Merge pull request #4982 from thinkyhead/rc_abl_bugfix
Fix planner with kinematics, delta ABL
This commit is contained in:
commit
f8199b2cc1
@ -706,4 +706,8 @@
|
||||
// Stepper pulse duration, in cycles
|
||||
#define STEP_PULSE_CYCLES ((MINIMUM_STEPPER_PULSE) * CYCLES_PER_MICROSECOND)
|
||||
|
||||
#ifndef DELTA_ENDSTOP_ADJ
|
||||
#define DELTA_ENDSTOP_ADJ { 0 }
|
||||
#endif
|
||||
|
||||
#endif // CONDITIONALS_POST_H
|
||||
|
@ -456,6 +456,18 @@ static uint8_t target_extruder;
|
||||
#define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
|
||||
#endif
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
#define ADJUST_DELTA(V) \
|
||||
if (planner.abl_enabled) { \
|
||||
const float zadj = bilinear_z_offset(V); \
|
||||
delta[A_AXIS] += zadj; \
|
||||
delta[B_AXIS] += zadj; \
|
||||
delta[C_AXIS] += zadj; \
|
||||
}
|
||||
#elif IS_KINEMATIC
|
||||
#define ADJUST_DELTA(V) NOOP
|
||||
#endif
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
float z_endstop_adj = 0;
|
||||
#endif
|
||||
@ -711,8 +723,7 @@ inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
|
||||
#endif
|
||||
inverse_kinematics(current_position);
|
||||
planner.set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
|
||||
planner.set_position_mm_kinematic(current_position);
|
||||
}
|
||||
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
|
||||
|
||||
@ -1541,8 +1552,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
|
||||
) return;
|
||||
|
||||
refresh_cmd_timeout();
|
||||
inverse_kinematics(destination);
|
||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
|
||||
planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
|
||||
set_current_to_destination();
|
||||
}
|
||||
#endif // IS_KINEMATIC
|
||||
@ -6778,8 +6788,7 @@ inline void gcode_M503() {
|
||||
|
||||
// Define runplan for move axes
|
||||
#if IS_KINEMATIC
|
||||
#define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
|
||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
|
||||
#define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder);
|
||||
#else
|
||||
#define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
|
||||
#endif
|
||||
@ -6894,17 +6903,14 @@ inline void gcode_M503() {
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
|
||||
// Set extruder to saved position
|
||||
current_position[E_AXIS] = lastpos[E_AXIS];
|
||||
destination[E_AXIS] = lastpos[E_AXIS];
|
||||
destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
|
||||
planner.set_e_position_mm(current_position[E_AXIS]);
|
||||
|
||||
#if IS_KINEMATIC
|
||||
// Move XYZ to starting position, then E
|
||||
inverse_kinematics(lastpos);
|
||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
|
||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
|
||||
// Move XYZ to starting position
|
||||
planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
|
||||
#else
|
||||
// Move XY to starting position, then Z, then E
|
||||
// Move XY to starting position, then Z
|
||||
destination[X_AXIS] = lastpos[X_AXIS];
|
||||
destination[Y_AXIS] = lastpos[Y_AXIS];
|
||||
RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
|
||||
@ -7295,15 +7301,11 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
|
||||
float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
|
||||
z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
|
||||
|
||||
set_destination_to_current();
|
||||
|
||||
// Always raise by some amount
|
||||
planner.buffer_line(
|
||||
current_position[X_AXIS],
|
||||
current_position[Y_AXIS],
|
||||
current_position[Z_AXIS] + z_raise,
|
||||
current_position[E_AXIS],
|
||||
planner.max_feedrate_mm_s[Z_AXIS],
|
||||
active_extruder
|
||||
);
|
||||
destination[Z_AXIS] += z_raise;
|
||||
planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
|
||||
stepper.synchronize();
|
||||
|
||||
move_extruder_servo(active_extruder);
|
||||
@ -7311,14 +7313,8 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
|
||||
|
||||
// Move back down, if needed
|
||||
if (z_raise != z_diff) {
|
||||
planner.buffer_line(
|
||||
current_position[X_AXIS],
|
||||
current_position[Y_AXIS],
|
||||
current_position[Z_AXIS] + z_diff,
|
||||
current_position[E_AXIS],
|
||||
planner.max_feedrate_mm_s[Z_AXIS],
|
||||
active_extruder
|
||||
);
|
||||
destination[Z_AXIS] = current_position[Z_AXIS] + z_diff;
|
||||
planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
|
||||
stepper.synchronize();
|
||||
}
|
||||
#endif
|
||||
@ -8670,8 +8666,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||
|
||||
// If the move is only in Z/E don't split up the move
|
||||
if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
|
||||
inverse_kinematics(ltarget);
|
||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
|
||||
planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -8764,7 +8759,10 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||
#define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
|
||||
|
||||
// Get the starting delta if interpolation is possible
|
||||
if (segments >= 2) DELTA_IK();
|
||||
if (segments >= 2) {
|
||||
DELTA_IK();
|
||||
ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
|
||||
}
|
||||
|
||||
// Loop using decrement
|
||||
for (uint16_t s = segments + 1; --s;) {
|
||||
@ -8781,6 +8779,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||
|
||||
// Get the exact delta for the move after this
|
||||
DELTA_IK();
|
||||
ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
|
||||
|
||||
// Move to the interpolated delta position first
|
||||
planner.buffer_line(
|
||||
@ -8801,6 +8800,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||
DELTA_NEXT(segment_distance[i]);
|
||||
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
|
||||
DELTA_IK();
|
||||
ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
|
||||
}
|
||||
|
||||
// Move to the non-interpolated position
|
||||
@ -8815,6 +8815,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||
for (uint16_t s = segments + 1; --s;) {
|
||||
DELTA_NEXT(segment_distance[i]);
|
||||
DELTA_IK();
|
||||
ADJUST_DELTA(DELTA_VAR);
|
||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
|
||||
}
|
||||
|
||||
@ -8822,8 +8823,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||
|
||||
// Since segment_distance is only approximate,
|
||||
// the final move must be to the exact destination.
|
||||
inverse_kinematics(ltarget);
|
||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
|
||||
planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -9063,21 +9063,11 @@ void prepare_move_to_destination() {
|
||||
|
||||
clamp_to_software_endstops(arc_target);
|
||||
|
||||
#if IS_KINEMATIC
|
||||
inverse_kinematics(arc_target);
|
||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
|
||||
#else
|
||||
planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
|
||||
#endif
|
||||
planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
|
||||
}
|
||||
|
||||
// Ensure last segment arrives at target location.
|
||||
#if IS_KINEMATIC
|
||||
inverse_kinematics(logical);
|
||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
|
||||
#else
|
||||
planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder);
|
||||
#endif
|
||||
planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
|
||||
|
||||
// As far as the parser is concerned, the position is now == target. In reality the
|
||||
// motion control system might still be processing the action and the real tool position
|
||||
@ -9472,11 +9462,22 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
|
||||
#endif // !SWITCHING_EXTRUDER
|
||||
|
||||
previous_cmd_ms = ms; // refresh_cmd_timeout()
|
||||
|
||||
#if IS_KINEMATIC
|
||||
inverse_kinematics(current_position);
|
||||
ADJUST_DELTA(current_position);
|
||||
planner.buffer_line(
|
||||
delta[A_AXIS], delta[B_AXIS], delta[C_AXIS],
|
||||
current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
|
||||
MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
|
||||
);
|
||||
#else
|
||||
planner.buffer_line(
|
||||
current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
|
||||
current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
|
||||
MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
|
||||
);
|
||||
#endif
|
||||
stepper.synchronize();
|
||||
planner.set_e_position_mm(current_position[E_AXIS]);
|
||||
#if ENABLED(SWITCHING_EXTRUDER)
|
||||
|
@ -518,6 +518,10 @@
|
||||
*/
|
||||
#if HAS_ABL
|
||||
|
||||
#if ENABLED(USE_RAW_KINEMATICS)
|
||||
#error "USE_RAW_KINEMATICS is not compatible with AUTO_BED_LEVELING"
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Delta and SCARA have limited bed leveling options
|
||||
*/
|
||||
|
@ -589,7 +589,10 @@ void Config_ResetDefault() {
|
||||
#endif
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
|
||||
const float adj[ABC] = DELTA_ENDSTOP_ADJ;
|
||||
endstop_adj[A_AXIS] = adj[A_AXIS];
|
||||
endstop_adj[B_AXIS] = adj[B_AXIS];
|
||||
endstop_adj[C_AXIS] = adj[C_AXIS];
|
||||
delta_radius = DELTA_RADIUS;
|
||||
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
|
||||
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
|
||||
|
@ -441,6 +441,8 @@
|
||||
// in ultralcd.cpp@lcd_delta_calibrate_menu()
|
||||
//#define DELTA_CALIBRATION_MENU
|
||||
|
||||
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 }
|
||||
|
||||
#endif
|
||||
|
||||
// Enable this option for Toshiba steppers
|
||||
|
@ -441,6 +441,8 @@
|
||||
// in ultralcd.cpp@lcd_delta_calibrate_menu()
|
||||
//#define DELTA_CALIBRATION_MENU
|
||||
|
||||
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 }
|
||||
|
||||
#endif
|
||||
|
||||
// Enable this option for Toshiba steppers
|
||||
|
@ -441,6 +441,8 @@
|
||||
// in ultralcd.cpp@lcd_delta_calibrate_menu()
|
||||
//#define DELTA_CALIBRATION_MENU
|
||||
|
||||
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 }
|
||||
|
||||
#endif
|
||||
|
||||
// Enable this option for Toshiba steppers
|
||||
|
@ -430,6 +430,8 @@
|
||||
// in ultralcd.cpp@lcd_delta_calibrate_menu()
|
||||
//#define DELTA_CALIBRATION_MENU
|
||||
|
||||
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 }
|
||||
|
||||
#endif
|
||||
|
||||
// Enable this option for Toshiba steppers
|
||||
|
@ -439,6 +439,8 @@
|
||||
// in ultralcd.cpp@lcd_delta_calibrate_menu()
|
||||
//#define DELTA_CALIBRATION_MENU
|
||||
|
||||
//#define DELTA_ENDSTOP_ADJ { 0, 0, 0 }
|
||||
|
||||
#endif
|
||||
|
||||
// Enable this option for Toshiba steppers
|
||||
|
@ -522,7 +522,9 @@ void Planner::check_axes_activity() {
|
||||
}
|
||||
|
||||
#if PLANNER_LEVELING
|
||||
|
||||
/**
|
||||
* lx, ly, lz - logical (cartesian, not delta) positions in mm
|
||||
*/
|
||||
void Planner::apply_leveling(float &lx, float &ly, float &lz) {
|
||||
|
||||
#if HAS_ABL
|
||||
@ -549,21 +551,9 @@ void Planner::check_axes_activity() {
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
|
||||
float tmp[XYZ] = { lx, ly, 0 };
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
|
||||
float offset = bilinear_z_offset(tmp);
|
||||
lx += offset;
|
||||
ly += offset;
|
||||
lz += offset;
|
||||
|
||||
#else
|
||||
|
||||
lz += bilinear_z_offset(tmp);
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
void Planner::unapply_leveling(float logical[XYZ]) {
|
||||
@ -601,15 +591,17 @@ void Planner::check_axes_activity() {
|
||||
#endif // PLANNER_LEVELING
|
||||
|
||||
/**
|
||||
* Planner::buffer_line
|
||||
* Planner::_buffer_line
|
||||
*
|
||||
* Add a new linear movement to the buffer.
|
||||
*
|
||||
* x,y,z,e - target position in mm
|
||||
* Leveling and kinematics should be applied ahead of calling this.
|
||||
*
|
||||
* a,b,c,e - target positions in mm or degrees
|
||||
* fr_mm_s - (target) speed of the move
|
||||
* extruder - target extruder
|
||||
*/
|
||||
void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, const uint8_t extruder) {
|
||||
void Planner::_buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder) {
|
||||
// Calculate the buffer head after we push this byte
|
||||
int next_buffer_head = next_block_index(block_buffer_head);
|
||||
|
||||
@ -617,43 +609,39 @@ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, co
|
||||
// Rest here until there is room in the buffer.
|
||||
while (block_buffer_tail == next_buffer_head) idle();
|
||||
|
||||
#if PLANNER_LEVELING
|
||||
apply_leveling(lx, ly, lz);
|
||||
#endif
|
||||
|
||||
// The target position of the tool in absolute steps
|
||||
// Calculate target position in absolute steps
|
||||
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
||||
long target[NUM_AXIS] = {
|
||||
lround(lx * axis_steps_per_mm[X_AXIS]),
|
||||
lround(ly * axis_steps_per_mm[Y_AXIS]),
|
||||
lround(lz * axis_steps_per_mm[Z_AXIS]),
|
||||
long target[XYZE] = {
|
||||
lround(a * axis_steps_per_mm[X_AXIS]),
|
||||
lround(b * axis_steps_per_mm[Y_AXIS]),
|
||||
lround(c * axis_steps_per_mm[Z_AXIS]),
|
||||
lround(e * axis_steps_per_mm[E_AXIS])
|
||||
};
|
||||
|
||||
long dx = target[X_AXIS] - position[X_AXIS],
|
||||
dy = target[Y_AXIS] - position[Y_AXIS],
|
||||
dz = target[Z_AXIS] - position[Z_AXIS];
|
||||
long da = target[X_AXIS] - position[X_AXIS],
|
||||
db = target[Y_AXIS] - position[Y_AXIS],
|
||||
dc = target[Z_AXIS] - position[Z_AXIS];
|
||||
|
||||
/*
|
||||
SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s);
|
||||
SERIAL_CHAR(' ');
|
||||
#if IS_KINEMATIC
|
||||
SERIAL_ECHOPAIR("A:", lx);
|
||||
SERIAL_ECHOPAIR(" (", dx);
|
||||
SERIAL_ECHOPAIR(") B:", ly);
|
||||
SERIAL_ECHOPAIR("A:", a);
|
||||
SERIAL_ECHOPAIR(" (", da);
|
||||
SERIAL_ECHOPAIR(") B:", b);
|
||||
#else
|
||||
SERIAL_ECHOPAIR("X:", lx);
|
||||
SERIAL_ECHOPAIR(" (", dx);
|
||||
SERIAL_ECHOPAIR(") Y:", ly);
|
||||
SERIAL_ECHOPAIR("X:", a);
|
||||
SERIAL_ECHOPAIR(" (", da);
|
||||
SERIAL_ECHOPAIR(") Y:", b);
|
||||
#endif
|
||||
SERIAL_ECHOPAIR(" (", dy);
|
||||
SERIAL_ECHOPAIR(" (", db);
|
||||
#if ENABLED(DELTA)
|
||||
SERIAL_ECHOPAIR(") C:", lz);
|
||||
SERIAL_ECHOPAIR(") C:", c);
|
||||
#else
|
||||
SERIAL_ECHOPAIR(") Z:", lz);
|
||||
SERIAL_ECHOPAIR(") Z:", c);
|
||||
#endif
|
||||
SERIAL_ECHOPAIR(" (", dz);
|
||||
SERIAL_ECHOPAIR(" (", dc);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
//*/
|
||||
@ -692,24 +680,24 @@ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, co
|
||||
#if ENABLED(COREXY)
|
||||
// corexy planning
|
||||
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
||||
block->steps[A_AXIS] = labs(dx + dy);
|
||||
block->steps[B_AXIS] = labs(dx - dy);
|
||||
block->steps[Z_AXIS] = labs(dz);
|
||||
block->steps[A_AXIS] = labs(da + db);
|
||||
block->steps[B_AXIS] = labs(da - db);
|
||||
block->steps[Z_AXIS] = labs(dc);
|
||||
#elif ENABLED(COREXZ)
|
||||
// corexz planning
|
||||
block->steps[A_AXIS] = labs(dx + dz);
|
||||
block->steps[Y_AXIS] = labs(dy);
|
||||
block->steps[C_AXIS] = labs(dx - dz);
|
||||
block->steps[A_AXIS] = labs(da + dc);
|
||||
block->steps[Y_AXIS] = labs(db);
|
||||
block->steps[C_AXIS] = labs(da - dc);
|
||||
#elif ENABLED(COREYZ)
|
||||
// coreyz planning
|
||||
block->steps[X_AXIS] = labs(dx);
|
||||
block->steps[B_AXIS] = labs(dy + dz);
|
||||
block->steps[C_AXIS] = labs(dy - dz);
|
||||
block->steps[X_AXIS] = labs(da);
|
||||
block->steps[B_AXIS] = labs(db + dc);
|
||||
block->steps[C_AXIS] = labs(db - dc);
|
||||
#else
|
||||
// default non-h-bot planning
|
||||
block->steps[X_AXIS] = labs(dx);
|
||||
block->steps[Y_AXIS] = labs(dy);
|
||||
block->steps[Z_AXIS] = labs(dz);
|
||||
block->steps[X_AXIS] = labs(da);
|
||||
block->steps[Y_AXIS] = labs(db);
|
||||
block->steps[Z_AXIS] = labs(dc);
|
||||
#endif
|
||||
|
||||
block->steps[E_AXIS] = labs(de) * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01 + 0.5;
|
||||
@ -733,33 +721,33 @@ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, co
|
||||
block->e_to_p_pressure = baricuda_e_to_p_pressure;
|
||||
#endif
|
||||
|
||||
// Compute direction bits for this block
|
||||
uint8_t db = 0;
|
||||
// Compute direction bit-mask for this block
|
||||
uint8_t dm = 0;
|
||||
#if ENABLED(COREXY)
|
||||
if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
|
||||
if (dy < 0) SBI(db, Y_HEAD); // ...and Y
|
||||
if (dz < 0) SBI(db, Z_AXIS);
|
||||
if (dx + dy < 0) SBI(db, A_AXIS); // Motor A direction
|
||||
if (dx - dy < 0) SBI(db, B_AXIS); // Motor B direction
|
||||
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
|
||||
if (db < 0) SBI(dm, Y_HEAD); // ...and Y
|
||||
if (dc < 0) SBI(dm, Z_AXIS);
|
||||
if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
|
||||
if (da - db < 0) SBI(dm, B_AXIS); // Motor B direction
|
||||
#elif ENABLED(COREXZ)
|
||||
if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis
|
||||
if (dy < 0) SBI(db, Y_AXIS);
|
||||
if (dz < 0) SBI(db, Z_HEAD); // ...and Z
|
||||
if (dx + dz < 0) SBI(db, A_AXIS); // Motor A direction
|
||||
if (dx - dz < 0) SBI(db, C_AXIS); // Motor C direction
|
||||
if (da < 0) SBI(dm, X_HEAD); // Save the real Extruder (head) direction in X Axis
|
||||
if (db < 0) SBI(dm, Y_AXIS);
|
||||
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
|
||||
if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
|
||||
if (da - dc < 0) SBI(dm, C_AXIS); // Motor C direction
|
||||
#elif ENABLED(COREYZ)
|
||||
if (dx < 0) SBI(db, X_AXIS);
|
||||
if (dy < 0) SBI(db, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
|
||||
if (dz < 0) SBI(db, Z_HEAD); // ...and Z
|
||||
if (dy + dz < 0) SBI(db, B_AXIS); // Motor B direction
|
||||
if (dy - dz < 0) SBI(db, C_AXIS); // Motor C direction
|
||||
if (da < 0) SBI(dm, X_AXIS);
|
||||
if (db < 0) SBI(dm, Y_HEAD); // Save the real Extruder (head) direction in Y Axis
|
||||
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
|
||||
if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
|
||||
if (db - dc < 0) SBI(dm, C_AXIS); // Motor C direction
|
||||
#else
|
||||
if (dx < 0) SBI(db, X_AXIS);
|
||||
if (dy < 0) SBI(db, Y_AXIS);
|
||||
if (dz < 0) SBI(db, Z_AXIS);
|
||||
if (da < 0) SBI(dm, X_AXIS);
|
||||
if (db < 0) SBI(dm, Y_AXIS);
|
||||
if (dc < 0) SBI(dm, Z_AXIS);
|
||||
#endif
|
||||
if (de < 0) SBI(db, E_AXIS);
|
||||
block->direction_bits = db;
|
||||
if (de < 0) SBI(dm, E_AXIS);
|
||||
block->direction_bits = dm;
|
||||
|
||||
block->active_extruder = extruder;
|
||||
|
||||
@ -872,29 +860,29 @@ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, co
|
||||
#if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
|
||||
float delta_mm[7];
|
||||
#if ENABLED(COREXY)
|
||||
delta_mm[X_HEAD] = dx * steps_to_mm[A_AXIS];
|
||||
delta_mm[Y_HEAD] = dy * steps_to_mm[B_AXIS];
|
||||
delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS];
|
||||
delta_mm[A_AXIS] = (dx + dy) * steps_to_mm[A_AXIS];
|
||||
delta_mm[B_AXIS] = (dx - dy) * steps_to_mm[B_AXIS];
|
||||
delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
|
||||
delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
|
||||
delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
|
||||
delta_mm[A_AXIS] = (da + db) * steps_to_mm[A_AXIS];
|
||||
delta_mm[B_AXIS] = (da - db) * steps_to_mm[B_AXIS];
|
||||
#elif ENABLED(COREXZ)
|
||||
delta_mm[X_HEAD] = dx * steps_to_mm[A_AXIS];
|
||||
delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS];
|
||||
delta_mm[Z_HEAD] = dz * steps_to_mm[C_AXIS];
|
||||
delta_mm[A_AXIS] = (dx + dz) * steps_to_mm[A_AXIS];
|
||||
delta_mm[C_AXIS] = (dx - dz) * steps_to_mm[C_AXIS];
|
||||
delta_mm[X_HEAD] = da * steps_to_mm[A_AXIS];
|
||||
delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
|
||||
delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
|
||||
delta_mm[A_AXIS] = (da + dc) * steps_to_mm[A_AXIS];
|
||||
delta_mm[C_AXIS] = (da - dc) * steps_to_mm[C_AXIS];
|
||||
#elif ENABLED(COREYZ)
|
||||
delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS];
|
||||
delta_mm[Y_HEAD] = dy * steps_to_mm[B_AXIS];
|
||||
delta_mm[Z_HEAD] = dz * steps_to_mm[C_AXIS];
|
||||
delta_mm[B_AXIS] = (dy + dz) * steps_to_mm[B_AXIS];
|
||||
delta_mm[C_AXIS] = (dy - dz) * steps_to_mm[C_AXIS];
|
||||
delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
|
||||
delta_mm[Y_HEAD] = db * steps_to_mm[B_AXIS];
|
||||
delta_mm[Z_HEAD] = dc * steps_to_mm[C_AXIS];
|
||||
delta_mm[B_AXIS] = (db + dc) * steps_to_mm[B_AXIS];
|
||||
delta_mm[C_AXIS] = (db - dc) * steps_to_mm[C_AXIS];
|
||||
#endif
|
||||
#else
|
||||
float delta_mm[4];
|
||||
delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS];
|
||||
delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS];
|
||||
delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS];
|
||||
delta_mm[X_AXIS] = da * steps_to_mm[X_AXIS];
|
||||
delta_mm[Y_AXIS] = db * steps_to_mm[Y_AXIS];
|
||||
delta_mm[Z_AXIS] = dc * steps_to_mm[Z_AXIS];
|
||||
#endif
|
||||
delta_mm[E_AXIS] = 0.01 * (de * steps_to_mm[E_AXIS]) * volumetric_multiplier[extruder] * flow_percentage[extruder];
|
||||
|
||||
@ -1196,22 +1184,34 @@ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, co
|
||||
*
|
||||
* On CORE machines stepper ABC will be translated from the given XYZ.
|
||||
*/
|
||||
void Planner::set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
|
||||
|
||||
#if PLANNER_LEVELING
|
||||
apply_leveling(lx, ly, lz);
|
||||
#endif
|
||||
|
||||
long nx = position[X_AXIS] = lround(lx * axis_steps_per_mm[X_AXIS]),
|
||||
ny = position[Y_AXIS] = lround(ly * axis_steps_per_mm[Y_AXIS]),
|
||||
nz = position[Z_AXIS] = lround(lz * axis_steps_per_mm[Z_AXIS]),
|
||||
void Planner::_set_position_mm(const float &a, const float &b, const float &c, const float &e) {
|
||||
long na = position[X_AXIS] = lround(a * axis_steps_per_mm[X_AXIS]),
|
||||
nb = position[Y_AXIS] = lround(b * axis_steps_per_mm[Y_AXIS]),
|
||||
nc = position[Z_AXIS] = lround(c * axis_steps_per_mm[Z_AXIS]),
|
||||
ne = position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
|
||||
stepper.set_position(nx, ny, nz, ne);
|
||||
stepper.set_position(na, nb, nc, ne);
|
||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||
|
||||
memset(previous_speed, 0, sizeof(previous_speed));
|
||||
}
|
||||
|
||||
void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
|
||||
#if PLANNER_LEVELING
|
||||
float pos[XYZ] = { position[X_AXIS], position[Y_AXIS], position[Z_AXIS] };
|
||||
apply_leveling(pos);
|
||||
#else
|
||||
const float * const pos = position;
|
||||
#endif
|
||||
#if IS_KINEMATIC
|
||||
inverse_kinematics(pos);
|
||||
_set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], position[E_AXIS]);
|
||||
#else
|
||||
_set_position_mm(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], position[E_AXIS]);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Sync from the stepper positions. (e.g., after an interrupted move)
|
||||
*/
|
||||
@ -1237,12 +1237,7 @@ void Planner::reset_acceleration_rates() {
|
||||
// Recalculate position, steps_to_mm if axis_steps_per_mm changes!
|
||||
void Planner::refresh_positioning() {
|
||||
LOOP_XYZE(i) steps_to_mm[i] = 1.0 / axis_steps_per_mm[i];
|
||||
#if IS_KINEMATIC
|
||||
inverse_kinematics(current_position);
|
||||
set_position_mm(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS]);
|
||||
#else
|
||||
set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
#endif
|
||||
set_position_mm_kinematic(current_position);
|
||||
reset_acceleration_rates();
|
||||
}
|
||||
|
||||
|
@ -43,6 +43,12 @@
|
||||
class Planner;
|
||||
extern Planner planner;
|
||||
|
||||
#if IS_KINEMATIC
|
||||
// for inline buffer_line_kinematic
|
||||
extern float delta[ABC];
|
||||
void inverse_kinematics(const float logical[XYZ]);
|
||||
#endif
|
||||
|
||||
/**
|
||||
* struct block_t
|
||||
*
|
||||
@ -218,18 +224,68 @@ class Planner {
|
||||
* as it will be given to the planner and steppers.
|
||||
*/
|
||||
static void apply_leveling(float &lx, float &ly, float &lz);
|
||||
static void apply_leveling(float logical[XYZ]) { apply_leveling(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS]); }
|
||||
static void unapply_leveling(float logical[XYZ]);
|
||||
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Add a new linear movement to the buffer.
|
||||
* Planner::_buffer_line
|
||||
*
|
||||
* x,y,z,e - target position in mm
|
||||
* Add a new direct linear movement to the buffer.
|
||||
*
|
||||
* Leveling and kinematics should be applied ahead of this.
|
||||
*
|
||||
* a,b,c,e - target position in mm or degrees
|
||||
* fr_mm_s - (target) speed of the move (mm/s)
|
||||
* extruder - target extruder
|
||||
*/
|
||||
static void buffer_line(ARG_X, ARG_Y, ARG_Z, const float& e, float fr_mm_s, const uint8_t extruder);
|
||||
static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
|
||||
|
||||
static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);
|
||||
|
||||
/**
|
||||
* Add a new linear movement to the buffer.
|
||||
* The target is NOT translated to delta/scara
|
||||
*
|
||||
* Leveling will be applied to input on cartesians.
|
||||
* Kinematic machines should call buffer_line_kinematic (for leveled moves).
|
||||
* (Cartesians may also call buffer_line_kinematic.)
|
||||
*
|
||||
* lx,ly,lz,e - target position in mm or degrees
|
||||
* fr_mm_s - (target) speed of the move (mm/s)
|
||||
* extruder - target extruder
|
||||
*/
|
||||
static FORCE_INLINE void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, const uint8_t extruder) {
|
||||
#if PLANNER_LEVELING && IS_CARTESIAN
|
||||
apply_leveling(lx, ly, lz);
|
||||
#endif
|
||||
_buffer_line(lx, ly, lz, e, fr_mm_s, extruder);
|
||||
}
|
||||
|
||||
/**
|
||||
* Add a new linear movement to the buffer.
|
||||
* The target is cartesian, it's translated to delta/scara if
|
||||
* needed.
|
||||
*
|
||||
* target - x,y,z,e CARTESIAN target in mm
|
||||
* fr_mm_s - (target) speed of the move (mm/s)
|
||||
* extruder - target extruder
|
||||
*/
|
||||
static FORCE_INLINE void buffer_line_kinematic(const float target[XYZE], float fr_mm_s, const uint8_t extruder) {
|
||||
#if PLANNER_LEVELING
|
||||
float pos[XYZ] = { target[X_AXIS], target[Y_AXIS], target[Z_AXIS] };
|
||||
apply_leveling(pos);
|
||||
#else
|
||||
const float * const pos = target;
|
||||
#endif
|
||||
#if IS_KINEMATIC
|
||||
inverse_kinematics(pos);
|
||||
_buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], target[E_AXIS], fr_mm_s, extruder);
|
||||
#else
|
||||
_buffer_line(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], target[E_AXIS], fr_mm_s, extruder);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Set the planner.position and individual stepper positions.
|
||||
@ -240,9 +296,14 @@ class Planner {
|
||||
*
|
||||
* Clears previous speed values.
|
||||
*/
|
||||
static void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float& e);
|
||||
static FORCE_INLINE void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
|
||||
#if PLANNER_LEVELING && IS_CARTESIAN
|
||||
apply_leveling(lx, ly, lz);
|
||||
#endif
|
||||
_set_position_mm(lx, ly, lz, e);
|
||||
}
|
||||
static void set_position_mm_kinematic(const float position[NUM_AXIS]);
|
||||
static void set_position_mm(const AxisEnum axis, const float& v);
|
||||
|
||||
static FORCE_INLINE void set_z_position_mm(const float& z) { set_position_mm(Z_AXIS, z); }
|
||||
static FORCE_INLINE void set_e_position_mm(const float& e) { set_position_mm(E_AXIS, e); }
|
||||
|
||||
|
@ -187,13 +187,7 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS]
|
||||
bez_target[Z_AXIS] = interp(position[Z_AXIS], target[Z_AXIS], t);
|
||||
bez_target[E_AXIS] = interp(position[E_AXIS], target[E_AXIS], t);
|
||||
clamp_to_software_endstops(bez_target);
|
||||
|
||||
#if IS_KINEMATIC
|
||||
inverse_kinematics(bez_target);
|
||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
|
||||
#else
|
||||
planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
|
||||
#endif
|
||||
planner.buffer_line_kinematic(bez_target, fr_mm_s, extruder);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -966,7 +966,7 @@ void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
|
||||
* This allows get_axis_position_mm to correctly
|
||||
* derive the current XYZ position later on.
|
||||
*/
|
||||
void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
|
||||
void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
|
||||
|
||||
synchronize(); // Bad to set stepper counts in the middle of a move
|
||||
|
||||
@ -975,24 +975,24 @@ void Stepper::set_position(const long& x, const long& y, const long& z, const lo
|
||||
#if ENABLED(COREXY)
|
||||
// corexy positioning
|
||||
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
||||
count_position[A_AXIS] = x + y;
|
||||
count_position[B_AXIS] = x - y;
|
||||
count_position[Z_AXIS] = z;
|
||||
count_position[A_AXIS] = a + b;
|
||||
count_position[B_AXIS] = a - b;
|
||||
count_position[Z_AXIS] = c;
|
||||
#elif ENABLED(COREXZ)
|
||||
// corexz planning
|
||||
count_position[A_AXIS] = x + z;
|
||||
count_position[Y_AXIS] = y;
|
||||
count_position[C_AXIS] = x - z;
|
||||
count_position[A_AXIS] = a + c;
|
||||
count_position[Y_AXIS] = b;
|
||||
count_position[C_AXIS] = a - c;
|
||||
#elif ENABLED(COREYZ)
|
||||
// coreyz planning
|
||||
count_position[X_AXIS] = x;
|
||||
count_position[B_AXIS] = y + z;
|
||||
count_position[C_AXIS] = y - z;
|
||||
count_position[X_AXIS] = a;
|
||||
count_position[B_AXIS] = y + c;
|
||||
count_position[C_AXIS] = y - c;
|
||||
#else
|
||||
// default non-h-bot planning
|
||||
count_position[X_AXIS] = x;
|
||||
count_position[Y_AXIS] = y;
|
||||
count_position[Z_AXIS] = z;
|
||||
count_position[X_AXIS] = a;
|
||||
count_position[Y_AXIS] = b;
|
||||
count_position[Z_AXIS] = c;
|
||||
#endif
|
||||
|
||||
count_position[E_AXIS] = e;
|
||||
|
@ -188,7 +188,7 @@ class Stepper {
|
||||
//
|
||||
// Set the current position in steps
|
||||
//
|
||||
static void set_position(const long& x, const long& y, const long& z, const long& e);
|
||||
static void set_position(const long &a, const long &b, const long &c, const long &e);
|
||||
static void set_position(const AxisEnum &a, const long &v);
|
||||
static void set_e_position(const long &e);
|
||||
|
||||
|
@ -561,12 +561,7 @@ void kill_screen(const char* lcd_msg) {
|
||||
#if ENABLED(ULTIPANEL)
|
||||
|
||||
inline void line_to_current(AxisEnum axis) {
|
||||
#if ENABLED(DELTA)
|
||||
inverse_kinematics(current_position);
|
||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
|
||||
#else // !DELTA
|
||||
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
|
||||
#endif // !DELTA
|
||||
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
|
||||
}
|
||||
|
||||
#if ENABLED(SDSUPPORT)
|
||||
@ -1351,12 +1346,7 @@ void kill_screen(const char* lcd_msg) {
|
||||
*/
|
||||
inline void manage_manual_move() {
|
||||
if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) {
|
||||
#if ENABLED(DELTA)
|
||||
inverse_kinematics(current_position);
|
||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
|
||||
#else
|
||||
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
|
||||
#endif
|
||||
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
|
||||
manual_move_axis = (int8_t)NO_AXIS;
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user