/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ /** * Marlin Firmware -- G26 - Mesh Validation Tool */ #include "MarlinConfig.h" #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION) #include "ubl.h" #include "Marlin.h" #include "planner.h" #include "stepper.h" #include "temperature.h" #include "ultralcd.h" #include "gcode.h" #define EXTRUSION_MULTIPLIER 1.0 #define RETRACTION_MULTIPLIER 1.0 #define NOZZLE 0.4 #define FILAMENT 1.75 #define LAYER_HEIGHT 0.2 #define PRIME_LENGTH 10.0 #define BED_TEMP 60.0 #define HOTEND_TEMP 205.0 #define OOZE_AMOUNT 0.3 #define SIZE_OF_INTERSECTION_CIRCLES 5 #define SIZE_OF_CROSSHAIRS 3 #if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES #error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES." #endif /** * G26 Mesh Validation Tool * * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and * the intersections of those lines (respectively). * * This action allows the user to immediately see where the Mesh is properly defined and where it needs to * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively * the user can specify the X and Y position of interest with command parameters. This allows the user to * focus on a particular area of the Mesh where attention is needed. * * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed. * * C Current When searching for Mesh Intersection points to draw, use the current nozzle location * as the base for any distance comparison. * * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this * command to see how well a Mesh as been adjusted to match a print surface. In order to do * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter * alters the command's normal behaviour and disables the Unified Bed Leveling System even if * it is on. * * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed. * * F # Filament Used to specify the diameter of the filament being used. If not specified * 1.75mm filament is assumed. If you are not getting acceptable results by using the * 'correct' numbers, you can scale this number up or down a little bit to change the amount * of filament that is being extruded during the printing of the various lines on the bed. * * K Keep-On Keep the heaters turned on at the end of the command. * * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used. * * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This * is over kill, but using this parameter will let you get the very first 'circle' perfect * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your * Mesh calibrated. If not specified, a filament length of .3mm is assumed. * * P # Prime Prime the nozzle with specified length of filament. If this parameter is not * given, no prime action will take place. If the parameter specifies an amount, that much * will be purged before continuing. If no amount is specified the command will start * purging filament until the user provides an LCD Click and then it will continue with * printing the Mesh. You can carefully remove the spent filament with a needle nose * pliers while holding the LCD Click wheel in a depressed state. If you do not have * an LCD, you must specify a value if you use P. * * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and * un-retraction is at 1.2mm These numbers will be scaled by the specified amount * * R # Repeat Prints the number of patterns given as a parameter, starting at the current location. * If a parameter isn't given, every point will be printed unless G26 is interrupted. * This works the same way that the UBL G29 P4 R parameter works. * * NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are * aware that there's some risk associated with printing without the ability to abort in * cases where mesh point Z value may be inaccurate. As above, if you do not include a * parameter, every point will be printed. * * S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed. * * U # Random Randomize the order that the circles are drawn on the bed. The search for the closest * undrawn cicle is still done. But the distance to the location for each circle has a * random number of the size specified added to it. Specifying S50 will give an interesting * deviation from the normal behaviour on a 10 x 10 Mesh. * * X # X Coord. Specify the starting location of the drawing activity. * * Y # Y Coord. Specify the starting location of the drawing activity. */ // External references extern float feedrate_mm_s; // must set before calling prepare_move_to_destination extern Planner planner; #if ENABLED(ULTRA_LCD) extern char lcd_status_message[]; #endif extern float destination[XYZE]; void set_destination_to_current(); void prepare_move_to_destination(); #if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); } inline void set_current_to_destination() { COPY(current_position, destination); } #else void sync_plan_position_e(); void set_current_to_destination(); #endif #if ENABLED(NEWPANEL) void lcd_setstatusPGM(const char* const message, const int8_t level); void chirp_at_user(); #endif // Private functions static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16]; float g26_e_axis_feedrate = 0.020, random_deviation = 0.0; static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched // retracts/recovers won't result in a bad state. float valid_trig_angle(float); float unified_bed_leveling::g26_extrusion_multiplier, unified_bed_leveling::g26_retraction_multiplier, unified_bed_leveling::g26_nozzle, unified_bed_leveling::g26_filament_diameter, unified_bed_leveling::g26_layer_height, unified_bed_leveling::g26_prime_length, unified_bed_leveling::g26_x_pos, unified_bed_leveling::g26_y_pos, unified_bed_leveling::g26_ooze_amount; int16_t unified_bed_leveling::g26_bed_temp, unified_bed_leveling::g26_hotend_temp; int8_t unified_bed_leveling::g26_prime_flag; bool unified_bed_leveling::g26_continue_with_closest, unified_bed_leveling::g26_keep_heaters_on; int16_t unified_bed_leveling::g26_repeats; void unified_bed_leveling::G26_line_to_destination(const float &feed_rate) { const float save_feedrate = feedrate_mm_s; feedrate_mm_s = feed_rate; // use specified feed rate prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_DELTA feedrate_mm_s = save_feedrate; // restore global feed rate } #if ENABLED(NEWPANEL) /** * Detect ubl_lcd_clicked, debounce it, and return true for cancel */ bool user_canceled() { if (!ubl_lcd_clicked()) return false; safe_delay(10); // Wait for click to settle #if ENABLED(ULTRA_LCD) lcd_setstatusPGM(PSTR("Mesh Validation Stopped."), 99); lcd_quick_feedback(); #endif while (!ubl_lcd_clicked()) idle(); // Wait for button release // If the button is suddenly pressed again, // ask the user to resolve the issue lcd_setstatusPGM(PSTR("Release button"), 99); // will never appear... while (ubl_lcd_clicked()) idle(); // unless this loop happens lcd_reset_status(); return true; } #endif /** * G26: Mesh Validation Pattern generation. * * Used to interactively edit UBL's Mesh by placing the * nozzle in a problem area and doing a G29 P4 R command. */ void unified_bed_leveling::G26() { SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s)."); float tmp, start_angle, end_angle; int i, xi, yi; mesh_index_pair location; // Don't allow Mesh Validation without homing first, // or if the parameter parsing did not go OK, abort if (axis_unhomed_error() || parse_G26_parameters()) return; if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) { do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); stepper.synchronize(); set_current_to_destination(); } if (turn_on_heaters()) goto LEAVE; current_position[E_AXIS] = 0.0; sync_plan_position_e(); if (g26_prime_flag && prime_nozzle()) goto LEAVE; /** * Bed is preheated * * Nozzle is at temperature * * Filament is primed! * * It's "Show Time" !!! */ ZERO(circle_flags); ZERO(horizontal_mesh_line_flags); ZERO(vertical_mesh_line_flags); // Move nozzle to the specified height for the first layer set_destination_to_current(); destination[Z_AXIS] = g26_layer_height; move_to(destination, 0.0); move_to(destination, g26_ooze_amount); has_control_of_lcd_panel = true; //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern.")); /** * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten * the CPU load and make the arc drawing faster and more smooth */ float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1]; for (i = 0; i <= 360 / 30; i++) { cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0))); sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0))); } do { location = g26_continue_with_closest ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]) : find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now. if (location.x_index >= 0 && location.y_index >= 0) { const float circle_x = mesh_index_to_xpos(location.x_index), circle_y = mesh_index_to_ypos(location.y_index); // If this mesh location is outside the printable_radius, skip it. if (!position_is_reachable_raw_xy(circle_x, circle_y)) continue; xi = location.x_index; // Just to shrink the next few lines and make them easier to understand yi = location.y_index; if (g26_debug_flag) { SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi); SERIAL_ECHOPAIR(", yi=", yi); SERIAL_CHAR(')'); SERIAL_EOL(); } start_angle = 0.0; // assume it is going to be a full circle end_angle = 360.0; if (xi == 0) { // Check for bottom edge start_angle = -90.0; end_angle = 90.0; if (yi == 0) // it is an edge, check for the two left corners start_angle = 0.0; else if (yi == GRID_MAX_POINTS_Y - 1) end_angle = 0.0; } else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge start_angle = 90.0; end_angle = 270.0; if (yi == 0) // it is an edge, check for the two right corners end_angle = 180.0; else if (yi == GRID_MAX_POINTS_Y - 1) start_angle = 180.0; } else if (yi == 0) { start_angle = 0.0; // only do the top side of the cirlce end_angle = 180.0; } else if (yi == GRID_MAX_POINTS_Y - 1) { start_angle = 180.0; // only do the bottom side of the cirlce end_angle = 360.0; } for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) { #if ENABLED(NEWPANEL) if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation #endif int tmp_div_30 = tmp / 30.0; if (tmp_div_30 < 0) tmp_div_30 += 360 / 30; if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30; float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry y = circle_y + sin_table[tmp_div_30], xe = circle_x + cos_table[tmp_div_30 + 1], ye = circle_y + sin_table[tmp_div_30 + 1]; #if IS_KINEMATIC // Check to make sure this segment is entirely on the bed, skip if not. if (!position_is_reachable_raw_xy(x, y) || !position_is_reachable_raw_xy(xe, ye)) continue; #else // not, we need to skip x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1); xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1); ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); #endif //if (g26_debug_flag) { // char ccc, *cptr, seg_msg[50], seg_num[10]; // strcpy(seg_msg, " segment: "); // strcpy(seg_num, " \n"); // cptr = (char*) "01234567890ABCDEF????????"; // ccc = cptr[tmp_div_30]; // seg_num[1] = ccc; // strcat(seg_msg, seg_num); // debug_current_and_destination(seg_msg); //} print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), g26_layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), g26_layer_height); } if (look_for_lines_to_connect()) goto LEAVE; } } while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0); LEAVE: lcd_setstatusPGM(PSTR("Leaving G26"), -1); retract_filament(destination); destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; //debug_current_and_destination(PSTR("ready to do Z-Raise.")); move_to(destination, 0); // Raise the nozzle //debug_current_and_destination(PSTR("done doing Z-Raise.")); destination[X_AXIS] = g26_x_pos; // Move back to the starting position destination[Y_AXIS] = g26_y_pos; //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is move_to(destination, 0); // Move back to the starting position //debug_current_and_destination(PSTR("done doing X/Y move.")); has_control_of_lcd_panel = false; // Give back control of the LCD Panel! if (!g26_keep_heaters_on) { #if HAS_TEMP_BED thermalManager.setTargetBed(0); #endif thermalManager.setTargetHotend(0, 0); } } float valid_trig_angle(float d) { while (d > 360.0) d -= 360.0; while (d < 0.0) d += 360.0; return d; } mesh_index_pair unified_bed_leveling::find_closest_circle_to_print(const float &X, const float &Y) { float closest = 99999.99; mesh_index_pair return_val; return_val.x_index = return_val.y_index = -1; for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { if (!is_bit_set(circle_flags, i, j)) { const float mx = mesh_index_to_xpos(i), // We found a circle that needs to be printed my = mesh_index_to_ypos(j); // Get the distance to this intersection float f = HYPOT(X - mx, Y - my); // It is possible that we are being called with the values // to let us find the closest circle to the start position. // But if this is not the case, add a small weighting to the // distance calculation to help it choose a better place to continue. f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0; // Add in the specified amount of Random Noise to our search if (random_deviation > 1.0) f += random(0.0, random_deviation); if (f < closest) { closest = f; // We found a closer location that is still return_val.x_index = i; // un-printed --- save the data for it return_val.y_index = j; return_val.distance = closest; } } } } bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done. return return_val; } bool unified_bed_leveling::look_for_lines_to_connect() { float sx, sy, ex, ey; for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { #if ENABLED(NEWPANEL) if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation #endif if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X. // This is already a half circle because we are at the edge of the bed. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left if (!is_bit_set(horizontal_mesh_line_flags, i, j)) { // // We found two circles that need a horizontal line to connect them // Print it! // sx = mesh_index_to_xpos( i ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge ex = mesh_index_to_xpos(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); sy = ey = constrain(mesh_index_to_ypos(j), Y_MIN_POS + 1, Y_MAX_POS - 1); ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) { if (g26_debug_flag) { SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx); SERIAL_ECHOPAIR(", sy=", sy); SERIAL_ECHOPAIR(") -> (ex=", ex); SERIAL_ECHOPAIR(", ey=", ey); SERIAL_CHAR(')'); SERIAL_EOL(); //debug_current_and_destination(PSTR("Connecting horizontal line.")); } print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height); } bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it } } if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y. // This is already a half circle because we are at the edge of the bed. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down if (!is_bit_set( vertical_mesh_line_flags, i, j)) { // // We found two circles that need a vertical line to connect them // Print it! // sy = mesh_index_to_ypos( j ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge ey = mesh_index_to_ypos(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge sx = ex = constrain(mesh_index_to_xpos(i), X_MIN_POS + 1, X_MAX_POS - 1); sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) { if (g26_debug_flag) { SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx); SERIAL_ECHOPAIR(", sy=", sy); SERIAL_ECHOPAIR(") -> (ex=", ex); SERIAL_ECHOPAIR(", ey=", ey); SERIAL_CHAR(')'); SERIAL_EOL(); debug_current_and_destination(PSTR("Connecting vertical line.")); } print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height); } bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped } } } } } } return false; } void unified_bed_leveling::move_to(const float &x, const float &y, const float &z, const float &e_delta) { float feed_value; static float last_z = -999.99; bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement. if (z != last_z) { last_z = z; feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate destination[X_AXIS] = current_position[X_AXIS]; destination[Y_AXIS] = current_position[Y_AXIS]; destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code. destination[E_AXIS] = current_position[E_AXIS]; G26_line_to_destination(feed_value); stepper.synchronize(); set_destination_to_current(); } // Check if X or Y is involved in the movement. // Yes: a 'normal' movement. No: a retract() or recover() feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5; if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value); destination[X_AXIS] = x; destination[Y_AXIS] = y; destination[E_AXIS] += e_delta; G26_line_to_destination(feed_value); stepper.synchronize(); set_destination_to_current(); } void unified_bed_leveling::retract_filament(const float where[XYZE]) { if (!g26_retracted) { // Only retract if we are not already retracted! g26_retracted = true; move_to(where, -1.0 * g26_retraction_multiplier); } } void unified_bed_leveling::recover_filament(const float where[XYZE]) { if (g26_retracted) { // Only un-retract if we are retracted. move_to(where, 1.2 * g26_retraction_multiplier); g26_retracted = false; } } /** * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one * to the other. But there are really three sets of coordinates involved. The first coordinate * is the present location of the nozzle. We don't necessarily want to print from this location. * We first need to move the nozzle to the start of line segment where we want to print. Once * there, we can use the two coordinates supplied to draw the line. * * Note: Although we assume the first set of coordinates is the start of the line and the second * set of coordinates is the end of the line, it does not always work out that way. This function * optimizes the movement to minimize the travel distance before it can start printing. This saves * a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does * cause a lot of very little short retracement of th nozzle when it draws the very first line * segment of a 'circle'. The time this requires is very short and is easily saved by the other * cases where the optimization comes into play. */ void unified_bed_leveling::print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) { const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment dy_s = current_position[Y_AXIS] - sy, dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2 // to save computation time dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment dy_e = current_position[Y_AXIS] - ey, dist_end = HYPOT2(dx_e, dy_e), line_length = HYPOT(ex - sx, ey - sy); // If the end point of the line is closer to the nozzle, flip the direction, // moving from the end to the start. On very small lines the optimization isn't worth it. if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < FABS(line_length)) { return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); } // Decide whether to retract & bump if (dist_start > 2.0) { retract_filament(destination); //todo: parameterize the bump height with a define move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped } move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier; recover_filament(destination); move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion } /** * This function used to be inline code in G26. But there are so many * parameters it made sense to turn them into static globals and get * this code out of sight of the main routine. */ bool unified_bed_leveling::parse_G26_parameters() { g26_extrusion_multiplier = EXTRUSION_MULTIPLIER; g26_retraction_multiplier = RETRACTION_MULTIPLIER; g26_nozzle = NOZZLE; g26_filament_diameter = FILAMENT; g26_layer_height = LAYER_HEIGHT; g26_prime_length = PRIME_LENGTH; g26_bed_temp = BED_TEMP; g26_hotend_temp = HOTEND_TEMP; g26_prime_flag = 0; g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT); g26_keep_heaters_on = parser.boolval('K'); g26_continue_with_closest = parser.boolval('C'); if (parser.seenval('B')) { g26_bed_temp = parser.value_celsius(); if (!WITHIN(g26_bed_temp, 15, 140)) { SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible."); return UBL_ERR; } } if (parser.seenval('L')) { g26_layer_height = parser.value_linear_units(); if (!WITHIN(g26_layer_height, 0.0, 2.0)) { SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible."); return UBL_ERR; } } if (parser.seen('Q')) { if (parser.has_value()) { g26_retraction_multiplier = parser.value_float(); if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) { SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible."); return UBL_ERR; } } else { SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified."); return UBL_ERR; } } if (parser.seenval('S')) { g26_nozzle = parser.value_float(); if (!WITHIN(g26_nozzle, 0.1, 1.0)) { SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible."); return UBL_ERR; } } if (parser.seen('P')) { if (!parser.has_value()) { #if ENABLED(NEWPANEL) g26_prime_flag = -1; #else SERIAL_PROTOCOLLNPGM("?Prime length must be specified when not using an LCD."); return UBL_ERR; #endif } else { g26_prime_flag++; g26_prime_length = parser.value_linear_units(); if (!WITHIN(g26_prime_length, 0.0, 25.0)) { SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible."); return UBL_ERR; } } } if (parser.seenval('F')) { g26_filament_diameter = parser.value_linear_units(); if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) { SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible."); return UBL_ERR; } } g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to // scale up or down the length needed to get the // same volume of filament g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size if (parser.seenval('H')) { g26_hotend_temp = parser.value_celsius(); if (!WITHIN(g26_hotend_temp, 165, 280)) { SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible."); return UBL_ERR; } } if (parser.seen('U')) { randomSeed(millis()); // This setting will persist for the next G26 random_deviation = parser.has_value() ? parser.value_float() : 50.0; } #if ENABLED(NEWPANEL) g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1); #else if (!parser.seen('R')) { SERIAL_PROTOCOLLNPGM("?(R)epeat must be specified when not using an LCD."); return UBL_ERR; } else g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1; #endif if (g26_repeats < 1) { SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1."); return UBL_ERR; } g26_x_pos = parser.linearval('X', current_position[X_AXIS]); g26_y_pos = parser.linearval('Y', current_position[Y_AXIS]); if (!position_is_reachable_xy(g26_x_pos, g26_y_pos)) { SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds."); return UBL_ERR; } /** * Wait until all parameters are verified before altering the state! */ set_bed_leveling_enabled(!parser.seen('D')); return UBL_OK; } #if ENABLED(NEWPANEL) bool unified_bed_leveling::exit_from_g26() { lcd_setstatusPGM(PSTR("Leaving G26"), -1); while (ubl_lcd_clicked()) idle(); return UBL_ERR; } #endif /** * Turn on the bed and nozzle heat and * wait for them to get up to temperature. */ bool unified_bed_leveling::turn_on_heaters() { millis_t next = millis() + 5000UL; #if HAS_TEMP_BED #if ENABLED(ULTRA_LCD) if (g26_bed_temp > 25) { lcd_setstatusPGM(PSTR("G26 Heating Bed."), 99); lcd_quick_feedback(); #endif has_control_of_lcd_panel = true; thermalManager.setTargetBed(g26_bed_temp); while (abs(thermalManager.degBed() - g26_bed_temp) > 3) { #if ENABLED(NEWPANEL) if (ubl_lcd_clicked()) return exit_from_g26(); #endif if (PENDING(millis(), next)) { next = millis() + 5000UL; print_heaterstates(); } idle(); } #if ENABLED(ULTRA_LCD) } lcd_setstatusPGM(PSTR("G26 Heating Nozzle."), 99); lcd_quick_feedback(); #endif #endif // Start heating the nozzle and wait for it to reach temperature. thermalManager.setTargetHotend(g26_hotend_temp, 0); while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) { #if ENABLED(NEWPANEL) if (ubl_lcd_clicked()) return exit_from_g26(); #endif if (PENDING(millis(), next)) { next = millis() + 5000UL; print_heaterstates(); } idle(); } #if ENABLED(ULTRA_LCD) lcd_reset_status(); lcd_quick_feedback(); #endif return UBL_OK; } /** * Prime the nozzle if needed. Return true on error. */ bool unified_bed_leveling::prime_nozzle() { #if ENABLED(NEWPANEL) float Total_Prime = 0.0; if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged has_control_of_lcd_panel = true; lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99); chirp_at_user(); set_destination_to_current(); recover_filament(destination); // Make sure G26 doesn't think the filament is retracted(). while (!ubl_lcd_clicked()) { chirp_at_user(); destination[E_AXIS] += 0.25; #ifdef PREVENT_LENGTHY_EXTRUDE Total_Prime += 0.25; if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR; #endif G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0); stepper.synchronize(); // Without this synchronize, the purge is more consistent, // but because the planner has a buffer, we won't be able // to stop as quickly. So we put up with the less smooth // action to give the user a more responsive 'Stop'. set_destination_to_current(); idle(); } while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel #if ENABLED(ULTRA_LCD) strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatusPGM() without having it continue; // So... We cheat to get a message up. lcd_setstatusPGM(PSTR("Done Priming"), 99); lcd_quick_feedback(); #endif has_control_of_lcd_panel = false; } else { #else { #endif #if ENABLED(ULTRA_LCD) lcd_setstatusPGM(PSTR("Fixed Length Prime."), 99); lcd_quick_feedback(); #endif set_destination_to_current(); destination[E_AXIS] += g26_prime_length; G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0); stepper.synchronize(); set_destination_to_current(); retract_filament(destination); } return UBL_OK; } #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION