Indent MarlinSerial code
This commit is contained in:
		@@ -33,495 +33,490 @@
 | 
			
		||||
#include "stepper.h"
 | 
			
		||||
#include "Marlin.h"
 | 
			
		||||
 | 
			
		||||
#ifndef USBCON
 | 
			
		||||
// this next line disables the entire HardwareSerial.cpp,
 | 
			
		||||
// this is so I can support Attiny series and any other chip without a UART
 | 
			
		||||
#if defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H)
 | 
			
		||||
// Disable HardwareSerial.cpp to support chips without a UART (Attiny, etc.)
 | 
			
		||||
 | 
			
		||||
#if UART_PRESENT(SERIAL_PORT)
 | 
			
		||||
  ring_buffer_r rx_buffer  =  { { 0 }, 0, 0 };
 | 
			
		||||
  #if TX_BUFFER_SIZE > 0
 | 
			
		||||
    ring_buffer_t tx_buffer  =  { { 0 }, 0, 0 };
 | 
			
		||||
    static bool _written;
 | 
			
		||||
#if !defined(USBCON) && (defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H))
 | 
			
		||||
 | 
			
		||||
  #if UART_PRESENT(SERIAL_PORT)
 | 
			
		||||
    ring_buffer_r rx_buffer  =  { { 0 }, 0, 0 };
 | 
			
		||||
    #if TX_BUFFER_SIZE > 0
 | 
			
		||||
      ring_buffer_t tx_buffer  =  { { 0 }, 0, 0 };
 | 
			
		||||
      static bool _written;
 | 
			
		||||
    #endif
 | 
			
		||||
  #endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
FORCE_INLINE void store_char(unsigned char c) {
 | 
			
		||||
  CRITICAL_SECTION_START;
 | 
			
		||||
    uint8_t h = rx_buffer.head;
 | 
			
		||||
    uint8_t i = (uint8_t)(h + 1)  & (RX_BUFFER_SIZE - 1);
 | 
			
		||||
 | 
			
		||||
    // if we should be storing the received character into the location
 | 
			
		||||
    // just before the tail (meaning that the head would advance to the
 | 
			
		||||
    // current location of the tail), we're about to overflow the buffer
 | 
			
		||||
    // and so we don't write the character or advance the head.
 | 
			
		||||
    if (i != rx_buffer.tail) {
 | 
			
		||||
      rx_buffer.buffer[h] = c;
 | 
			
		||||
      rx_buffer.head = i;
 | 
			
		||||
    }
 | 
			
		||||
  CRITICAL_SECTION_END;
 | 
			
		||||
 | 
			
		||||
  #if ENABLED(EMERGENCY_PARSER)
 | 
			
		||||
    emergency_parser(c);
 | 
			
		||||
  #endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#if TX_BUFFER_SIZE > 0
 | 
			
		||||
    #include "language.h"
 | 
			
		||||
 | 
			
		||||
  FORCE_INLINE void _tx_udr_empty_irq(void) {
 | 
			
		||||
    // If interrupts are enabled, there must be more data in the output
 | 
			
		||||
    // buffer. Send the next byte
 | 
			
		||||
    uint8_t t = tx_buffer.tail;
 | 
			
		||||
    uint8_t c = tx_buffer.buffer[t];
 | 
			
		||||
    tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1);
 | 
			
		||||
    // Currently looking for: M108, M112, M410
 | 
			
		||||
    // If you alter the parser please don't forget to update the capabilities in Conditionals_post.h
 | 
			
		||||
 | 
			
		||||
    M_UDRx = c;
 | 
			
		||||
    FORCE_INLINE void emergency_parser(const unsigned char c) {
 | 
			
		||||
 | 
			
		||||
    // clear the TXC bit -- "can be cleared by writing a one to its bit
 | 
			
		||||
    // location". This makes sure flush() won't return until the bytes
 | 
			
		||||
    // actually got written
 | 
			
		||||
    SBI(M_UCSRxA, M_TXCx);
 | 
			
		||||
      static e_parser_state state = state_RESET;
 | 
			
		||||
 | 
			
		||||
    if (tx_buffer.head == tx_buffer.tail) {
 | 
			
		||||
      // Buffer empty, so disable interrupts
 | 
			
		||||
      CBI(M_UCSRxB, M_UDRIEx);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
      switch (state) {
 | 
			
		||||
        case state_RESET:
 | 
			
		||||
          switch (c) {
 | 
			
		||||
            case ' ': break;
 | 
			
		||||
            case 'N': state = state_N;      break;
 | 
			
		||||
            case 'M': state = state_M;      break;
 | 
			
		||||
            default: state = state_IGNORE;
 | 
			
		||||
          }
 | 
			
		||||
          break;
 | 
			
		||||
 | 
			
		||||
  #ifdef M_USARTx_UDRE_vect
 | 
			
		||||
    ISR(M_USARTx_UDRE_vect) {
 | 
			
		||||
      _tx_udr_empty_irq();
 | 
			
		||||
    }
 | 
			
		||||
  #endif
 | 
			
		||||
        case state_N:
 | 
			
		||||
          switch (c) {
 | 
			
		||||
            case '0': case '1': case '2':
 | 
			
		||||
            case '3': case '4': case '5':
 | 
			
		||||
            case '6': case '7': case '8':
 | 
			
		||||
            case '9': case '-': case ' ':   break;
 | 
			
		||||
            case 'M': state = state_M;      break;
 | 
			
		||||
            default:  state = state_IGNORE;
 | 
			
		||||
          }
 | 
			
		||||
          break;
 | 
			
		||||
 | 
			
		||||
#endif // TX_BUFFER_SIZE
 | 
			
		||||
        case state_M:
 | 
			
		||||
          switch (c) {
 | 
			
		||||
            case ' ': break;
 | 
			
		||||
            case '1': state = state_M1;     break;
 | 
			
		||||
            case '4': state = state_M4;     break;
 | 
			
		||||
            default: state = state_IGNORE;
 | 
			
		||||
          }
 | 
			
		||||
          break;
 | 
			
		||||
 | 
			
		||||
#ifdef M_USARTx_RX_vect
 | 
			
		||||
  ISR(M_USARTx_RX_vect) {
 | 
			
		||||
    unsigned char c  =  M_UDRx;
 | 
			
		||||
    store_char(c);
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
        case state_M1:
 | 
			
		||||
          switch (c) {
 | 
			
		||||
            case '0': state = state_M10;    break;
 | 
			
		||||
            case '1': state = state_M11;    break;
 | 
			
		||||
            default: state = state_IGNORE;
 | 
			
		||||
          }
 | 
			
		||||
          break;
 | 
			
		||||
 | 
			
		||||
// Constructors ////////////////////////////////////////////////////////////////
 | 
			
		||||
        case state_M10:
 | 
			
		||||
          state = (c == '8') ? state_M108 : state_IGNORE;
 | 
			
		||||
          break;
 | 
			
		||||
 | 
			
		||||
MarlinSerial::MarlinSerial() { }
 | 
			
		||||
        case state_M11:
 | 
			
		||||
          state = (c == '2') ? state_M112 : state_IGNORE;
 | 
			
		||||
          break;
 | 
			
		||||
 | 
			
		||||
// Public Methods //////////////////////////////////////////////////////////////
 | 
			
		||||
        case state_M4:
 | 
			
		||||
          state = (c == '1') ? state_M41 : state_IGNORE;
 | 
			
		||||
          break;
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::begin(long baud) {
 | 
			
		||||
  uint16_t baud_setting;
 | 
			
		||||
  bool useU2X = true;
 | 
			
		||||
        case state_M41:
 | 
			
		||||
          state = (c == '0') ? state_M410 : state_IGNORE;
 | 
			
		||||
          break;
 | 
			
		||||
 | 
			
		||||
  #if F_CPU == 16000000UL && SERIAL_PORT == 0
 | 
			
		||||
    // hard-coded exception for compatibility with the bootloader shipped
 | 
			
		||||
    // with the Duemilanove and previous boards and the firmware on the 8U2
 | 
			
		||||
    // on the Uno and Mega 2560.
 | 
			
		||||
    if (baud == 57600) {
 | 
			
		||||
      useU2X = false;
 | 
			
		||||
    }
 | 
			
		||||
  #endif
 | 
			
		||||
        case state_IGNORE:
 | 
			
		||||
          if (c == '\n') state = state_RESET;
 | 
			
		||||
          break;
 | 
			
		||||
 | 
			
		||||
  if (useU2X) {
 | 
			
		||||
    M_UCSRxA = _BV(M_U2Xx);
 | 
			
		||||
    baud_setting = (F_CPU / 4 / baud - 1) / 2;
 | 
			
		||||
  }
 | 
			
		||||
  else {
 | 
			
		||||
    M_UCSRxA = 0;
 | 
			
		||||
    baud_setting = (F_CPU / 8 / baud - 1) / 2;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
 | 
			
		||||
  M_UBRRxH = baud_setting >> 8;
 | 
			
		||||
  M_UBRRxL = baud_setting;
 | 
			
		||||
 | 
			
		||||
  SBI(M_UCSRxB, M_RXENx);
 | 
			
		||||
  SBI(M_UCSRxB, M_TXENx);
 | 
			
		||||
  SBI(M_UCSRxB, M_RXCIEx);
 | 
			
		||||
  #if TX_BUFFER_SIZE > 0
 | 
			
		||||
    CBI(M_UCSRxB, M_UDRIEx);
 | 
			
		||||
    _written = false;
 | 
			
		||||
  #endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::end() {
 | 
			
		||||
  CBI(M_UCSRxB, M_RXENx);
 | 
			
		||||
  CBI(M_UCSRxB, M_TXENx);
 | 
			
		||||
  CBI(M_UCSRxB, M_RXCIEx);
 | 
			
		||||
  CBI(M_UCSRxB, M_UDRIEx);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::checkRx(void) {
 | 
			
		||||
  if (TEST(M_UCSRxA, M_RXCx)) {
 | 
			
		||||
    uint8_t c  =  M_UDRx;
 | 
			
		||||
    store_char(c);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int MarlinSerial::peek(void) {
 | 
			
		||||
  CRITICAL_SECTION_START;
 | 
			
		||||
    int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail];
 | 
			
		||||
  CRITICAL_SECTION_END;
 | 
			
		||||
  return v;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int MarlinSerial::read(void) {
 | 
			
		||||
  int v;
 | 
			
		||||
  CRITICAL_SECTION_START;
 | 
			
		||||
    uint8_t t = rx_buffer.tail;
 | 
			
		||||
    if (rx_buffer.head == t) {
 | 
			
		||||
      v = -1;
 | 
			
		||||
    }
 | 
			
		||||
    else {
 | 
			
		||||
      v = rx_buffer.buffer[t];
 | 
			
		||||
      rx_buffer.tail = (uint8_t)(t + 1) & (RX_BUFFER_SIZE - 1);
 | 
			
		||||
    }
 | 
			
		||||
  CRITICAL_SECTION_END;
 | 
			
		||||
  return v;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
uint8_t MarlinSerial::available(void) {
 | 
			
		||||
  CRITICAL_SECTION_START;
 | 
			
		||||
    uint8_t h = rx_buffer.head,
 | 
			
		||||
            t = rx_buffer.tail;
 | 
			
		||||
  CRITICAL_SECTION_END;
 | 
			
		||||
  return (uint8_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::flush(void) {
 | 
			
		||||
  // RX
 | 
			
		||||
  // don't reverse this or there may be problems if the RX interrupt
 | 
			
		||||
  // occurs after reading the value of rx_buffer_head but before writing
 | 
			
		||||
  // the value to rx_buffer_tail; the previous value of rx_buffer_head
 | 
			
		||||
  // may be written to rx_buffer_tail, making it appear as if the buffer
 | 
			
		||||
  // were full, not empty.
 | 
			
		||||
  CRITICAL_SECTION_START;
 | 
			
		||||
    rx_buffer.head = rx_buffer.tail;
 | 
			
		||||
  CRITICAL_SECTION_END;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#if TX_BUFFER_SIZE > 0
 | 
			
		||||
  uint8_t MarlinSerial::availableForWrite(void) {
 | 
			
		||||
    CRITICAL_SECTION_START;
 | 
			
		||||
      uint8_t h = tx_buffer.head;
 | 
			
		||||
      uint8_t t = tx_buffer.tail;
 | 
			
		||||
    CRITICAL_SECTION_END;
 | 
			
		||||
    return (uint8_t)(TX_BUFFER_SIZE + h - t) & (TX_BUFFER_SIZE - 1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::write(uint8_t c) {
 | 
			
		||||
    _written = true;
 | 
			
		||||
    CRITICAL_SECTION_START;
 | 
			
		||||
      bool emty = (tx_buffer.head == tx_buffer.tail);
 | 
			
		||||
    CRITICAL_SECTION_END;
 | 
			
		||||
    // If the buffer and the data register is empty, just write the byte
 | 
			
		||||
    // to the data register and be done. This shortcut helps
 | 
			
		||||
    // significantly improve the effective datarate at high (>
 | 
			
		||||
    // 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
 | 
			
		||||
    if (emty && TEST(M_UCSRxA, M_UDREx)) {
 | 
			
		||||
      CRITICAL_SECTION_START;
 | 
			
		||||
        M_UDRx = c;
 | 
			
		||||
        SBI(M_UCSRxA, M_TXCx);
 | 
			
		||||
      CRITICAL_SECTION_END;
 | 
			
		||||
      return;
 | 
			
		||||
    }
 | 
			
		||||
    uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1);
 | 
			
		||||
 | 
			
		||||
    // If the output buffer is full, there's nothing for it other than to
 | 
			
		||||
    // wait for the interrupt handler to empty it a bit
 | 
			
		||||
    while (i == tx_buffer.tail) {
 | 
			
		||||
      if (!TEST(SREG, SREG_I)) {
 | 
			
		||||
        // Interrupts are disabled, so we'll have to poll the data
 | 
			
		||||
        // register empty flag ourselves. If it is set, pretend an
 | 
			
		||||
        // interrupt has happened and call the handler to free up
 | 
			
		||||
        // space for us.
 | 
			
		||||
        if (TEST(M_UCSRxA, M_UDREx))
 | 
			
		||||
          _tx_udr_empty_irq();
 | 
			
		||||
      } else {
 | 
			
		||||
        // nop, the interrupt handler will free up space for us
 | 
			
		||||
        default:
 | 
			
		||||
          if (c == '\n') {
 | 
			
		||||
            switch (state) {
 | 
			
		||||
              case state_M108:
 | 
			
		||||
                wait_for_user = wait_for_heatup = false;
 | 
			
		||||
                break;
 | 
			
		||||
              case state_M112:
 | 
			
		||||
                kill(PSTR(MSG_KILLED));
 | 
			
		||||
                break;
 | 
			
		||||
              case state_M410:
 | 
			
		||||
                quickstop_stepper();
 | 
			
		||||
                break;
 | 
			
		||||
              default:
 | 
			
		||||
                break;
 | 
			
		||||
            }
 | 
			
		||||
            state = state_RESET;
 | 
			
		||||
          }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    tx_buffer.buffer[tx_buffer.head] = c;
 | 
			
		||||
    { CRITICAL_SECTION_START;
 | 
			
		||||
        tx_buffer.head = i;
 | 
			
		||||
        SBI(M_UCSRxB, M_UDRIEx);
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
  FORCE_INLINE void store_char(unsigned char c) {
 | 
			
		||||
    CRITICAL_SECTION_START;
 | 
			
		||||
      uint8_t h = rx_buffer.head;
 | 
			
		||||
      uint8_t i = (uint8_t)(h + 1)  & (RX_BUFFER_SIZE - 1);
 | 
			
		||||
 | 
			
		||||
      // if we should be storing the received character into the location
 | 
			
		||||
      // just before the tail (meaning that the head would advance to the
 | 
			
		||||
      // current location of the tail), we're about to overflow the buffer
 | 
			
		||||
      // and so we don't write the character or advance the head.
 | 
			
		||||
      if (i != rx_buffer.tail) {
 | 
			
		||||
        rx_buffer.buffer[h] = c;
 | 
			
		||||
        rx_buffer.head = i;
 | 
			
		||||
      }
 | 
			
		||||
    CRITICAL_SECTION_END;
 | 
			
		||||
 | 
			
		||||
    #if ENABLED(EMERGENCY_PARSER)
 | 
			
		||||
      emergency_parser(c);
 | 
			
		||||
    #endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  #if TX_BUFFER_SIZE > 0
 | 
			
		||||
 | 
			
		||||
    FORCE_INLINE void _tx_udr_empty_irq(void) {
 | 
			
		||||
      // If interrupts are enabled, there must be more data in the output
 | 
			
		||||
      // buffer. Send the next byte
 | 
			
		||||
      uint8_t t = tx_buffer.tail;
 | 
			
		||||
      uint8_t c = tx_buffer.buffer[t];
 | 
			
		||||
      tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1);
 | 
			
		||||
 | 
			
		||||
      M_UDRx = c;
 | 
			
		||||
 | 
			
		||||
      // clear the TXC bit -- "can be cleared by writing a one to its bit
 | 
			
		||||
      // location". This makes sure flush() won't return until the bytes
 | 
			
		||||
      // actually got written
 | 
			
		||||
      SBI(M_UCSRxA, M_TXCx);
 | 
			
		||||
 | 
			
		||||
      if (tx_buffer.head == tx_buffer.tail) {
 | 
			
		||||
        // Buffer empty, so disable interrupts
 | 
			
		||||
        CBI(M_UCSRxB, M_UDRIEx);
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    #ifdef M_USARTx_UDRE_vect
 | 
			
		||||
      ISR(M_USARTx_UDRE_vect) {
 | 
			
		||||
        _tx_udr_empty_irq();
 | 
			
		||||
      }
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
  #endif // TX_BUFFER_SIZE
 | 
			
		||||
 | 
			
		||||
  #ifdef M_USARTx_RX_vect
 | 
			
		||||
    ISR(M_USARTx_RX_vect) {
 | 
			
		||||
      unsigned char c  =  M_UDRx;
 | 
			
		||||
      store_char(c);
 | 
			
		||||
    }
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
  // Public Methods
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::begin(long baud) {
 | 
			
		||||
    uint16_t baud_setting;
 | 
			
		||||
    bool useU2X = true;
 | 
			
		||||
 | 
			
		||||
    #if F_CPU == 16000000UL && SERIAL_PORT == 0
 | 
			
		||||
      // hard-coded exception for compatibility with the bootloader shipped
 | 
			
		||||
      // with the Duemilanove and previous boards and the firmware on the 8U2
 | 
			
		||||
      // on the Uno and Mega 2560.
 | 
			
		||||
      if (baud == 57600) {
 | 
			
		||||
        useU2X = false;
 | 
			
		||||
      }
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
    if (useU2X) {
 | 
			
		||||
      M_UCSRxA = _BV(M_U2Xx);
 | 
			
		||||
      baud_setting = (F_CPU / 4 / baud - 1) / 2;
 | 
			
		||||
    }
 | 
			
		||||
    else {
 | 
			
		||||
      M_UCSRxA = 0;
 | 
			
		||||
      baud_setting = (F_CPU / 8 / baud - 1) / 2;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
 | 
			
		||||
    M_UBRRxH = baud_setting >> 8;
 | 
			
		||||
    M_UBRRxL = baud_setting;
 | 
			
		||||
 | 
			
		||||
    SBI(M_UCSRxB, M_RXENx);
 | 
			
		||||
    SBI(M_UCSRxB, M_TXENx);
 | 
			
		||||
    SBI(M_UCSRxB, M_RXCIEx);
 | 
			
		||||
    #if TX_BUFFER_SIZE > 0
 | 
			
		||||
      CBI(M_UCSRxB, M_UDRIEx);
 | 
			
		||||
      _written = false;
 | 
			
		||||
    #endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::end() {
 | 
			
		||||
    CBI(M_UCSRxB, M_RXENx);
 | 
			
		||||
    CBI(M_UCSRxB, M_TXENx);
 | 
			
		||||
    CBI(M_UCSRxB, M_RXCIEx);
 | 
			
		||||
    CBI(M_UCSRxB, M_UDRIEx);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::checkRx(void) {
 | 
			
		||||
    if (TEST(M_UCSRxA, M_RXCx)) {
 | 
			
		||||
      uint8_t c  =  M_UDRx;
 | 
			
		||||
      store_char(c);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int MarlinSerial::peek(void) {
 | 
			
		||||
    CRITICAL_SECTION_START;
 | 
			
		||||
      int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail];
 | 
			
		||||
    CRITICAL_SECTION_END;
 | 
			
		||||
    return v;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  int MarlinSerial::read(void) {
 | 
			
		||||
    int v;
 | 
			
		||||
    CRITICAL_SECTION_START;
 | 
			
		||||
      uint8_t t = rx_buffer.tail;
 | 
			
		||||
      if (rx_buffer.head == t) {
 | 
			
		||||
        v = -1;
 | 
			
		||||
      }
 | 
			
		||||
      else {
 | 
			
		||||
        v = rx_buffer.buffer[t];
 | 
			
		||||
        rx_buffer.tail = (uint8_t)(t + 1) & (RX_BUFFER_SIZE - 1);
 | 
			
		||||
      }
 | 
			
		||||
    CRITICAL_SECTION_END;
 | 
			
		||||
    return v;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  uint8_t MarlinSerial::available(void) {
 | 
			
		||||
    CRITICAL_SECTION_START;
 | 
			
		||||
      uint8_t h = rx_buffer.head,
 | 
			
		||||
              t = rx_buffer.tail;
 | 
			
		||||
    CRITICAL_SECTION_END;
 | 
			
		||||
    return (uint8_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::flush(void) {
 | 
			
		||||
    // RX
 | 
			
		||||
    // don't reverse this or there may be problems if the RX interrupt
 | 
			
		||||
    // occurs after reading the value of rx_buffer_head but before writing
 | 
			
		||||
    // the value to rx_buffer_tail; the previous value of rx_buffer_head
 | 
			
		||||
    // may be written to rx_buffer_tail, making it appear as if the buffer
 | 
			
		||||
    // were full, not empty.
 | 
			
		||||
    CRITICAL_SECTION_START;
 | 
			
		||||
      rx_buffer.head = rx_buffer.tail;
 | 
			
		||||
    CRITICAL_SECTION_END;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  #if TX_BUFFER_SIZE > 0
 | 
			
		||||
    uint8_t MarlinSerial::availableForWrite(void) {
 | 
			
		||||
      CRITICAL_SECTION_START;
 | 
			
		||||
        uint8_t h = tx_buffer.head;
 | 
			
		||||
        uint8_t t = tx_buffer.tail;
 | 
			
		||||
      CRITICAL_SECTION_END;
 | 
			
		||||
      return (uint8_t)(TX_BUFFER_SIZE + h - t) & (TX_BUFFER_SIZE - 1);
 | 
			
		||||
    }
 | 
			
		||||
    return;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::flushTX(void) {
 | 
			
		||||
    // TX
 | 
			
		||||
    // If we have never written a byte, no need to flush. This special
 | 
			
		||||
    // case is needed since there is no way to force the TXC (transmit
 | 
			
		||||
    // complete) bit to 1 during initialization
 | 
			
		||||
    if (!_written)
 | 
			
		||||
    void MarlinSerial::write(uint8_t c) {
 | 
			
		||||
      _written = true;
 | 
			
		||||
      CRITICAL_SECTION_START;
 | 
			
		||||
        bool emty = (tx_buffer.head == tx_buffer.tail);
 | 
			
		||||
      CRITICAL_SECTION_END;
 | 
			
		||||
      // If the buffer and the data register is empty, just write the byte
 | 
			
		||||
      // to the data register and be done. This shortcut helps
 | 
			
		||||
      // significantly improve the effective datarate at high (>
 | 
			
		||||
      // 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
 | 
			
		||||
      if (emty && TEST(M_UCSRxA, M_UDREx)) {
 | 
			
		||||
        CRITICAL_SECTION_START;
 | 
			
		||||
          M_UDRx = c;
 | 
			
		||||
          SBI(M_UCSRxA, M_TXCx);
 | 
			
		||||
        CRITICAL_SECTION_END;
 | 
			
		||||
        return;
 | 
			
		||||
      }
 | 
			
		||||
      uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1);
 | 
			
		||||
 | 
			
		||||
      // If the output buffer is full, there's nothing for it other than to
 | 
			
		||||
      // wait for the interrupt handler to empty it a bit
 | 
			
		||||
      while (i == tx_buffer.tail) {
 | 
			
		||||
        if (!TEST(SREG, SREG_I)) {
 | 
			
		||||
          // Interrupts are disabled, so we'll have to poll the data
 | 
			
		||||
          // register empty flag ourselves. If it is set, pretend an
 | 
			
		||||
          // interrupt has happened and call the handler to free up
 | 
			
		||||
          // space for us.
 | 
			
		||||
          if (TEST(M_UCSRxA, M_UDREx))
 | 
			
		||||
            _tx_udr_empty_irq();
 | 
			
		||||
        } else {
 | 
			
		||||
          // nop, the interrupt handler will free up space for us
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      tx_buffer.buffer[tx_buffer.head] = c;
 | 
			
		||||
      { CRITICAL_SECTION_START;
 | 
			
		||||
          tx_buffer.head = i;
 | 
			
		||||
          SBI(M_UCSRxB, M_UDRIEx);
 | 
			
		||||
        CRITICAL_SECTION_END;
 | 
			
		||||
      }
 | 
			
		||||
      return;
 | 
			
		||||
 | 
			
		||||
    while (TEST(M_UCSRxB, M_UDRIEx) || !TEST(M_UCSRxA, M_TXCx)) {
 | 
			
		||||
      if (!TEST(SREG, SREG_I) && TEST(M_UCSRxB, M_UDRIEx))
 | 
			
		||||
        // Interrupts are globally disabled, but the DR empty
 | 
			
		||||
        // interrupt should be enabled, so poll the DR empty flag to
 | 
			
		||||
        // prevent deadlock
 | 
			
		||||
        if (TEST(M_UCSRxA, M_UDREx))
 | 
			
		||||
          _tx_udr_empty_irq();
 | 
			
		||||
    }
 | 
			
		||||
    // If we get here, nothing is queued anymore (DRIE is disabled) and
 | 
			
		||||
    // the hardware finished tranmission (TXC is set).
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#else
 | 
			
		||||
  void MarlinSerial::write(uint8_t c) {
 | 
			
		||||
    while (!TEST(M_UCSRxA, M_UDREx))
 | 
			
		||||
      ;
 | 
			
		||||
    M_UDRx = c;
 | 
			
		||||
    void MarlinSerial::flushTX(void) {
 | 
			
		||||
      // TX
 | 
			
		||||
      // If we have never written a byte, no need to flush. This special
 | 
			
		||||
      // case is needed since there is no way to force the TXC (transmit
 | 
			
		||||
      // complete) bit to 1 during initialization
 | 
			
		||||
      if (!_written)
 | 
			
		||||
        return;
 | 
			
		||||
 | 
			
		||||
      while (TEST(M_UCSRxB, M_UDRIEx) || !TEST(M_UCSRxA, M_TXCx)) {
 | 
			
		||||
        if (!TEST(SREG, SREG_I) && TEST(M_UCSRxB, M_UDRIEx))
 | 
			
		||||
          // Interrupts are globally disabled, but the DR empty
 | 
			
		||||
          // interrupt should be enabled, so poll the DR empty flag to
 | 
			
		||||
          // prevent deadlock
 | 
			
		||||
          if (TEST(M_UCSRxA, M_UDREx))
 | 
			
		||||
            _tx_udr_empty_irq();
 | 
			
		||||
      }
 | 
			
		||||
      // If we get here, nothing is queued anymore (DRIE is disabled) and
 | 
			
		||||
      // the hardware finished tranmission (TXC is set).
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// end NEW
 | 
			
		||||
  #else
 | 
			
		||||
    void MarlinSerial::write(uint8_t c) {
 | 
			
		||||
      while (!TEST(M_UCSRxA, M_UDREx))
 | 
			
		||||
        ;
 | 
			
		||||
      M_UDRx = c;
 | 
			
		||||
    }
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
/// imports from print.h
 | 
			
		||||
  // end NEW
 | 
			
		||||
 | 
			
		||||
  /// imports from print.h
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::print(char c, int base) {
 | 
			
		||||
  print((long) c, base);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::print(unsigned char b, int base) {
 | 
			
		||||
  print((unsigned long) b, base);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::print(int n, int base) {
 | 
			
		||||
  print((long) n, base);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::print(unsigned int n, int base) {
 | 
			
		||||
  print((unsigned long) n, base);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::print(long n, int base) {
 | 
			
		||||
  if (base == 0) {
 | 
			
		||||
    write(n);
 | 
			
		||||
  void MarlinSerial::print(char c, int base) {
 | 
			
		||||
    print((long) c, base);
 | 
			
		||||
  }
 | 
			
		||||
  else if (base == 10) {
 | 
			
		||||
    if (n < 0) {
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::print(unsigned char b, int base) {
 | 
			
		||||
    print((unsigned long) b, base);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::print(int n, int base) {
 | 
			
		||||
    print((long) n, base);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::print(unsigned int n, int base) {
 | 
			
		||||
    print((unsigned long) n, base);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::print(long n, int base) {
 | 
			
		||||
    if (base == 0) {
 | 
			
		||||
      write(n);
 | 
			
		||||
    }
 | 
			
		||||
    else if (base == 10) {
 | 
			
		||||
      if (n < 0) {
 | 
			
		||||
        print('-');
 | 
			
		||||
        n = -n;
 | 
			
		||||
      }
 | 
			
		||||
      printNumber(n, 10);
 | 
			
		||||
    }
 | 
			
		||||
    else {
 | 
			
		||||
      printNumber(n, base);
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::print(unsigned long n, int base) {
 | 
			
		||||
    if (base == 0) write(n);
 | 
			
		||||
    else printNumber(n, base);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::print(double n, int digits) {
 | 
			
		||||
    printFloat(n, digits);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::println(void) {
 | 
			
		||||
    print('\r');
 | 
			
		||||
    print('\n');
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::println(const String& s) {
 | 
			
		||||
    print(s);
 | 
			
		||||
    println();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::println(const char c[]) {
 | 
			
		||||
    print(c);
 | 
			
		||||
    println();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::println(char c, int base) {
 | 
			
		||||
    print(c, base);
 | 
			
		||||
    println();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::println(unsigned char b, int base) {
 | 
			
		||||
    print(b, base);
 | 
			
		||||
    println();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::println(int n, int base) {
 | 
			
		||||
    print(n, base);
 | 
			
		||||
    println();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::println(unsigned int n, int base) {
 | 
			
		||||
    print(n, base);
 | 
			
		||||
    println();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::println(long n, int base) {
 | 
			
		||||
    print(n, base);
 | 
			
		||||
    println();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::println(unsigned long n, int base) {
 | 
			
		||||
    print(n, base);
 | 
			
		||||
    println();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::println(double n, int digits) {
 | 
			
		||||
    print(n, digits);
 | 
			
		||||
    println();
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Private Methods
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::printNumber(unsigned long n, uint8_t base) {
 | 
			
		||||
    if (n) {
 | 
			
		||||
      unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
 | 
			
		||||
      int8_t i = 0;
 | 
			
		||||
      while (n) {
 | 
			
		||||
        buf[i++] = n % base;
 | 
			
		||||
        n /= base;
 | 
			
		||||
      }
 | 
			
		||||
      while (i--)
 | 
			
		||||
        print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10)));
 | 
			
		||||
    }
 | 
			
		||||
    else
 | 
			
		||||
      print('0');
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  void MarlinSerial::printFloat(double number, uint8_t digits) {
 | 
			
		||||
    // Handle negative numbers
 | 
			
		||||
    if (number < 0.0) {
 | 
			
		||||
      print('-');
 | 
			
		||||
      n = -n;
 | 
			
		||||
      number = -number;
 | 
			
		||||
    }
 | 
			
		||||
    printNumber(n, 10);
 | 
			
		||||
  }
 | 
			
		||||
  else {
 | 
			
		||||
    printNumber(n, base);
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::print(unsigned long n, int base) {
 | 
			
		||||
  if (base == 0) write(n);
 | 
			
		||||
  else printNumber(n, base);
 | 
			
		||||
}
 | 
			
		||||
    // Round correctly so that print(1.999, 2) prints as "2.00"
 | 
			
		||||
    double rounding = 0.5;
 | 
			
		||||
    for (uint8_t i = 0; i < digits; ++i)
 | 
			
		||||
      rounding *= 0.1;
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::print(double n, int digits) {
 | 
			
		||||
  printFloat(n, digits);
 | 
			
		||||
}
 | 
			
		||||
    number += rounding;
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::println(void) {
 | 
			
		||||
  print('\r');
 | 
			
		||||
  print('\n');
 | 
			
		||||
}
 | 
			
		||||
    // Extract the integer part of the number and print it
 | 
			
		||||
    unsigned long int_part = (unsigned long)number;
 | 
			
		||||
    double remainder = number - (double)int_part;
 | 
			
		||||
    print(int_part);
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::println(const String& s) {
 | 
			
		||||
  print(s);
 | 
			
		||||
  println();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::println(const char c[]) {
 | 
			
		||||
  print(c);
 | 
			
		||||
  println();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::println(char c, int base) {
 | 
			
		||||
  print(c, base);
 | 
			
		||||
  println();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::println(unsigned char b, int base) {
 | 
			
		||||
  print(b, base);
 | 
			
		||||
  println();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::println(int n, int base) {
 | 
			
		||||
  print(n, base);
 | 
			
		||||
  println();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::println(unsigned int n, int base) {
 | 
			
		||||
  print(n, base);
 | 
			
		||||
  println();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::println(long n, int base) {
 | 
			
		||||
  print(n, base);
 | 
			
		||||
  println();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::println(unsigned long n, int base) {
 | 
			
		||||
  print(n, base);
 | 
			
		||||
  println();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::println(double n, int digits) {
 | 
			
		||||
  print(n, digits);
 | 
			
		||||
  println();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Private Methods /////////////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::printNumber(unsigned long n, uint8_t base) {
 | 
			
		||||
  if (n) {
 | 
			
		||||
    unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
 | 
			
		||||
    int8_t i = 0;
 | 
			
		||||
    while (n) {
 | 
			
		||||
      buf[i++] = n % base;
 | 
			
		||||
      n /= base;
 | 
			
		||||
    }
 | 
			
		||||
    while (i--)
 | 
			
		||||
      print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10)));
 | 
			
		||||
  }
 | 
			
		||||
  else
 | 
			
		||||
    print('0');
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void MarlinSerial::printFloat(double number, uint8_t digits) {
 | 
			
		||||
  // Handle negative numbers
 | 
			
		||||
  if (number < 0.0) {
 | 
			
		||||
    print('-');
 | 
			
		||||
    number = -number;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Round correctly so that print(1.999, 2) prints as "2.00"
 | 
			
		||||
  double rounding = 0.5;
 | 
			
		||||
  for (uint8_t i = 0; i < digits; ++i)
 | 
			
		||||
    rounding *= 0.1;
 | 
			
		||||
 | 
			
		||||
  number += rounding;
 | 
			
		||||
 | 
			
		||||
  // Extract the integer part of the number and print it
 | 
			
		||||
  unsigned long int_part = (unsigned long)number;
 | 
			
		||||
  double remainder = number - (double)int_part;
 | 
			
		||||
  print(int_part);
 | 
			
		||||
 | 
			
		||||
  // Print the decimal point, but only if there are digits beyond
 | 
			
		||||
  if (digits) {
 | 
			
		||||
    print('.');
 | 
			
		||||
    // Extract digits from the remainder one at a time
 | 
			
		||||
    while (digits--) {
 | 
			
		||||
      remainder *= 10.0;
 | 
			
		||||
      int toPrint = int(remainder);
 | 
			
		||||
      print(toPrint);
 | 
			
		||||
      remainder -= toPrint;
 | 
			
		||||
    // Print the decimal point, but only if there are digits beyond
 | 
			
		||||
    if (digits) {
 | 
			
		||||
      print('.');
 | 
			
		||||
      // Extract digits from the remainder one at a time
 | 
			
		||||
      while (digits--) {
 | 
			
		||||
        remainder *= 10.0;
 | 
			
		||||
        int toPrint = int(remainder);
 | 
			
		||||
        print(toPrint);
 | 
			
		||||
        remainder -= toPrint;
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
// Preinstantiate Objects //////////////////////////////////////////////////////
 | 
			
		||||
 | 
			
		||||
  // Preinstantiate
 | 
			
		||||
  MarlinSerial customizedSerial;
 | 
			
		||||
 | 
			
		||||
MarlinSerial customizedSerial;
 | 
			
		||||
 | 
			
		||||
#endif // whole file
 | 
			
		||||
#endif // !USBCON
 | 
			
		||||
#endif // !USBCON && (UBRRH || UBRR0H || UBRR1H || UBRR2H || UBRR3H)
 | 
			
		||||
 | 
			
		||||
// For AT90USB targets use the UART for BT interfacing
 | 
			
		||||
#if defined(USBCON) && ENABLED(BLUETOOTH)
 | 
			
		||||
  HardwareSerial bluetoothSerial;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if ENABLED(EMERGENCY_PARSER)
 | 
			
		||||
 | 
			
		||||
  // Currently looking for: M108, M112, M410
 | 
			
		||||
  // If you alter the parser please don't forget to update the capabilities in Conditionals_post.h
 | 
			
		||||
 | 
			
		||||
  FORCE_INLINE void emergency_parser(unsigned char c) {
 | 
			
		||||
 | 
			
		||||
    static e_parser_state state = state_RESET;
 | 
			
		||||
 | 
			
		||||
    switch (state) {
 | 
			
		||||
      case state_RESET:
 | 
			
		||||
        switch (c) {
 | 
			
		||||
          case ' ': break;
 | 
			
		||||
          case 'N': state = state_N;      break;
 | 
			
		||||
          case 'M': state = state_M;      break;
 | 
			
		||||
          default: state = state_IGNORE;
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
 | 
			
		||||
      case state_N:
 | 
			
		||||
        switch (c) {
 | 
			
		||||
          case '0': case '1': case '2':
 | 
			
		||||
          case '3': case '4': case '5':
 | 
			
		||||
          case '6': case '7': case '8':
 | 
			
		||||
          case '9': case '-': case ' ':   break;
 | 
			
		||||
          case 'M': state = state_M;      break;
 | 
			
		||||
          default:  state = state_IGNORE;
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
 | 
			
		||||
      case state_M:
 | 
			
		||||
        switch (c) {
 | 
			
		||||
          case ' ': break;
 | 
			
		||||
          case '1': state = state_M1;     break;
 | 
			
		||||
          case '4': state = state_M4;     break;
 | 
			
		||||
          default: state = state_IGNORE;
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
 | 
			
		||||
      case state_M1:
 | 
			
		||||
        switch (c) {
 | 
			
		||||
          case '0': state = state_M10;    break;
 | 
			
		||||
          case '1': state = state_M11;    break;
 | 
			
		||||
          default: state = state_IGNORE;
 | 
			
		||||
        }
 | 
			
		||||
        break;
 | 
			
		||||
 | 
			
		||||
      case state_M10:
 | 
			
		||||
        state = (c == '8') ? state_M108 : state_IGNORE;
 | 
			
		||||
        break;
 | 
			
		||||
 | 
			
		||||
      case state_M11:
 | 
			
		||||
        state = (c == '2') ? state_M112 : state_IGNORE;
 | 
			
		||||
        break;
 | 
			
		||||
 | 
			
		||||
      case state_M4:
 | 
			
		||||
        state = (c == '1') ? state_M41 : state_IGNORE;
 | 
			
		||||
        break;
 | 
			
		||||
 | 
			
		||||
      case state_M41:
 | 
			
		||||
        state = (c == '0') ? state_M410 : state_IGNORE;
 | 
			
		||||
        break;
 | 
			
		||||
 | 
			
		||||
      case state_IGNORE:
 | 
			
		||||
        if (c == '\n') state = state_RESET;
 | 
			
		||||
        break;
 | 
			
		||||
 | 
			
		||||
      default:
 | 
			
		||||
        if (c == '\n') {
 | 
			
		||||
          switch (state) {
 | 
			
		||||
            case state_M108:
 | 
			
		||||
              wait_for_user = wait_for_heatup = false;
 | 
			
		||||
              break;
 | 
			
		||||
            case state_M112:
 | 
			
		||||
              kill(PSTR(MSG_KILLED));
 | 
			
		||||
              break;
 | 
			
		||||
            case state_M410:
 | 
			
		||||
              quickstop_stepper();
 | 
			
		||||
              break;
 | 
			
		||||
            default:
 | 
			
		||||
              break;
 | 
			
		||||
          }
 | 
			
		||||
          state = state_RESET;
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
 
 | 
			
		||||
@@ -29,8 +29,8 @@
 | 
			
		||||
 | 
			
		||||
*/
 | 
			
		||||
 | 
			
		||||
#ifndef MarlinSerial_h
 | 
			
		||||
#define MarlinSerial_h
 | 
			
		||||
#ifndef MARLINSERIAL_H
 | 
			
		||||
#define MARLINSERIAL_H
 | 
			
		||||
 | 
			
		||||
#include "MarlinConfig.h"
 | 
			
		||||
 | 
			
		||||
@@ -52,125 +52,118 @@
 | 
			
		||||
  #define SERIAL_REGNAME_INTERNAL(registerbase,number,suffix) registerbase##number##suffix
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// Registers used by MarlinSerial class (these are expanded
 | 
			
		||||
// depending on selected serial port
 | 
			
		||||
#define M_UCSRxA SERIAL_REGNAME(UCSR,SERIAL_PORT,A) // defines M_UCSRxA to be UCSRnA where n is the serial port number
 | 
			
		||||
#define M_UCSRxB SERIAL_REGNAME(UCSR,SERIAL_PORT,B)
 | 
			
		||||
#define M_RXENx SERIAL_REGNAME(RXEN,SERIAL_PORT,)
 | 
			
		||||
#define M_TXENx SERIAL_REGNAME(TXEN,SERIAL_PORT,)
 | 
			
		||||
#define M_TXCx SERIAL_REGNAME(TXC,SERIAL_PORT,)
 | 
			
		||||
#define M_RXCIEx SERIAL_REGNAME(RXCIE,SERIAL_PORT,)
 | 
			
		||||
#define M_UDREx SERIAL_REGNAME(UDRE,SERIAL_PORT,)
 | 
			
		||||
#define M_UDRIEx SERIAL_REGNAME(UDRIE,SERIAL_PORT,)
 | 
			
		||||
#define M_UDRx SERIAL_REGNAME(UDR,SERIAL_PORT,)
 | 
			
		||||
#define M_UBRRxH SERIAL_REGNAME(UBRR,SERIAL_PORT,H)
 | 
			
		||||
#define M_UBRRxL SERIAL_REGNAME(UBRR,SERIAL_PORT,L)
 | 
			
		||||
#define M_RXCx SERIAL_REGNAME(RXC,SERIAL_PORT,)
 | 
			
		||||
#define M_USARTx_RX_vect SERIAL_REGNAME(USART,SERIAL_PORT,_RX_vect)
 | 
			
		||||
#define M_U2Xx SERIAL_REGNAME(U2X,SERIAL_PORT,)
 | 
			
		||||
// Registers used by MarlinSerial class (expanded depending on selected serial port)
 | 
			
		||||
#define M_UCSRxA           SERIAL_REGNAME(UCSR,SERIAL_PORT,A) // defines M_UCSRxA to be UCSRnA where n is the serial port number
 | 
			
		||||
#define M_UCSRxB           SERIAL_REGNAME(UCSR,SERIAL_PORT,B)
 | 
			
		||||
#define M_RXENx            SERIAL_REGNAME(RXEN,SERIAL_PORT,)
 | 
			
		||||
#define M_TXENx            SERIAL_REGNAME(TXEN,SERIAL_PORT,)
 | 
			
		||||
#define M_TXCx             SERIAL_REGNAME(TXC,SERIAL_PORT,)
 | 
			
		||||
#define M_RXCIEx           SERIAL_REGNAME(RXCIE,SERIAL_PORT,)
 | 
			
		||||
#define M_UDREx            SERIAL_REGNAME(UDRE,SERIAL_PORT,)
 | 
			
		||||
#define M_UDRIEx           SERIAL_REGNAME(UDRIE,SERIAL_PORT,)
 | 
			
		||||
#define M_UDRx             SERIAL_REGNAME(UDR,SERIAL_PORT,)
 | 
			
		||||
#define M_UBRRxH           SERIAL_REGNAME(UBRR,SERIAL_PORT,H)
 | 
			
		||||
#define M_UBRRxL           SERIAL_REGNAME(UBRR,SERIAL_PORT,L)
 | 
			
		||||
#define M_RXCx             SERIAL_REGNAME(RXC,SERIAL_PORT,)
 | 
			
		||||
#define M_USARTx_RX_vect   SERIAL_REGNAME(USART,SERIAL_PORT,_RX_vect)
 | 
			
		||||
#define M_U2Xx             SERIAL_REGNAME(U2X,SERIAL_PORT,)
 | 
			
		||||
#define M_USARTx_UDRE_vect SERIAL_REGNAME(USART,SERIAL_PORT,_UDRE_vect)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#define DEC 10
 | 
			
		||||
#define HEX 16
 | 
			
		||||
#define OCT 8
 | 
			
		||||
#define BIN 2
 | 
			
		||||
#define BYTE 0
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
#ifndef USBCON
 | 
			
		||||
// Define constants and variables for buffering incoming serial data.  We're
 | 
			
		||||
// using a ring buffer (I think), in which rx_buffer_head is the index of the
 | 
			
		||||
// location to which to write the next incoming character and rx_buffer_tail
 | 
			
		||||
// is the index of the location from which to read.
 | 
			
		||||
// 256 is the max limit due to uint8_t head and tail. Use only powers of 2. (...,16,32,64,128,256)
 | 
			
		||||
#ifndef RX_BUFFER_SIZE
 | 
			
		||||
  #define RX_BUFFER_SIZE 128
 | 
			
		||||
#endif
 | 
			
		||||
#ifndef TX_BUFFER_SIZE
 | 
			
		||||
  #define TX_BUFFER_SIZE 32
 | 
			
		||||
#endif
 | 
			
		||||
#if !((RX_BUFFER_SIZE == 256) ||(RX_BUFFER_SIZE == 128) ||(RX_BUFFER_SIZE == 64) ||(RX_BUFFER_SIZE == 32) ||(RX_BUFFER_SIZE == 16) ||(RX_BUFFER_SIZE == 8) ||(RX_BUFFER_SIZE == 4) ||(RX_BUFFER_SIZE == 2))
 | 
			
		||||
  #error "RX_BUFFER_SIZE has to be a power of 2 and >= 2"
 | 
			
		||||
#endif
 | 
			
		||||
#if !((TX_BUFFER_SIZE == 256) ||(TX_BUFFER_SIZE == 128) ||(TX_BUFFER_SIZE == 64) ||(TX_BUFFER_SIZE == 32) ||(TX_BUFFER_SIZE == 16) ||(TX_BUFFER_SIZE == 8) ||(TX_BUFFER_SIZE == 4) ||(TX_BUFFER_SIZE == 2) ||(TX_BUFFER_SIZE == 0))
 | 
			
		||||
  #error TX_BUFFER_SIZE has to be a power of 2 or 0
 | 
			
		||||
#endif
 | 
			
		||||
  // Define constants and variables for buffering incoming serial data.  We're
 | 
			
		||||
  // using a ring buffer (I think), in which rx_buffer_head is the index of the
 | 
			
		||||
  // location to which to write the next incoming character and rx_buffer_tail
 | 
			
		||||
  // is the index of the location from which to read.
 | 
			
		||||
  // 256 is the max limit due to uint8_t head and tail. Use only powers of 2. (...,16,32,64,128,256)
 | 
			
		||||
  #ifndef RX_BUFFER_SIZE
 | 
			
		||||
    #define RX_BUFFER_SIZE 128
 | 
			
		||||
  #endif
 | 
			
		||||
  #ifndef TX_BUFFER_SIZE
 | 
			
		||||
    #define TX_BUFFER_SIZE 32
 | 
			
		||||
  #endif
 | 
			
		||||
  #if !((RX_BUFFER_SIZE == 256) ||(RX_BUFFER_SIZE == 128) ||(RX_BUFFER_SIZE == 64) ||(RX_BUFFER_SIZE == 32) ||(RX_BUFFER_SIZE == 16) ||(RX_BUFFER_SIZE == 8) ||(RX_BUFFER_SIZE == 4) ||(RX_BUFFER_SIZE == 2))
 | 
			
		||||
    #error "RX_BUFFER_SIZE has to be a power of 2 and >= 2"
 | 
			
		||||
  #endif
 | 
			
		||||
  #if !((TX_BUFFER_SIZE == 256) ||(TX_BUFFER_SIZE == 128) ||(TX_BUFFER_SIZE == 64) ||(TX_BUFFER_SIZE == 32) ||(TX_BUFFER_SIZE == 16) ||(TX_BUFFER_SIZE == 8) ||(TX_BUFFER_SIZE == 4) ||(TX_BUFFER_SIZE == 2) ||(TX_BUFFER_SIZE == 0))
 | 
			
		||||
    #error TX_BUFFER_SIZE has to be a power of 2 or 0
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
struct ring_buffer_r {
 | 
			
		||||
  unsigned char buffer[RX_BUFFER_SIZE];
 | 
			
		||||
  volatile uint8_t head;
 | 
			
		||||
  volatile uint8_t tail;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
#if TX_BUFFER_SIZE > 0
 | 
			
		||||
  struct ring_buffer_t {
 | 
			
		||||
    unsigned char buffer[TX_BUFFER_SIZE];
 | 
			
		||||
  struct ring_buffer_r {
 | 
			
		||||
    unsigned char buffer[RX_BUFFER_SIZE];
 | 
			
		||||
    volatile uint8_t head;
 | 
			
		||||
    volatile uint8_t tail;
 | 
			
		||||
  };
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if UART_PRESENT(SERIAL_PORT)
 | 
			
		||||
  extern ring_buffer_r rx_buffer;
 | 
			
		||||
  #if TX_BUFFER_SIZE > 0
 | 
			
		||||
    extern ring_buffer_t tx_buffer;
 | 
			
		||||
    struct ring_buffer_t {
 | 
			
		||||
      unsigned char buffer[TX_BUFFER_SIZE];
 | 
			
		||||
      volatile uint8_t head;
 | 
			
		||||
      volatile uint8_t tail;
 | 
			
		||||
    };
 | 
			
		||||
  #endif
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#if ENABLED(EMERGENCY_PARSER)
 | 
			
		||||
  #include "language.h"
 | 
			
		||||
  void emergency_parser(unsigned char c);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
class MarlinSerial { //: public Stream
 | 
			
		||||
 | 
			
		||||
  public:
 | 
			
		||||
    MarlinSerial();
 | 
			
		||||
    static void begin(long);
 | 
			
		||||
    static void end();
 | 
			
		||||
    static int peek(void);
 | 
			
		||||
    static int read(void);
 | 
			
		||||
    static void flush(void);
 | 
			
		||||
    static uint8_t available(void);
 | 
			
		||||
    static void checkRx(void);
 | 
			
		||||
    static void write(uint8_t c);
 | 
			
		||||
  #if UART_PRESENT(SERIAL_PORT)
 | 
			
		||||
    extern ring_buffer_r rx_buffer;
 | 
			
		||||
    #if TX_BUFFER_SIZE > 0
 | 
			
		||||
      static uint8_t availableForWrite(void);
 | 
			
		||||
      static void flushTX(void);
 | 
			
		||||
      extern ring_buffer_t tx_buffer;
 | 
			
		||||
    #endif
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
  private:
 | 
			
		||||
    static void printNumber(unsigned long, uint8_t);
 | 
			
		||||
    static void printFloat(double, uint8_t);
 | 
			
		||||
  class MarlinSerial { //: public Stream
 | 
			
		||||
 | 
			
		||||
  public:
 | 
			
		||||
    static FORCE_INLINE void write(const char* str) { while (*str) write(*str++); }
 | 
			
		||||
    static FORCE_INLINE void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); }
 | 
			
		||||
    static FORCE_INLINE void print(const String& s) { for (int i = 0; i < (int)s.length(); i++) write(s[i]); }
 | 
			
		||||
    static FORCE_INLINE void print(const char* str) { write(str); }
 | 
			
		||||
    public:
 | 
			
		||||
      MarlinSerial() {};
 | 
			
		||||
      static void begin(long);
 | 
			
		||||
      static void end();
 | 
			
		||||
      static int peek(void);
 | 
			
		||||
      static int read(void);
 | 
			
		||||
      static void flush(void);
 | 
			
		||||
      static uint8_t available(void);
 | 
			
		||||
      static void checkRx(void);
 | 
			
		||||
      static void write(uint8_t c);
 | 
			
		||||
      #if TX_BUFFER_SIZE > 0
 | 
			
		||||
        static uint8_t availableForWrite(void);
 | 
			
		||||
        static void flushTX(void);
 | 
			
		||||
      #endif
 | 
			
		||||
 | 
			
		||||
    static void print(char, int = BYTE);
 | 
			
		||||
    static void print(unsigned char, int = BYTE);
 | 
			
		||||
    static void print(int, int = DEC);
 | 
			
		||||
    static void print(unsigned int, int = DEC);
 | 
			
		||||
    static void print(long, int = DEC);
 | 
			
		||||
    static void print(unsigned long, int = DEC);
 | 
			
		||||
    static void print(double, int = 2);
 | 
			
		||||
    private:
 | 
			
		||||
      static void printNumber(unsigned long, uint8_t);
 | 
			
		||||
      static void printFloat(double, uint8_t);
 | 
			
		||||
 | 
			
		||||
    static void println(const String& s);
 | 
			
		||||
    static void println(const char[]);
 | 
			
		||||
    static void println(char, int = BYTE);
 | 
			
		||||
    static void println(unsigned char, int = BYTE);
 | 
			
		||||
    static void println(int, int = DEC);
 | 
			
		||||
    static void println(unsigned int, int = DEC);
 | 
			
		||||
    static void println(long, int = DEC);
 | 
			
		||||
    static void println(unsigned long, int = DEC);
 | 
			
		||||
    static void println(double, int = 2);
 | 
			
		||||
    static void println(void);
 | 
			
		||||
};
 | 
			
		||||
    public:
 | 
			
		||||
      static FORCE_INLINE void write(const char* str) { while (*str) write(*str++); }
 | 
			
		||||
      static FORCE_INLINE void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); }
 | 
			
		||||
      static FORCE_INLINE void print(const String& s) { for (int i = 0; i < (int)s.length(); i++) write(s[i]); }
 | 
			
		||||
      static FORCE_INLINE void print(const char* str) { write(str); }
 | 
			
		||||
 | 
			
		||||
      static void print(char, int = BYTE);
 | 
			
		||||
      static void print(unsigned char, int = BYTE);
 | 
			
		||||
      static void print(int, int = DEC);
 | 
			
		||||
      static void print(unsigned int, int = DEC);
 | 
			
		||||
      static void print(long, int = DEC);
 | 
			
		||||
      static void print(unsigned long, int = DEC);
 | 
			
		||||
      static void print(double, int = 2);
 | 
			
		||||
 | 
			
		||||
      static void println(const String& s);
 | 
			
		||||
      static void println(const char[]);
 | 
			
		||||
      static void println(char, int = BYTE);
 | 
			
		||||
      static void println(unsigned char, int = BYTE);
 | 
			
		||||
      static void println(int, int = DEC);
 | 
			
		||||
      static void println(unsigned int, int = DEC);
 | 
			
		||||
      static void println(long, int = DEC);
 | 
			
		||||
      static void println(unsigned long, int = DEC);
 | 
			
		||||
      static void println(double, int = 2);
 | 
			
		||||
      static void println(void);
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  extern MarlinSerial customizedSerial;
 | 
			
		||||
 | 
			
		||||
extern MarlinSerial customizedSerial;
 | 
			
		||||
#endif // !USBCON
 | 
			
		||||
 | 
			
		||||
// Use the UART for Bluetooth in AT90USB configurations
 | 
			
		||||
@@ -178,4 +171,4 @@ extern MarlinSerial customizedSerial;
 | 
			
		||||
  extern HardwareSerial bluetoothSerial;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
#endif // MARLINSERIAL_H
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user