Move plan_arc next to prepare_move
This commit is contained in:
		
				
					committed by
					
						
						Richard Wackerbarth
					
				
			
			
				
	
			
			
			
						parent
						
							5c5936508d
						
					
				
				
					commit
					e83eac312e
				
			@@ -1887,148 +1887,6 @@ inline void gcode_G0_G1() {
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Plan an arc in 2 dimensions
 | 
			
		||||
 *
 | 
			
		||||
 * The arc is approximated by generating many small linear segments.
 | 
			
		||||
 * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
 | 
			
		||||
 * Arcs should only be made relatively large (over 5mm), as larger arcs with
 | 
			
		||||
 * larger segments will tend to be more efficient. Your slicer should have
 | 
			
		||||
 * options for G2/G3 arc generation. In future these options may be GCode tunable.
 | 
			
		||||
 */
 | 
			
		||||
void plan_arc(
 | 
			
		||||
  float target[NUM_AXIS], // Destination position
 | 
			
		||||
  float *offset,          // Center of rotation relative to current_position
 | 
			
		||||
  uint8_t clockwise       // Clockwise?
 | 
			
		||||
) {
 | 
			
		||||
 | 
			
		||||
  float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
 | 
			
		||||
        center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
 | 
			
		||||
        center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
 | 
			
		||||
        linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
 | 
			
		||||
        extruder_travel = target[E_AXIS] - current_position[E_AXIS],
 | 
			
		||||
        r_axis0 = -offset[X_AXIS],  // Radius vector from center to current location
 | 
			
		||||
        r_axis1 = -offset[Y_AXIS],
 | 
			
		||||
        rt_axis0 = target[X_AXIS] - center_axis0,
 | 
			
		||||
        rt_axis1 = target[Y_AXIS] - center_axis1;
 | 
			
		||||
  
 | 
			
		||||
  // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
 | 
			
		||||
  float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
 | 
			
		||||
  if (angular_travel < 0) { angular_travel += RADIANS(360); }
 | 
			
		||||
  if (clockwise) { angular_travel -= RADIANS(360); }
 | 
			
		||||
  
 | 
			
		||||
  // Make a circle if the angular rotation is 0
 | 
			
		||||
  if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
 | 
			
		||||
    angular_travel += RADIANS(360);
 | 
			
		||||
  
 | 
			
		||||
  float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
 | 
			
		||||
  if (mm_of_travel < 0.001) { return; }
 | 
			
		||||
  uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
 | 
			
		||||
  if (segments == 0) segments = 1;
 | 
			
		||||
  
 | 
			
		||||
  float theta_per_segment = angular_travel/segments;
 | 
			
		||||
  float linear_per_segment = linear_travel/segments;
 | 
			
		||||
  float extruder_per_segment = extruder_travel/segments;
 | 
			
		||||
  
 | 
			
		||||
  /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
 | 
			
		||||
     and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
 | 
			
		||||
         r_T = [cos(phi) -sin(phi);
 | 
			
		||||
                sin(phi)  cos(phi] * r ;
 | 
			
		||||
     
 | 
			
		||||
     For arc generation, the center of the circle is the axis of rotation and the radius vector is 
 | 
			
		||||
     defined from the circle center to the initial position. Each line segment is formed by successive
 | 
			
		||||
     vector rotations. This requires only two cos() and sin() computations to form the rotation
 | 
			
		||||
     matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
 | 
			
		||||
     all double numbers are single precision on the Arduino. (True double precision will not have
 | 
			
		||||
     round off issues for CNC applications.) Single precision error can accumulate to be greater than
 | 
			
		||||
     tool precision in some cases. Therefore, arc path correction is implemented. 
 | 
			
		||||
 | 
			
		||||
     Small angle approximation may be used to reduce computation overhead further. This approximation
 | 
			
		||||
     holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
 | 
			
		||||
     theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
 | 
			
		||||
     to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for 
 | 
			
		||||
     numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
 | 
			
		||||
     issue for CNC machines with the single precision Arduino calculations.
 | 
			
		||||
     
 | 
			
		||||
     This approximation also allows plan_arc to immediately insert a line segment into the planner 
 | 
			
		||||
     without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
 | 
			
		||||
     a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. 
 | 
			
		||||
     This is important when there are successive arc motions. 
 | 
			
		||||
  */
 | 
			
		||||
  // Vector rotation matrix values
 | 
			
		||||
  float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
 | 
			
		||||
  float sin_T = theta_per_segment;
 | 
			
		||||
  
 | 
			
		||||
  float arc_target[NUM_AXIS];
 | 
			
		||||
  float sin_Ti;
 | 
			
		||||
  float cos_Ti;
 | 
			
		||||
  float r_axisi;
 | 
			
		||||
  uint16_t i;
 | 
			
		||||
  int8_t count = 0;
 | 
			
		||||
 | 
			
		||||
  // Initialize the linear axis
 | 
			
		||||
  arc_target[Z_AXIS] = current_position[Z_AXIS];
 | 
			
		||||
  
 | 
			
		||||
  // Initialize the extruder axis
 | 
			
		||||
  arc_target[E_AXIS] = current_position[E_AXIS];
 | 
			
		||||
 | 
			
		||||
  float feed_rate = feedrate*feedrate_multiplier/60/100.0;
 | 
			
		||||
 | 
			
		||||
  for (i = 1; i < segments; i++) { // Increment (segments-1)
 | 
			
		||||
 | 
			
		||||
    if (count < N_ARC_CORRECTION) {
 | 
			
		||||
      // Apply vector rotation matrix to previous r_axis0 / 1
 | 
			
		||||
      r_axisi = r_axis0*sin_T + r_axis1*cos_T;
 | 
			
		||||
      r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
 | 
			
		||||
      r_axis1 = r_axisi;
 | 
			
		||||
      count++;
 | 
			
		||||
    }
 | 
			
		||||
    else {
 | 
			
		||||
      // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
 | 
			
		||||
      // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
 | 
			
		||||
      cos_Ti = cos(i*theta_per_segment);
 | 
			
		||||
      sin_Ti = sin(i*theta_per_segment);
 | 
			
		||||
      r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
 | 
			
		||||
      r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
 | 
			
		||||
      count = 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Update arc_target location
 | 
			
		||||
    arc_target[X_AXIS] = center_axis0 + r_axis0;
 | 
			
		||||
    arc_target[Y_AXIS] = center_axis1 + r_axis1;
 | 
			
		||||
    arc_target[Z_AXIS] += linear_per_segment;
 | 
			
		||||
    arc_target[E_AXIS] += extruder_per_segment;
 | 
			
		||||
 | 
			
		||||
    clamp_to_software_endstops(arc_target);
 | 
			
		||||
 | 
			
		||||
    #if defined(DELTA) || defined(SCARA)
 | 
			
		||||
      calculate_delta(arc_target);
 | 
			
		||||
      #ifdef ENABLE_AUTO_BED_LEVELING
 | 
			
		||||
        adjust_delta(arc_target);
 | 
			
		||||
      #endif
 | 
			
		||||
      plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
 | 
			
		||||
    #else
 | 
			
		||||
      plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
 | 
			
		||||
    #endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Ensure last segment arrives at target location.
 | 
			
		||||
  #if defined(DELTA) || defined(SCARA)
 | 
			
		||||
    calculate_delta(target);
 | 
			
		||||
    #ifdef ENABLE_AUTO_BED_LEVELING
 | 
			
		||||
      adjust_delta(target);
 | 
			
		||||
    #endif
 | 
			
		||||
    plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
 | 
			
		||||
  #else
 | 
			
		||||
    plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
  // As far as the parser is concerned, the position is now == target. In reality the
 | 
			
		||||
  // motion control system might still be processing the action and the real tool position
 | 
			
		||||
  // in any intermediate location.
 | 
			
		||||
  set_current_to_destination();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * G2: Clockwise Arc
 | 
			
		||||
 * G3: Counterclockwise Arc
 | 
			
		||||
@@ -6229,6 +6087,148 @@ void prepare_move() {
 | 
			
		||||
  set_current_to_destination();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * Plan an arc in 2 dimensions
 | 
			
		||||
 *
 | 
			
		||||
 * The arc is approximated by generating many small linear segments.
 | 
			
		||||
 * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
 | 
			
		||||
 * Arcs should only be made relatively large (over 5mm), as larger arcs with
 | 
			
		||||
 * larger segments will tend to be more efficient. Your slicer should have
 | 
			
		||||
 * options for G2/G3 arc generation. In future these options may be GCode tunable.
 | 
			
		||||
 */
 | 
			
		||||
void plan_arc(
 | 
			
		||||
  float target[NUM_AXIS], // Destination position
 | 
			
		||||
  float *offset,          // Center of rotation relative to current_position
 | 
			
		||||
  uint8_t clockwise       // Clockwise?
 | 
			
		||||
) {
 | 
			
		||||
 | 
			
		||||
  float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
 | 
			
		||||
        center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
 | 
			
		||||
        center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
 | 
			
		||||
        linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
 | 
			
		||||
        extruder_travel = target[E_AXIS] - current_position[E_AXIS],
 | 
			
		||||
        r_axis0 = -offset[X_AXIS],  // Radius vector from center to current location
 | 
			
		||||
        r_axis1 = -offset[Y_AXIS],
 | 
			
		||||
        rt_axis0 = target[X_AXIS] - center_axis0,
 | 
			
		||||
        rt_axis1 = target[Y_AXIS] - center_axis1;
 | 
			
		||||
  
 | 
			
		||||
  // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
 | 
			
		||||
  float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
 | 
			
		||||
  if (angular_travel < 0) { angular_travel += RADIANS(360); }
 | 
			
		||||
  if (clockwise) { angular_travel -= RADIANS(360); }
 | 
			
		||||
  
 | 
			
		||||
  // Make a circle if the angular rotation is 0
 | 
			
		||||
  if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
 | 
			
		||||
    angular_travel += RADIANS(360);
 | 
			
		||||
  
 | 
			
		||||
  float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
 | 
			
		||||
  if (mm_of_travel < 0.001) { return; }
 | 
			
		||||
  uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
 | 
			
		||||
  if (segments == 0) segments = 1;
 | 
			
		||||
  
 | 
			
		||||
  float theta_per_segment = angular_travel/segments;
 | 
			
		||||
  float linear_per_segment = linear_travel/segments;
 | 
			
		||||
  float extruder_per_segment = extruder_travel/segments;
 | 
			
		||||
  
 | 
			
		||||
  /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
 | 
			
		||||
     and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
 | 
			
		||||
         r_T = [cos(phi) -sin(phi);
 | 
			
		||||
                sin(phi)  cos(phi] * r ;
 | 
			
		||||
     
 | 
			
		||||
     For arc generation, the center of the circle is the axis of rotation and the radius vector is 
 | 
			
		||||
     defined from the circle center to the initial position. Each line segment is formed by successive
 | 
			
		||||
     vector rotations. This requires only two cos() and sin() computations to form the rotation
 | 
			
		||||
     matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
 | 
			
		||||
     all double numbers are single precision on the Arduino. (True double precision will not have
 | 
			
		||||
     round off issues for CNC applications.) Single precision error can accumulate to be greater than
 | 
			
		||||
     tool precision in some cases. Therefore, arc path correction is implemented. 
 | 
			
		||||
 | 
			
		||||
     Small angle approximation may be used to reduce computation overhead further. This approximation
 | 
			
		||||
     holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
 | 
			
		||||
     theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
 | 
			
		||||
     to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for 
 | 
			
		||||
     numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
 | 
			
		||||
     issue for CNC machines with the single precision Arduino calculations.
 | 
			
		||||
     
 | 
			
		||||
     This approximation also allows plan_arc to immediately insert a line segment into the planner 
 | 
			
		||||
     without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
 | 
			
		||||
     a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. 
 | 
			
		||||
     This is important when there are successive arc motions. 
 | 
			
		||||
  */
 | 
			
		||||
  // Vector rotation matrix values
 | 
			
		||||
  float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
 | 
			
		||||
  float sin_T = theta_per_segment;
 | 
			
		||||
  
 | 
			
		||||
  float arc_target[NUM_AXIS];
 | 
			
		||||
  float sin_Ti;
 | 
			
		||||
  float cos_Ti;
 | 
			
		||||
  float r_axisi;
 | 
			
		||||
  uint16_t i;
 | 
			
		||||
  int8_t count = 0;
 | 
			
		||||
 | 
			
		||||
  // Initialize the linear axis
 | 
			
		||||
  arc_target[Z_AXIS] = current_position[Z_AXIS];
 | 
			
		||||
  
 | 
			
		||||
  // Initialize the extruder axis
 | 
			
		||||
  arc_target[E_AXIS] = current_position[E_AXIS];
 | 
			
		||||
 | 
			
		||||
  float feed_rate = feedrate*feedrate_multiplier/60/100.0;
 | 
			
		||||
 | 
			
		||||
  for (i = 1; i < segments; i++) { // Increment (segments-1)
 | 
			
		||||
 | 
			
		||||
    if (count < N_ARC_CORRECTION) {
 | 
			
		||||
      // Apply vector rotation matrix to previous r_axis0 / 1
 | 
			
		||||
      r_axisi = r_axis0*sin_T + r_axis1*cos_T;
 | 
			
		||||
      r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
 | 
			
		||||
      r_axis1 = r_axisi;
 | 
			
		||||
      count++;
 | 
			
		||||
    }
 | 
			
		||||
    else {
 | 
			
		||||
      // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
 | 
			
		||||
      // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
 | 
			
		||||
      cos_Ti = cos(i*theta_per_segment);
 | 
			
		||||
      sin_Ti = sin(i*theta_per_segment);
 | 
			
		||||
      r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
 | 
			
		||||
      r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
 | 
			
		||||
      count = 0;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    // Update arc_target location
 | 
			
		||||
    arc_target[X_AXIS] = center_axis0 + r_axis0;
 | 
			
		||||
    arc_target[Y_AXIS] = center_axis1 + r_axis1;
 | 
			
		||||
    arc_target[Z_AXIS] += linear_per_segment;
 | 
			
		||||
    arc_target[E_AXIS] += extruder_per_segment;
 | 
			
		||||
 | 
			
		||||
    clamp_to_software_endstops(arc_target);
 | 
			
		||||
 | 
			
		||||
    #if defined(DELTA) || defined(SCARA)
 | 
			
		||||
      calculate_delta(arc_target);
 | 
			
		||||
      #ifdef ENABLE_AUTO_BED_LEVELING
 | 
			
		||||
        adjust_delta(arc_target);
 | 
			
		||||
      #endif
 | 
			
		||||
      plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
 | 
			
		||||
    #else
 | 
			
		||||
      plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
 | 
			
		||||
    #endif
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Ensure last segment arrives at target location.
 | 
			
		||||
  #if defined(DELTA) || defined(SCARA)
 | 
			
		||||
    calculate_delta(target);
 | 
			
		||||
    #ifdef ENABLE_AUTO_BED_LEVELING
 | 
			
		||||
      adjust_delta(target);
 | 
			
		||||
    #endif
 | 
			
		||||
    plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
 | 
			
		||||
  #else
 | 
			
		||||
    plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
  // As far as the parser is concerned, the position is now == target. In reality the
 | 
			
		||||
  // motion control system might still be processing the action and the real tool position
 | 
			
		||||
  // in any intermediate location.
 | 
			
		||||
  set_current_to_destination();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#if HAS_CONTROLLERFAN
 | 
			
		||||
 | 
			
		||||
  void controllerFan() {
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user