Merge pull request #6491 from thinkyhead/rc_cleanup_wednesday

Various cleanups for recent merges
This commit is contained in:
Scott Lahteine
2017-04-30 14:56:48 -05:00
committed by GitHub
17 changed files with 310 additions and 337 deletions

View File

@ -50,11 +50,10 @@
extern bool code_has_value();
extern float probe_pt(float x, float y, bool, int);
extern bool set_probe_deployed(bool);
void smart_fill_mesh();
void smart_fill_mesh();
bool ProbeStay = true;
#define SIZE_OF_LITTLE_RAISE 0
#define BIG_RAISE_NOT_NEEDED 0
extern void lcd_quick_feedback();
@ -189,13 +188,13 @@
* P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths the
* user can go down. If the user specifies the value using the C parameter, the closest invalid
* mesh points to the nozzle will be filled. The user can specify a repeat count using the R
* parameter with the C version of the command.
* parameter with the C version of the command.
*
* A second version of the fill command is available if no C constant is specified. Not
* A second version of the fill command is available if no C constant is specified. Not
* specifying a C constant will invoke the 'Smart Fill' algorithm. The G29 P3 command will search
* from the edges of the mesh inward looking for invalid mesh points. It will look at the next
* several mesh points to determine if the print bed is sloped up or down. If the bed is sloped
* upward from the invalid mesh point, it will be replaced with the value of the nearest mesh point.
* upward from the invalid mesh point, it will be replaced with the value of the nearest mesh point.
* If the bed is sloped downward from the invalid mesh point, it will be replaced with a value that
* puts all three points in a line. The second version of the G29 P3 command is a quick, easy and
* usually safe way to populate the unprobed regions of your mesh so you can continue to the G26
@ -336,7 +335,7 @@
repetition_cnt = code_has_value() ? code_value_int() : 1;
while (repetition_cnt--) {
if (cnt > 20) { cnt = 0; idle(); }
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
if (location.x_index < 0) {
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
break; // No more invalid Mesh Points to populate
@ -461,7 +460,7 @@
case 3: {
//
// Populate invalid Mesh areas. Two choices are available to the user. The user can
// Populate invalid Mesh areas. Two choices are available to the user. The user can
// specify the constant to be used with a C # paramter. Or the user can allow the G29 P3 command to
// apply a 'reasonable' constant to the invalid mesh point. Some caution and scrutiny should be used
// on either of these paths!
@ -812,9 +811,9 @@
* Z is negative, we need to invert the sign of all components of the vector
*/
if ( normal.z < 0.0 ) {
normal.x = -normal.x;
normal.y = -normal.y;
normal.z = -normal.z;
normal.x = -normal.x;
normal.y = -normal.y;
normal.z = -normal.z;
}
rotation = matrix_3x3::create_look_at( vector_3( normal.x, normal.y, 1));
@ -864,7 +863,7 @@
for (i = 0; i < GRID_MAX_POINTS_X; i++) {
for (j = 0; j < GRID_MAX_POINTS_Y; j++) {
float x_tmp, y_tmp, z_tmp;
x_tmp = pgm_read_float(ubl.mesh_index_to_xpos[i]);
x_tmp = pgm_read_float(ubl.mesh_index_to_xpos[i]);
y_tmp = pgm_read_float(ubl.mesh_index_to_ypos[j]);
z_tmp = ubl.z_values[i][j];
#if ENABLED(DEBUG_LEVELING_FEATURE)
@ -948,7 +947,7 @@
float last_x = -9999.99, last_y = -9999.99;
mesh_index_pair location;
do {
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_NOZZLE_AS_REFERENCE, NULL, false);
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
if (location.x_index < 0 && location.y_index < 0) continue;
@ -1416,7 +1415,7 @@
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(lx, ly);
do {
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
// It doesn't matter if the probe can not reach this
// location. This is a manual edit of the Mesh Point.
if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
@ -1501,7 +1500,7 @@
}
//
// The routine provides the 'Smart Fill' capability. It scans from the
// The routine provides the 'Smart Fill' capability. It scans from the
// outward edges of the mesh towards the center. If it finds an invalid
// location, it uses the next two points (assumming they are valid) to
// calculate a 'reasonable' value for the unprobed mesh point.
@ -1511,14 +1510,14 @@
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Bottom of the mesh looking up
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y-2; y++) {
if (isnan(ubl.z_values[x][y])) {
if (isnan(ubl.z_values[x][y+1])) // we only deal with the first NAN next to a block of
if (isnan(ubl.z_values[x][y+1])) // we only deal with the first NAN next to a block of
continue; // good numbers. we want 2 good numbers to extrapolate off of.
if (isnan(ubl.z_values[x][y+2]))
continue;
if (isnan(ubl.z_values[x][y+2]))
continue;
if (ubl.z_values[x][y+1] < ubl.z_values[x][y+2]) // The bed is angled down near this edge. So to be safe, we
ubl.z_values[x][y] = ubl.z_values[x][y+1]; // use the closest value, which is probably a little too high
else {
diff = ubl.z_values[x][y+1] - ubl.z_values[x][y+2]; // The bed is angled up near this edge. So we will use the closest
diff = ubl.z_values[x][y+1] - ubl.z_values[x][y+2]; // The bed is angled up near this edge. So we will use the closest
ubl.z_values[x][y] = ubl.z_values[x][y+1] + diff; // height and add in the difference between that and the next point
}
break;
@ -1528,14 +1527,14 @@
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Top of the mesh looking down
for (uint8_t y=GRID_MAX_POINTS_Y-1; y>=1; y--) {
if (isnan(ubl.z_values[x][y])) {
if (isnan(ubl.z_values[x][y-1])) // we only deal with the first NAN next to a block of
if (isnan(ubl.z_values[x][y-1])) // we only deal with the first NAN next to a block of
continue; // good numbers. we want 2 good numbers to extrapolate off of.
if (isnan(ubl.z_values[x][y-2]))
continue;
if (isnan(ubl.z_values[x][y-2]))
continue;
if (ubl.z_values[x][y-1] < ubl.z_values[x][y-2]) // The bed is angled down near this edge. So to be safe, we
ubl.z_values[x][y] = ubl.z_values[x][y-1]; // use the closest value, which is probably a little too high
else {
diff = ubl.z_values[x][y-1] - ubl.z_values[x][y-2]; // The bed is angled up near this edge. So we will use the closest
diff = ubl.z_values[x][y-1] - ubl.z_values[x][y-2]; // The bed is angled up near this edge. So we will use the closest
ubl.z_values[x][y] = ubl.z_values[x][y-1] + diff; // height and add in the difference between that and the next point
}
break;
@ -1545,14 +1544,14 @@
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) {
for (uint8_t x = 0; x < GRID_MAX_POINTS_X-2; x++) { // Left side of the mesh looking right
if (isnan(ubl.z_values[x][y])) {
if (isnan(ubl.z_values[x+1][y])) // we only deal with the first NAN next to a block of
if (isnan(ubl.z_values[x+1][y])) // we only deal with the first NAN next to a block of
continue; // good numbers. we want 2 good numbers to extrapolate off of.
if (isnan(ubl.z_values[x+2][y]))
continue;
if (isnan(ubl.z_values[x+2][y]))
continue;
if (ubl.z_values[x+1][y] < ubl.z_values[x+2][y]) // The bed is angled down near this edge. So to be safe, we
ubl.z_values[x][y] = ubl.z_values[x][y+1]; // use the closest value, which is probably a little too high
else {
diff = ubl.z_values[x+1][y] - ubl.z_values[x+2][y]; // The bed is angled up near this edge. So we will use the closest
diff = ubl.z_values[x+1][y] - ubl.z_values[x+2][y]; // The bed is angled up near this edge. So we will use the closest
ubl.z_values[x][y] = ubl.z_values[x+1][y] + diff; // height and add in the difference between that and the next point
}
break;
@ -1562,18 +1561,18 @@
for (uint8_t y=0; y < GRID_MAX_POINTS_Y; y++) {
for (uint8_t x=GRID_MAX_POINTS_X-1; x>=1; x--) { // Right side of the mesh looking left
if (isnan(ubl.z_values[x][y])) {
if (isnan(ubl.z_values[x-1][y])) // we only deal with the first NAN next to a block of
if (isnan(ubl.z_values[x-1][y])) // we only deal with the first NAN next to a block of
continue; // good numbers. we want 2 good numbers to extrapolate off of.
if (isnan(ubl.z_values[x-2][y]))
continue;
if (isnan(ubl.z_values[x-2][y]))
continue;
if (ubl.z_values[x-1][y] < ubl.z_values[x-2][y]) // The bed is angled down near this edge. So to be safe, we
ubl.z_values[x][y] = ubl.z_values[x-1][y]; // use the closest value, which is probably a little too high
else {
diff = ubl.z_values[x-1][y] - ubl.z_values[x-2][y]; // The bed is angled up near this edge. So we will use the closest
diff = ubl.z_values[x-1][y] - ubl.z_values[x-2][y]; // The bed is angled up near this edge. So we will use the closest
ubl.z_values[x][y] = ubl.z_values[x-1][y] + diff; // height and add in the difference between that and the next point
}
break;
}
}
}
}
}
@ -1600,7 +1599,7 @@
for(ix=0; ix<grid_size; ix++) {
x = ((float)x_min) + ix*dx;
for(iy=0; iy<grid_size; iy++) {
if (zig_zag)
if (zig_zag)
y = ((float)y_min) + (grid_size-iy-1)*dy;
else
y = ((float)y_min) + iy*dy;
@ -1666,7 +1665,7 @@
for (i = 0; i < GRID_MAX_POINTS_X; i++) {
for (j = 0; j < GRID_MAX_POINTS_Y; j++) {
float x_tmp, y_tmp, z_tmp;
x_tmp = pgm_read_float(&(ubl.mesh_index_to_xpos[i]));
x_tmp = pgm_read_float(&(ubl.mesh_index_to_xpos[i]));
y_tmp = pgm_read_float(&(ubl.mesh_index_to_ypos[j]));
z_tmp = ubl.z_values[i][j];
#if ENABLED(DEBUG_LEVELING_FEATURE)