command[0]) {
case 'I': {
// temperature information
char message_buffer[MAX_CURLY_COMMAND];
sprintf_P(message_buffer, PSTR("{T0:%03i/%03i}{T1:000/000}{TP:%03i/%03i}"),
int(thermalManager.degHotend(0)), thermalManager.degTargetHotend(0),
#if HAS_HEATED_BED
int(thermalManager.degBed()), thermalManager.degTargetBed()
#else
0, 0
#endif
);
write_to_lcd(message_buffer);
} break;
case 'L': {
#if ENABLED(SDSUPPORT)
if (!card.isMounted()) card.mount();
// A more efficient way to do this would be to
// implement a callback in the ls_SerialPrint code, but
// that requires changes to the core cardreader class that
// would not benefit the majority of users. Since one can't
// select a file for printing during a print, there's
// little reason not to do it this way.
char message_buffer[MAX_CURLY_COMMAND];
uint16_t file_count = card.get_num_Files();
for (uint16_t i = 0; i < file_count; i++) {
card.selectFileByIndex(i);
sprintf_P(message_buffer, card.flag.filenameIsDir ? PSTR("{DIR:%s}") : PSTR("{FILE:%s}"), card.longest_filename());
write_to_lcd(message_buffer);
}
write_to_lcd_P(PSTR("{SYS:OK}"));
#endif
} break;
default: DEBUG_ECHOLNPAIR("UNKNOWN S COMMAND ", command);
}
}
/**
* Receive a curly brace command and translate to G-code.
* Currently {E:0} is not handled. Its function is unknown,
* but it occurs during the temp window after a sys build.
*/
void process_lcd_command(const char* command) {
const char *current = command;
byte command_code = *current++;
if (*current == ':') {
current++; // skip the :
switch (command_code) {
case 'S': process_lcd_s_command(current); break;
case 'J': process_lcd_j_command(current); break;
case 'P': process_lcd_p_command(current); break;
case 'C': process_lcd_c_command(current); break;
case 'B':
case 'E': process_lcd_eb_command(current); break;
default: DEBUG_ECHOLNPAIR("UNKNOWN COMMAND ", command);
}
}
else
DEBUG_ECHOLNPAIR("UNKNOWN COMMAND FORMAT ", command);
}
//
// Parse LCD commands mixed with G-Code
//
void parse_lcd_byte(const byte b) {
static char inbound_buffer[MAX_CURLY_COMMAND];
static uint8_t parsing = 0; // Parsing state
static bool prevcr = false; // Was the last c a CR?
const char c = b & 0x7F;
if (parsing) {
const bool is_lcd = parsing == 1; // 1 for LCD
if ( ( is_lcd && c == '}') // Closing brace on LCD command
|| (!is_lcd && c == '\n') // LF on a G-code command
) {
inbound_buffer[inbound_count] = '\0'; // Reset before processing
inbound_count = 0; // Reset buffer index
if (parsing == 1)
process_lcd_command(inbound_buffer); // Handle the LCD command
else
queue.enqueue_one_now(inbound_buffer); // Handle the G-code command
parsing = 0; // Unflag and...
}
else if (inbound_count < MAX_CURLY_COMMAND - 2)
inbound_buffer[inbound_count++] = is_lcd ? c : b; // Buffer while space remains
}
else {
if (c == '{') parsing = 1; // Brace opens an LCD command
else if (prevcr && c == '\n') parsing = 2; // CRLF indicates G-code
prevcr = (c == '\r'); // Remember if it was a CR
}
}
/**
* UC means connected.
* UD means disconnected
* The stock firmware considers USB initialized as "connected."
*/
void update_usb_status(const bool forceUpdate) {
static bool last_usb_connected_status = false;
// This is mildly different than stock, which
// appears to use the usb discovery status.
// This is more logical.
if (last_usb_connected_status != MYSERIAL0 || forceUpdate) {
last_usb_connected_status = MYSERIAL0;
write_to_lcd_P(last_usb_connected_status ? PSTR("{R:UC}\r\n") : PSTR("{R:UD}\r\n"));
}
}
namespace ExtUI {
void onStartup() {
/**
* The Malyan LCD actually runs as a separate MCU on Serial 1.
* This code's job is to siphon the weird curly-brace commands from
* it and translate into ExtUI operations where possible.
*/
inbound_count = 0;
#ifndef LCD_BAUDRATE
#define LCD_BAUDRATE 500000
#endif
LCD_SERIAL.begin(LCD_BAUDRATE);
// Signal init
write_to_lcd_P(PSTR("{SYS:STARTED}\r\n"));
// send a version that says "unsupported"
write_to_lcd_P(PSTR("{VER:99}\r\n"));
// No idea why it does this twice.
write_to_lcd_P(PSTR("{SYS:STARTED}\r\n"));
update_usb_status(true);
}
void onIdle() {
/**
* - from printer on startup:
* {SYS:STARTED}{VER:29}{SYS:STARTED}{R:UD}
*/
// First report USB status.
update_usb_status(false);
// now drain commands...
while (LCD_SERIAL.available())
parse_lcd_byte((byte)LCD_SERIAL.read());
#if ENABLED(SDSUPPORT)
// The way last printing status works is simple:
// The UI needs to see at least one TQ which is not 100%
// and then when the print is complete, one which is.
static uint8_t last_percent_done = 100;
// If there was a print in progress, we need to emit the final
// print status as {TQ:100}. Reset last percent done so a new print will
// issue a percent of 0.
const uint8_t percent_done = (ExtUI::isPrinting() || ExtUI::isPrintingFromMediaPaused()) ? ExtUI::getProgress_percent() : last_printing_status ? 100 : 0;
if (percent_done != last_percent_done) {
char message_buffer[16];
sprintf_P(message_buffer, PSTR("{TQ:%03i}"), percent_done);
write_to_lcd(message_buffer);
last_percent_done = percent_done;
last_printing_status = ExtUI::isPrinting();
}
#endif
}
void onPrinterKilled(PGM_P const error, PGM_P const component) {
set_lcd_error_P(error, component);
}
#if HAS_PID_HEATING
void onPidTuning(const result_t rst) {
// Called for temperature PID tuning result
//SERIAL_ECHOLNPAIR("OnPidTuning:", rst);
switch (rst) {
case PID_BAD_EXTRUDER_NUM:
set_lcd_error_P(GET_TEXT(MSG_PID_BAD_EXTRUDER_NUM));
break;
case PID_TEMP_TOO_HIGH:
set_lcd_error_P(GET_TEXT(MSG_PID_TEMP_TOO_HIGH));
break;
case PID_TUNING_TIMEOUT:
set_lcd_error_P(GET_TEXT(MSG_PID_TIMEOUT));
break;
case PID_DONE:
set_lcd_error_P(GET_TEXT(MSG_PID_AUTOTUNE_DONE));
break;
}
}
#endif
void onPrintTimerStarted() { write_to_lcd_P(PSTR("{SYS:BUILD}")); }
void onPrintTimerPaused() {}
void onPrintTimerStopped() { write_to_lcd_P(PSTR("{TQ:100}")); }
// Not needed for Malyan LCD
void onStatusChanged(const char * const) {}
void onMediaInserted() {};
void onMediaError() {};
void onMediaRemoved() {};
void onPlayTone(const uint16_t, const uint16_t) {}
void onFilamentRunout(const extruder_t extruder) {}
void onUserConfirmRequired(const char * const) {}
void onFactoryReset() {}
void onStoreSettings(char*) {}
void onLoadSettings(const char*) {}
void onConfigurationStoreWritten(bool) {}
void onConfigurationStoreRead(bool) {}
#if HAS_MESH
void onMeshUpdate(const int8_t xpos, const int8_t ypos, const float zval) {}
void onMeshUpdate(const int8_t xpos, const int8_t ypos, const ExtUI::probe_state_t state) {}
#endif
#if ENABLED(POWER_LOSS_RECOVERY)
void onPowerLossResume() {}
#endif
}
#endif // MALYAN_LCD