Merge pull request #1554 from 2PrintBeta/Development

Macro indirection for stepper drivers + Support for TMC26X and L6470 Stepper Drivers
This commit is contained in:
Scott Lahteine
2015-03-11 15:31:57 -07:00
64 changed files with 35166 additions and 190 deletions

View File

@ -462,6 +462,141 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#endif
#endif
/******************************************************************************\
* enable this section if you have TMC26X motor drivers.
* you need to import the TMC26XStepper library into the arduino IDE for this
******************************************************************************/
//#define HAVE_TMCDRIVER
#ifdef HAVE_TMCDRIVER
// #define X_IS_TMC
#define X_MAX_CURRENT 1000 //in mA
#define X_SENSE_RESISTOR 91 //in mOhms
#define X_MICROSTEPS 16 //number of microsteps
// #define X2_IS_TMC
#define X2_MAX_CURRENT 1000 //in mA
#define X2_SENSE_RESISTOR 91 //in mOhms
#define X2_MICROSTEPS 16 //number of microsteps
// #define Y_IS_TMC
#define Y_MAX_CURRENT 1000 //in mA
#define Y_SENSE_RESISTOR 91 //in mOhms
#define Y_MICROSTEPS 16 //number of microsteps
// #define Y2_IS_TMC
#define Y2_MAX_CURRENT 1000 //in mA
#define Y2_SENSE_RESISTOR 91 //in mOhms
#define Y2_MICROSTEPS 16 //number of microsteps
// #define Z_IS_TMC
#define Z_MAX_CURRENT 1000 //in mA
#define Z_SENSE_RESISTOR 91 //in mOhms
#define Z_MICROSTEPS 16 //number of microsteps
// #define Z2_IS_TMC
#define Z2_MAX_CURRENT 1000 //in mA
#define Z2_SENSE_RESISTOR 91 //in mOhms
#define Z2_MICROSTEPS 16 //number of microsteps
// #define E0_IS_TMC
#define E0_MAX_CURRENT 1000 //in mA
#define E0_SENSE_RESISTOR 91 //in mOhms
#define E0_MICROSTEPS 16 //number of microsteps
// #define E1_IS_TMC
#define E1_MAX_CURRENT 1000 //in mA
#define E1_SENSE_RESISTOR 91 //in mOhms
#define E1_MICROSTEPS 16 //number of microsteps
// #define E2_IS_TMC
#define E2_MAX_CURRENT 1000 //in mA
#define E2_SENSE_RESISTOR 91 //in mOhms
#define E2_MICROSTEPS 16 //number of microsteps
// #define E3_IS_TMC
#define E3_MAX_CURRENT 1000 //in mA
#define E3_SENSE_RESISTOR 91 //in mOhms
#define E3_MICROSTEPS 16 //number of microsteps
#endif
/******************************************************************************\
* enable this section if you have L6470 motor drivers.
* you need to import the L6470 library into the arduino IDE for this
******************************************************************************/
//#define HAVE_L6470DRIVER
#ifdef HAVE_L6470DRIVER
// #define X_IS_L6470
#define X_MICROSTEPS 16 //number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define X2_IS_L6470
#define X2_MICROSTEPS 16 //number of microsteps
#define X2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define X2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define Y_IS_L6470
#define Y_MICROSTEPS 16 //number of microsteps
#define Y_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define Y2_IS_L6470
#define Y2_MICROSTEPS 16 //number of microsteps
#define Y2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Y2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define Z_IS_L6470
#define Z_MICROSTEPS 16 //number of microsteps
#define Z_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define Z2_IS_L6470
#define Z2_MICROSTEPS 16 //number of microsteps
#define Z2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define Z2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define E0_IS_L6470
#define E0_MICROSTEPS 16 //number of microsteps
#define E0_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E0_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define E1_IS_L6470
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_MICROSTEPS 16 //number of microsteps
#define E1_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E1_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define E2_IS_L6470
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_MICROSTEPS 16 //number of microsteps
#define E2_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E2_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
// #define E3_IS_L6470
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_MICROSTEPS 16 //number of microsteps
#define E3_K_VAL 50 // 0 - 255, Higher values, are higher power. Be carefull not to go too high
#define E3_OVERCURRENT 2000 //maxc current in mA. If the current goes over this value, the driver will switch off
#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
#endif
//===========================================================================
//============================= Define Defines ============================
//===========================================================================

View File

@ -112,11 +112,11 @@ void manage_inactivity(bool ignore_stepper_queue=false);
#if defined(DUAL_X_CARRIAGE) && defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 \
&& defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
#define enable_x() do { WRITE(X_ENABLE_PIN, X_ENABLE_ON); WRITE(X2_ENABLE_PIN, X_ENABLE_ON); } while (0)
#define disable_x() do { WRITE(X_ENABLE_PIN,!X_ENABLE_ON); WRITE(X2_ENABLE_PIN,!X_ENABLE_ON); axis_known_position[X_AXIS] = false; } while (0)
#define enable_x() do { X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); } while (0)
#define disable_x() do { X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; } while (0)
#elif defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
#define disable_x() { WRITE(X_ENABLE_PIN,!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }
#define enable_x() X_ENABLE_WRITE( X_ENABLE_ON)
#define disable_x() { X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }
#else
#define enable_x() ;
#define disable_x() ;
@ -124,11 +124,11 @@ void manage_inactivity(bool ignore_stepper_queue=false);
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
#ifdef Y_DUAL_STEPPER_DRIVERS
#define enable_y() { WRITE(Y_ENABLE_PIN, Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, Y_ENABLE_ON); }
#define disable_y() { WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, !Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
#define enable_y() { Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }
#define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
#else
#define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON)
#define disable_y() { WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
#define enable_y() Y_ENABLE_WRITE( Y_ENABLE_ON)
#define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
#endif
#else
#define enable_y() ;
@ -137,11 +137,11 @@ void manage_inactivity(bool ignore_stepper_queue=false);
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
#ifdef Z_DUAL_STEPPER_DRIVERS
#define enable_z() { WRITE(Z_ENABLE_PIN, Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN, Z_ENABLE_ON); }
#define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); WRITE(Z2_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
#define enable_z() { Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }
#define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
#else
#define enable_z() WRITE(Z_ENABLE_PIN, Z_ENABLE_ON)
#define disable_z() { WRITE(Z_ENABLE_PIN,!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
#define enable_z() Z_ENABLE_WRITE( Z_ENABLE_ON)
#define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
#endif
#else
#define enable_z() ;
@ -149,32 +149,32 @@ void manage_inactivity(bool ignore_stepper_queue=false);
#endif
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
#define enable_e0() WRITE(E0_ENABLE_PIN, E_ENABLE_ON)
#define disable_e0() WRITE(E0_ENABLE_PIN,!E_ENABLE_ON)
#define enable_e0() E0_ENABLE_WRITE(E_ENABLE_ON)
#define disable_e0() E0_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e0() /* nothing */
#define disable_e0() /* nothing */
#endif
#if (EXTRUDERS > 1) && defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
#define enable_e1() WRITE(E1_ENABLE_PIN, E_ENABLE_ON)
#define disable_e1() WRITE(E1_ENABLE_PIN,!E_ENABLE_ON)
#define enable_e1() E1_ENABLE_WRITE(E_ENABLE_ON)
#define disable_e1() E1_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e1() /* nothing */
#define disable_e1() /* nothing */
#endif
#if (EXTRUDERS > 2) && defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
#define enable_e2() WRITE(E2_ENABLE_PIN, E_ENABLE_ON)
#define disable_e2() WRITE(E2_ENABLE_PIN,!E_ENABLE_ON)
#define enable_e2() E2_ENABLE_WRITE(E_ENABLE_ON)
#define disable_e2() E2_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e2() /* nothing */
#define disable_e2() /* nothing */
#endif
#if (EXTRUDERS > 3) && defined(E3_ENABLE_PIN) && (E3_ENABLE_PIN > -1)
#define enable_e3() WRITE(E3_ENABLE_PIN, E_ENABLE_ON)
#define disable_e3() WRITE(E3_ENABLE_PIN,!E_ENABLE_ON)
#define enable_e3() E3_ENABLE_WRITE(E_ENABLE_ON)
#define disable_e3() E3_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e3() /* nothing */
#define disable_e3() /* nothing */

View File

@ -54,3 +54,13 @@
#if defined(DIGIPOT_I2C)
#include <Wire.h>
#endif
#ifdef HAVE_TMCDRIVER
#include <SPI.h>
#include <TMC26XStepper.h>
#endif
#ifdef HAVE_L6470DRIVER
#include <SPI.h>
#include <L6470.h>
#endif

View File

@ -5120,17 +5120,17 @@ void controllerFan()
{
lastMotorCheck = millis();
if((READ(X_ENABLE_PIN) == (X_ENABLE_ON)) || (READ(Y_ENABLE_PIN) == (Y_ENABLE_ON)) || (READ(Z_ENABLE_PIN) == (Z_ENABLE_ON)) || (soft_pwm_bed > 0)
if((X_ENABLE_READ) == (X_ENABLE_ON)) || (Y_ENABLE_READ) == (Y_ENABLE_ON)) || (Z_ENABLE_READ) == (Z_ENABLE_ON)) || (soft_pwm_bed > 0)
#if EXTRUDERS > 2
|| (READ(E2_ENABLE_PIN) == (E_ENABLE_ON))
|| (E2_ENABLE_READ) == (E_ENABLE_ON))
#endif
#if EXTRUDER > 1
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|| (READ(X2_ENABLE_PIN) == (X_ENABLE_ON))
|| (X2_ENABLE_READ) == (X_ENABLE_ON))
#endif
|| (READ(E1_ENABLE_PIN) == (E_ENABLE_ON))
|| (E1_ENABLE_READ) == (E_ENABLE_ON))
#endif
|| (READ(E0_ENABLE_PIN) == (E_ENABLE_ON))) //If any of the drivers are enabled...
|| (E0_ENABLE_READ) == (E_ENABLE_ON))) //If any of the drivers are enabled...
{
lastMotor = millis(); //... set time to NOW so the fan will turn on
}
@ -5355,7 +5355,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
{
bool oldstatus=READ(E0_ENABLE_PIN);
bool oldstatus=E0_ENABLE_READ;
enable_e0();
float oldepos=current_position[E_AXIS];
float oldedes=destination[E_AXIS];
@ -5367,7 +5367,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
plan_set_e_position(oldepos);
previous_millis_cmd=millis();
st_synchronize();
WRITE(E0_ENABLE_PIN,oldstatus);
E0_ENABLE_WRITE(oldstatus);
}
#endif
#if defined(DUAL_X_CARRIAGE)

View File

@ -33,7 +33,6 @@
#include <SPI.h>
#endif
//===========================================================================
//=============================public variables ============================
//===========================================================================
@ -88,6 +87,7 @@ static bool check_endstops = true;
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
//===========================================================================
//=============================functions ============================
//===========================================================================
@ -349,51 +349,51 @@ ISR(TIMER1_COMPA_vect)
if((out_bits & (1<<X_AXIS))!=0){
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
WRITE(X_DIR_PIN, INVERT_X_DIR);
WRITE(X2_DIR_PIN, INVERT_X_DIR);
X_DIR_WRITE(INVERT_X_DIR);
X2_DIR_WRITE(INVERT_X_DIR);
}
else{
if (current_block->active_extruder != 0)
WRITE(X2_DIR_PIN, INVERT_X_DIR);
X2_DIR_WRITE(INVERT_X_DIR);
else
WRITE(X_DIR_PIN, INVERT_X_DIR);
X_DIR_WRITE(INVERT_X_DIR);
}
#else
WRITE(X_DIR_PIN, INVERT_X_DIR);
X_DIR_WRITE(INVERT_X_DIR);
#endif
count_direction[X_AXIS]=-1;
}
else{
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
WRITE(X_DIR_PIN, !INVERT_X_DIR);
WRITE(X2_DIR_PIN, !INVERT_X_DIR);
X_DIR_WRITE(!INVERT_X_DIR);
X2_DIR_WRITE( !INVERT_X_DIR);
}
else{
if (current_block->active_extruder != 0)
WRITE(X2_DIR_PIN, !INVERT_X_DIR);
X2_DIR_WRITE(!INVERT_X_DIR);
else
WRITE(X_DIR_PIN, !INVERT_X_DIR);
X_DIR_WRITE(!INVERT_X_DIR);
}
#else
WRITE(X_DIR_PIN, !INVERT_X_DIR);
X_DIR_WRITE(!INVERT_X_DIR);
#endif
count_direction[X_AXIS]=1;
}
if((out_bits & (1<<Y_AXIS))!=0){
WRITE(Y_DIR_PIN, INVERT_Y_DIR);
Y_DIR_WRITE(INVERT_Y_DIR);
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
Y2_DIR_WRITE(!(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
#endif
count_direction[Y_AXIS]=-1;
}
else{
WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
Y_DIR_WRITE(!INVERT_Y_DIR);
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
Y2_DIR_WRITE((INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
#endif
count_direction[Y_AXIS]=1;
@ -480,10 +480,10 @@ ISR(TIMER1_COMPA_vect)
}
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
Z_DIR_WRITE(INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
Z2_DIR_WRITE(INVERT_Z_DIR);
#endif
count_direction[Z_AXIS]=-1;
@ -501,10 +501,10 @@ ISR(TIMER1_COMPA_vect)
}
}
else { // +direction
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
Z_DIR_WRITE(!INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
Z2_DIR_WRITE(!INVERT_Z_DIR);
#endif
count_direction[Z_AXIS]=1;
@ -561,13 +561,13 @@ ISR(TIMER1_COMPA_vect)
* instead of doing each in turn. The extra tests add enough
* lag to allow it work with without needing NOPs
*/
if (counter_x > 0) WRITE(X_STEP_PIN, HIGH);
if (counter_x > 0) X_STEP_WRITE(HIGH);
counter_y += current_block->steps_y;
if (counter_y > 0) WRITE(Y_STEP_PIN, HIGH);
if (counter_y > 0) Y_STEP_WRITE(HIGH);
counter_z += current_block->steps_z;
if (counter_z > 0) WRITE(Z_STEP_PIN, HIGH);
if (counter_z > 0) Z_STEP_WRITE(HIGH);
#ifndef ADVANCE
counter_e += current_block->steps_e;
@ -577,19 +577,19 @@ ISR(TIMER1_COMPA_vect)
if (counter_x > 0) {
counter_x -= current_block->step_event_count;
count_position[X_AXIS] += count_direction[X_AXIS];
WRITE(X_STEP_PIN, LOW);
X_STEP_WRITE(LOW);
}
if (counter_y > 0) {
counter_y -= current_block->step_event_count;
count_position[Y_AXIS] += count_direction[Y_AXIS];
WRITE(Y_STEP_PIN, LOW);
Y_STEP_WRITE( LOW);
}
if (counter_z > 0) {
counter_z -= current_block->step_event_count;
count_position[Z_AXIS] += count_direction[Z_AXIS];
WRITE(Z_STEP_PIN, LOW);
Z_STEP_WRITE(LOW);
}
#ifndef ADVANCE
@ -603,66 +603,66 @@ ISR(TIMER1_COMPA_vect)
if (counter_x > 0) {
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
X_STEP_WRITE(!INVERT_X_STEP_PIN);
X2_STEP_WRITE( !INVERT_X_STEP_PIN);
}
else {
if (current_block->active_extruder != 0)
WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
X2_STEP_WRITE( !INVERT_X_STEP_PIN);
else
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
X_STEP_WRITE(!INVERT_X_STEP_PIN);
}
#else
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
X_STEP_WRITE(!INVERT_X_STEP_PIN);
#endif
counter_x -= current_block->step_event_count;
count_position[X_AXIS] += count_direction[X_AXIS];
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
X_STEP_WRITE(INVERT_X_STEP_PIN);
X2_STEP_WRITE(INVERT_X_STEP_PIN);
}
else {
if (current_block->active_extruder != 0)
WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
X2_STEP_WRITE(INVERT_X_STEP_PIN);
else
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
X_STEP_WRITE(INVERT_X_STEP_PIN);
}
#else
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
X_STEP_WRITE(INVERT_X_STEP_PIN);
#endif
}
counter_y += current_block->steps_y;
if (counter_y > 0) {
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
Y2_STEP_WRITE( !INVERT_Y_STEP_PIN);
#endif
counter_y -= current_block->step_event_count;
count_position[Y_AXIS] += count_direction[Y_AXIS];
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
Y2_STEP_WRITE( INVERT_Y_STEP_PIN);
#endif
}
counter_z += current_block->steps_z;
if (counter_z > 0) {
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
Z_STEP_WRITE( !INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
Z2_STEP_WRITE(!INVERT_Z_STEP_PIN);
#endif
counter_z -= current_block->step_event_count;
count_position[Z_AXIS] += count_direction[Z_AXIS];
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
Z_STEP_WRITE( INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif
}
@ -759,60 +759,60 @@ ISR(TIMER1_COMPA_vect)
// Set E direction (Depends on E direction + advance)
for(unsigned char i=0; i<4;i++) {
if (e_steps[0] != 0) {
WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
E0_STEP_WRITE( INVERT_E_STEP_PIN);
if (e_steps[0] < 0) {
WRITE(E0_DIR_PIN, INVERT_E0_DIR);
E0_DIR_WRITE(INVERT_E0_DIR);
e_steps[0]++;
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
E0_STEP_WRITE(!INVERT_E_STEP_PIN);
}
else if (e_steps[0] > 0) {
WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
E0_DIR_WRITE(!INVERT_E0_DIR);
e_steps[0]--;
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
E0_STEP_WRITE(!INVERT_E_STEP_PIN);
}
}
#if EXTRUDERS > 1
if (e_steps[1] != 0) {
WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
E1_STEP_WRITE(INVERT_E_STEP_PIN);
if (e_steps[1] < 0) {
WRITE(E1_DIR_PIN, INVERT_E1_DIR);
E1_DIR_WRITE(INVERT_E1_DIR);
e_steps[1]++;
WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
E1_STEP_WRITE(!INVERT_E_STEP_PIN);
}
else if (e_steps[1] > 0) {
WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
E1_DIR_WRITE(!INVERT_E1_DIR);
e_steps[1]--;
WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
E1_STEP_WRITE(!INVERT_E_STEP_PIN);
}
}
#endif
#if EXTRUDERS > 2
if (e_steps[2] != 0) {
WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
E2_STEP_WRITE(INVERT_E_STEP_PIN);
if (e_steps[2] < 0) {
WRITE(E2_DIR_PIN, INVERT_E2_DIR);
E2_DIR_WRITE(INVERT_E2_DIR);
e_steps[2]++;
WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
E2_STEP_WRITE(!INVERT_E_STEP_PIN);
}
else if (e_steps[2] > 0) {
WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
E2_DIR_WRITE(!INVERT_E2_DIR);
e_steps[2]--;
WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
E2_STEP_WRITE(!INVERT_E_STEP_PIN);
}
}
#endif
#if EXTRUDERS > 3
if (e_steps[3] != 0) {
WRITE(E3_STEP_PIN, INVERT_E_STEP_PIN);
E3_STEP_WRITE(INVERT_E_STEP_PIN);
if (e_steps[3] < 0) {
WRITE(E3_DIR_PIN, INVERT_E3_DIR);
E3_DIR_WRITE(INVERT_E3_DIR);
e_steps[3]++;
WRITE(E3_STEP_PIN, !INVERT_E_STEP_PIN);
E3_STEP_WRITE(!INVERT_E_STEP_PIN);
}
else if (e_steps[3] > 0) {
WRITE(E3_DIR_PIN, !INVERT_E3_DIR);
E3_DIR_WRITE(!INVERT_E3_DIR);
e_steps[3]--;
WRITE(E3_STEP_PIN, !INVERT_E_STEP_PIN);
E3_STEP_WRITE(!INVERT_E_STEP_PIN);
}
}
#endif
@ -826,83 +826,93 @@ void st_init()
digipot_init(); //Initialize Digipot Motor Current
microstep_init(); //Initialize Microstepping Pins
// initialise TMC Steppers
#ifdef HAVE_TMCDRIVER
tmc_init();
#endif
// initialise L6470 Steppers
#ifdef HAVE_L6470DRIVER
L6470_init();
#endif
//Initialize Dir Pins
#if defined(X_DIR_PIN) && X_DIR_PIN > -1
SET_OUTPUT(X_DIR_PIN);
X_DIR_INIT;
#endif
#if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
SET_OUTPUT(X2_DIR_PIN);
X2_DIR_INIT;
#endif
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN);
Y_DIR_INIT;
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
SET_OUTPUT(Y2_DIR_PIN);
Y2_DIR_INIT;
#endif
#endif
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
SET_OUTPUT(Z_DIR_PIN);
Z_DIR_INIT;
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
SET_OUTPUT(Z2_DIR_PIN);
Z2_DIR_INIT;
#endif
#endif
#if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
SET_OUTPUT(E0_DIR_PIN);
E0_DIR_INIT;
#endif
#if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
SET_OUTPUT(E1_DIR_PIN);
E1_DIR_INIT;
#endif
#if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
SET_OUTPUT(E2_DIR_PIN);
E2_DIR_INIT;
#endif
#if defined(E3_DIR_PIN) && (E3_DIR_PIN > -1)
SET_OUTPUT(E3_DIR_PIN);
E3_DIR_INIT;
#endif
//Initialize Enable Pins - steppers default to disabled.
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
SET_OUTPUT(X_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
X_ENABLE_INIT;
if(!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
#endif
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
SET_OUTPUT(X2_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
X2_ENABLE_INIT;
if(!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
#endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
SET_OUTPUT(Y_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
Y_ENABLE_INIT;
if(!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
SET_OUTPUT(Y2_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
Y2_ENABLE_INIT;
if(!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
#endif
#endif
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
SET_OUTPUT(Z_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
Z_ENABLE_INIT;
if(!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
SET_OUTPUT(Z2_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
Z2_ENABLE_INIT;
if(!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
#endif
#endif
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
SET_OUTPUT(E0_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
E0_ENABLE_INIT;
if(!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
#endif
#if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
SET_OUTPUT(E1_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
E1_ENABLE_INIT;
if(!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
#endif
#if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
SET_OUTPUT(E2_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
E2_ENABLE_INIT;
if(!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
#endif
#if defined(E3_ENABLE_PIN) && (E3_ENABLE_PIN > -1)
SET_OUTPUT(E3_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E3_ENABLE_PIN,HIGH);
E3_ENABLE_INIT;
if(!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
#endif
//endstops and pullups
@ -952,41 +962,51 @@ void st_init()
//Initialize Step Pins
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
OUT_WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
X_STEP_INIT;
X_STEP_WRITE(INVERT_X_STEP_PIN);
disable_x();
#endif
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
OUT_WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
X2_STEP_INIT;
X2_STEP_WRITE(INVERT_X_STEP_PIN);
disable_x();
#endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
OUT_WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
Y_STEP_INIT;
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
OUT_WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
Y2_STEP_INIT;
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
#endif
disable_y();
#endif
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
OUT_WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
Z_STEP_INIT;
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
OUT_WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
Z2_STEP_INIT;
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif
disable_z();
#endif
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
OUT_WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
E0_STEP_INIT;
E0_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e0();
#endif
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
OUT_WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
E1_STEP_INIT;
E1_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e1();
#endif
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
OUT_WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
E2_STEP_INIT;
E2_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e2();
#endif
#if defined(E3_STEP_PIN) && (E3_STEP_PIN > -1)
OUT_WRITE(E3_STEP_PIN,INVERT_E_STEP_PIN);
E3_STEP_INIT;
E3_STEP_WRITE(INVERT_E_STEP_PIN);
disable_e3();
#endif
@ -1105,31 +1125,31 @@ void babystep(const uint8_t axis,const bool direction)
case X_AXIS:
{
enable_x();
uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
uint8_t old_x_dir_pin= X_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
X_DIR_WRITE((INVERT_X_DIR)^direction);
#ifdef DUAL_X_CARRIAGE
WRITE(X2_DIR_PIN,(INVERT_X_DIR)^direction);
X2_DIR_WRITE((INVERT_X_DIR)^direction);
#endif
//perform step
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
X_STEP_WRITE(!INVERT_X_STEP_PIN);
#ifdef DUAL_X_CARRIAGE
WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
X2_STEP_WRITE(!INVERT_X_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
X_STEP_WRITE(INVERT_X_STEP_PIN);
#ifdef DUAL_X_CARRIAGE
WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
X2_STEP_WRITE(INVERT_X_STEP_PIN);
#endif
//get old pin state back.
WRITE(X_DIR_PIN,old_x_dir_pin);
X_DIR_WRITE(old_x_dir_pin);
#ifdef DUAL_X_CARRIAGE
WRITE(X2_DIR_PIN,old_x_dir_pin);
X2_DIR_WRITE(old_x_dir_pin);
#endif
}
@ -1137,31 +1157,31 @@ void babystep(const uint8_t axis,const bool direction)
case Y_AXIS:
{
enable_y();
uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
uint8_t old_y_dir_pin= Y_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
Y_DIR_WRITE((INVERT_Y_DIR)^direction);
#ifdef DUAL_Y_CARRIAGE
WRITE(Y2_DIR_PIN,(INVERT_Y_DIR)^direction);
Y2_DIR_WRITE((INVERT_Y_DIR)^direction);
#endif
//perform step
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
#ifdef DUAL_Y_CARRIAGE
WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
Y2_STEP_WRITE( !INVERT_Y_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
#ifdef DUAL_Y_CARRIAGE
WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
#endif
//get old pin state back.
WRITE(Y_DIR_PIN,old_y_dir_pin);
Y_DIR_WRITE(old_y_dir_pin);
#ifdef DUAL_Y_CARRIAGE
WRITE(Y2_DIR_PIN,old_y_dir_pin);
Y2_DIR_WRITE(old_y_dir_pin);
#endif
}
@ -1171,29 +1191,29 @@ void babystep(const uint8_t axis,const bool direction)
case Z_AXIS:
{
enable_z();
uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
uint8_t old_z_dir_pin= Z_DIR_READ; //if dualzstepper, both point to same direction.
//setup new step
WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
Z_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
Z2_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
#endif
//perform step
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
Z2_STEP_WRITE( !INVERT_Z_STEP_PIN);
#endif
_delay_us(1U); // wait 1 microsecond
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
Z_STEP_WRITE( INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
#endif
//get old pin state back.
WRITE(Z_DIR_PIN,old_z_dir_pin);
Z_DIR_WRITE(old_z_dir_pin);
#ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_DIR_PIN,old_z_dir_pin);
Z2_DIR_WRITE(old_z_dir_pin);
#endif
}
@ -1204,29 +1224,29 @@ void babystep(const uint8_t axis,const bool direction)
enable_x();
enable_y();
enable_z();
uint8_t old_x_dir_pin= READ(X_DIR_PIN);
uint8_t old_y_dir_pin= READ(Y_DIR_PIN);
uint8_t old_z_dir_pin= READ(Z_DIR_PIN);
uint8_t old_x_dir_pin= X_DIR_READ;
uint8_t old_y_dir_pin= Y_DIR_READ;
uint8_t old_z_dir_pin= Z_DIR_READ;
//setup new step
WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
X_DIR_WRITE((INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
Y_DIR_WRITE((INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
Z_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
//perform step
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
X_STEP_WRITE( !INVERT_X_STEP_PIN);
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
_delay_us(1U); // wait 1 microsecond
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
X_STEP_WRITE(INVERT_X_STEP_PIN);
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
//get old pin state back.
WRITE(X_DIR_PIN,old_x_dir_pin);
WRITE(Y_DIR_PIN,old_y_dir_pin);
WRITE(Z_DIR_PIN,old_z_dir_pin);
X_DIR_WRITE(old_x_dir_pin);
Y_DIR_WRITE(old_y_dir_pin);
Z_DIR_WRITE(old_z_dir_pin);
}
break;
@ -1363,4 +1383,3 @@ void microstep_readings()
SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
#endif
}

View File

@ -22,30 +22,31 @@
#define stepper_h
#include "planner.h"
#include "stepper_indirection.h"
#if EXTRUDERS > 3
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 3) { WRITE(E3_STEP_PIN, v); } else { if(current_block->active_extruder == 2) { WRITE(E2_STEP_PIN, v); } else { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}}}
#define NORM_E_DIR() { if(current_block->active_extruder == 3) { WRITE(E3_DIR_PIN, !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, !INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}}}
#define REV_E_DIR() { if(current_block->active_extruder == 3) { WRITE(E3_DIR_PIN, INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}}}
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}}
#define NORM_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE( !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}}
#define REV_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE(INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}}
#elif EXTRUDERS > 2
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 2) { WRITE(E2_STEP_PIN, v); } else { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}}
#define NORM_E_DIR() { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, !INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}}
#define REV_E_DIR() { if(current_block->active_extruder == 2) { WRITE(E2_DIR_PIN, INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}}
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}
#define NORM_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}
#define REV_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}
#elif EXTRUDERS > 1
#ifndef DUAL_X_CARRIAGE
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}
#define NORM_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}
#define REV_E_DIR() { if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
#define NORM_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
#define REV_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
#else
extern bool extruder_duplication_enabled;
#define WRITE_E_STEP(v) { if(extruder_duplication_enabled) { WRITE(E0_STEP_PIN, v); WRITE(E1_STEP_PIN, v); } else if(current_block->active_extruder == 1) { WRITE(E1_STEP_PIN, v); } else { WRITE(E0_STEP_PIN, v); }}
#define NORM_E_DIR() { if(extruder_duplication_enabled) { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, !INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, !INVERT_E0_DIR); }}
#define REV_E_DIR() { if(extruder_duplication_enabled) { WRITE(E0_DIR_PIN, INVERT_E0_DIR); WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { WRITE(E1_DIR_PIN, INVERT_E1_DIR); } else { WRITE(E0_DIR_PIN, INVERT_E0_DIR); }}
#define WRITE_E_STEP(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
#define NORM_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
#define REV_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
#endif
#else
#define WRITE_E_STEP(v) WRITE(E0_STEP_PIN, v)
#define NORM_E_DIR() WRITE(E0_DIR_PIN, !INVERT_E0_DIR)
#define REV_E_DIR() WRITE(E0_DIR_PIN, INVERT_E0_DIR)
#define WRITE_E_STEP(v) E0_STEP_WRITE(v)
#define NORM_E_DIR() E0_DIR_WRITE(!INVERT_E0_DIR)
#define REV_E_DIR() E0_DIR_WRITE(INVERT_E0_DIR)
#endif
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
@ -100,6 +101,4 @@ void microstep_readings();
void babystep(const uint8_t axis,const bool direction); // perform a short step with a single stepper motor, outside of any convention
#endif
#endif

View File

@ -0,0 +1,224 @@
/*
stepper_indirection.c - stepper motor driver indirection
to allow some stepper functions to be done via SPI/I2c instead of direct pin manipulation
Part of Marlin
Copyright (c) 2015 Dominik Wenger
Marlin is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Marlin is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Marlin. If not, see <http://www.gnu.org/licenses/>.
*/
#include "stepper_indirection.h"
#include "Configuration.h"
#ifdef HAVE_TMCDRIVER
#include <SPI.h>
#include <TMC26XStepper.h>
#endif
// Stepper objects of TMC steppers used
#ifdef X_IS_TMC
TMC26XStepper stepperX(200,X_ENABLE_PIN,X_STEP_PIN,X_DIR_PIN,X_MAX_CURRENT,X_SENSE_RESISTOR);
#endif
#ifdef X2_IS_TMC
TMC26XStepper stepperX2(200,X2_ENABLE_PIN,X2_STEP_PIN,X2_DIR_PIN,X2_MAX_CURRENT,X2_SENSE_RESISTOR);
#endif
#ifdef Y_IS_TMC
TMC26XStepper stepperY(200,Y_ENABLE_PIN,Y_STEP_PIN,Y_DIR_PIN,Y_MAX_CURRENT,Y_SENSE_RESISTOR);
#endif
#ifdef Y2_IS_TMC
TMC26XStepper stepperY2(200,Y2_ENABLE_PIN,Y2_STEP_PIN,Y2_DIR_PIN,Y2_MAX_CURRENT,Y2_SENSE_RESISTOR);
#endif
#ifdef Z_IS_TMC
TMC26XStepper stepperZ(200,Z_ENABLE_PIN,Z_STEP_PIN,Z_DIR_PIN,Z_MAX_CURRENT,Z_SENSE_RESISTOR);
#endif
#ifdef Z2_IS_TMC
TMC26XStepper stepperZ2(200,Z2_ENABLE_PIN,Z2_STEP_PIN,Z2_DIR_PIN,Z2_MAX_CURRENT,Z2_SENSE_RESISTOR);
#endif
#ifdef E0_IS_TMC
TMC26XStepper stepperE0(200,E0_ENABLE_PIN,E0_STEP_PIN,E0_DIR_PIN,E0_MAX_CURRENT,E0_SENSE_RESISTOR);
#endif
#ifdef E1_IS_TMC
TMC26XStepper stepperE1(200,E1_ENABLE_PIN,E1_STEP_PIN,E1_DIR_PIN,E1_MAX_CURRENT,E1_SENSE_RESISTOR);
#endif
#ifdef E2_IS_TMC
TMC26XStepper stepperE2(200,E2_ENABLE_PIN,E2_STEP_PIN,E2_DIR_PIN,E2_MAX_CURRENT,E2_SENSE_RESISTOR);
#endif
#ifdef E3_IS_TMC
TMC26XStepper stepperE3(200,E3_ENABLE_PIN,E3_STEP_PIN,E3_DIR_PIN,E3_MAX_CURRENT,E3_SENSE_RESISTOR);
#endif
#ifdef HAVE_TMCDRIVER
void tmc_init()
{
#ifdef X_IS_TMC
stepperX.setMicrosteps(X_MICROSTEPS);
stepperX.start();
#endif
#ifdef X2_IS_TMC
stepperX2.setMicrosteps(X2_MICROSTEPS);
stepperX2.start();
#endif
#ifdef Y_IS_TMC
stepperY.setMicrosteps(Y_MICROSTEPS);
stepperY.start();
#endif
#ifdef Y2_IS_TMC
stepperY2.setMicrosteps(Y2_MICROSTEPS);
stepperY2.start();
#endif
#ifdef Z_IS_TMC
stepperZ.setMicrosteps(Z_MICROSTEPS);
stepperZ.start();
#endif
#ifdef Z2_IS_TMC
stepperZ2.setMicrosteps(Z2_MICROSTEPS);
stepperZ2.start();
#endif
#ifdef E0_IS_TMC
stepperE0.setMicrosteps(E0_MICROSTEPS);
stepperE0.start();
#endif
#ifdef E1_IS_TMC
stepperE1.setMicrosteps(E1_MICROSTEPS);
stepperE1.start();
#endif
#ifdef E2_IS_TMC
stepperE2.setMicrosteps(E2_MICROSTEPS);
stepperE2.start();
#endif
#ifdef E3_IS_TMC
stepperE3.setMicrosteps(E3_MICROSTEPS);
stepperE3.start();
#endif
}
#endif
// L6470 Driver objects and inits
#ifdef HAVE_L6470DRIVER
#include <SPI.h>
#include <L6470.h>
#endif
// L6470 Stepper objects
#ifdef X_IS_L6470
L6470 stepperX(X_ENABLE_PIN);
#endif
#ifdef X2_IS_L6470
L6470 stepperX2(X2_ENABLE_PIN);
#endif
#ifdef Y_IS_L6470
L6470 stepperY(Y_ENABLE_PIN);
#endif
#ifdef Y2_IS_L6470
L6470 stepperY2(Y2_ENABLE_PIN);
#endif
#ifdef Z_IS_L6470
L6470 stepperZ(Z_ENABLE_PIN);
#endif
#ifdef Z2_IS_L6470
L6470 stepperZ2(Z2_ENABLE_PIN);
#endif
#ifdef E0_IS_L6470
L6470 stepperE0(E0_ENABLE_PIN);
#endif
#ifdef E1_IS_L6470
L6470 stepperE1(E1_ENABLE_PIN);
#endif
#ifdef E2_IS_L6470
L6470 stepperE2(E2_ENABLE_PIN);
#endif
#ifdef E3_IS_L6470
L6470 stepperE3(E3_ENABLE_PIN);
#endif
// init routine
#ifdef HAVE_L6470DRIVER
void L6470_init()
{
#ifdef X_IS_L6470
stepperX.init(X_K_VAL);
stepperX.softFree();
stepperX.setMicroSteps(X_MICROSTEPS);
stepperX.setOverCurrent(X_OVERCURRENT); //set overcurrent protection
stepperX.setStallCurrent(X_STALLCURRENT);
#endif
#ifdef X2_IS_L6470
stepperX2.init(X2_K_VAL);
stepperX2.softFree();
stepperX2.setMicroSteps(X2_MICROSTEPS);
stepperX2.setOverCurrent(X2_OVERCURRENT); //set overcurrent protection
stepperX2.setStallCurrent(X2_STALLCURRENT);
#endif
#ifdef Y_IS_L6470
stepperY.init(Y_K_VAL);
stepperY.softFree();
stepperY.setMicroSteps(Y_MICROSTEPS);
stepperY.setOverCurrent(Y_OVERCURRENT); //set overcurrent protection
stepperY.setStallCurrent(Y_STALLCURRENT);
#endif
#ifdef Y2_IS_L6470
stepperY2.init(Y2_K_VAL);
stepperY2.softFree();
stepperY2.setMicroSteps(Y2_MICROSTEPS);
stepperY2.setOverCurrent(Y2_OVERCURRENT); //set overcurrent protection
stepperY2.setStallCurrent(Y2_STALLCURRENT);
#endif
#ifdef Z_IS_L6470
stepperZ.init(Z_K_VAL);
stepperZ.softFree();
stepperZ.setMicroSteps(Z_MICROSTEPS);
stepperZ.setOverCurrent(Z_OVERCURRENT); //set overcurrent protection
stepperZ.setStallCurrent(Z_STALLCURRENT);
#endif
#ifdef Z2_IS_L6470
stepperZ2.init(Z2_K_VAL);
stepperZ2.softFree();
stepperZ2.setMicroSteps(Z2_MICROSTEPS);
stepperZ2.setOverCurrent(Z2_OVERCURRENT); //set overcurrent protection
stepperZ2.setStallCurrent(Z2_STALLCURRENT);
#endif
#ifdef E0_IS_L6470
stepperE0.init(E0_K_VAL);
stepperE0.softFree();
stepperE0.setMicroSteps(E0_MICROSTEPS);
stepperE0.setOverCurrent(E0_OVERCURRENT); //set overcurrent protection
stepperE0.setStallCurrent(E0_STALLCURRENT);
#endif
#ifdef E1_IS_L6470
stepperE1.init(E1_K_VAL);
stepperE1.softFree();
stepperE1.setMicroSteps(E1_MICROSTEPS);
stepperE1.setOverCurrent(E1_OVERCURRENT); //set overcurrent protection
stepperE1.setStallCurrent(E1_STALLCURRENT);
#endif
#ifdef E2_IS_L6470
stepperE2.init(E2_K_VAL);
stepperE2.softFree();
stepperE2.setMicroSteps(E2_MICROSTEPS);
stepperE2.setOverCurrent(E2_OVERCURRENT); //set overcurrent protection
stepperE2.setStallCurrent(E2_STALLCURRENT);
#endif
#ifdef E3_IS_L6470
stepperE3.init(E3_K_VAL);
stepperE3.softFree();
stepperE3.setMicroSteps(E3_MICROSTEPS);
stepperE3.setOverCurrent(E3_OVERCURRENT); //set overcurrent protection
stepperE3.setStallCurrent(E3_STALLCURRENT);
#endif
}
#endif

View File

@ -0,0 +1,492 @@
/*
stepper_indirection.h - stepper motor driver indirection macros
to allow some stepper functions to be done via SPI/I2c instead of direct pin manipulation
Part of Marlin
Copyright (c) 2015 Dominik Wenger
Marlin is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Marlin is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Marlin. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef STEPPER_INDIRECTION_H
#define STEPPER_INDIRECTION_H
// X motor
#define X_STEP_INIT SET_OUTPUT(X_STEP_PIN)
#define X_STEP_WRITE(STATE) WRITE(X_STEP_PIN,STATE)
#define X_STEP_READ READ(X_STEP_PIN)
#define X_DIR_INIT SET_OUTPUT(X_DIR_PIN)
#define X_DIR_WRITE(STATE) WRITE(X_DIR_PIN,STATE)
#define X_DIR_READ READ(X_DIR_PIN)
#define X_ENABLE_INIT SET_OUTPUT(X_ENABLE_PIN)
#define X_ENABLE_WRITE(STATE) WRITE(X_ENABLE_PIN,STATE)
#define X_ENABLE_READ READ(X_ENABLE_PIN)
// X2 motor
#define X2_STEP_INIT SET_OUTPUT(X2_STEP_PIN)
#define X2_STEP_WRITE(STATE) WRITE(X2_STEP_PIN,STATE)
#define X2_STEP_READ READ(X2_STEP_PIN)
#define X2_DIR_INIT SET_OUTPUT(X2_DIR_PIN)
#define X2_DIR_WRITE(STATE) WRITE(X2_DIR_PIN,STATE)
#define X2_DIR_READ READ(X_DIR_PIN)
#define X2_ENABLE_INIT SET_OUTPUT(X2_ENABLE_PIN)
#define X2_ENABLE_WRITE(STATE) WRITE(X2_ENABLE_PIN,STATE)
#define X2_ENABLE_READ READ(X_ENABLE_PIN)
// Y motor
#define Y_STEP_INIT SET_OUTPUT(Y_STEP_PIN)
#define Y_STEP_WRITE(STATE) WRITE(Y_STEP_PIN,STATE)
#define Y_STEP_READ READ(Y_STEP_PIN)
#define Y_DIR_INIT SET_OUTPUT(Y_DIR_PIN)
#define Y_DIR_WRITE(STATE) WRITE(Y_DIR_PIN,STATE)
#define Y_DIR_READ READ(Y_DIR_PIN)
#define Y_ENABLE_INIT SET_OUTPUT(Y_ENABLE_PIN)
#define Y_ENABLE_WRITE(STATE) WRITE(Y_ENABLE_PIN,STATE)
#define Y_ENABLE_READ READ(Y_ENABLE_PIN)
// Y2 motor
#define Y2_STEP_INIT SET_OUTPUT(Y2_STEP_PIN)
#define Y2_STEP_WRITE(STATE) WRITE(Y2_STEP_PIN,STATE)
#define Y2_STEP_READ READ(Y2_STEP_PIN)
#define Y2_DIR_INIT SET_OUTPUT(Y2_DIR_PIN)
#define Y2_DIR_WRITE(STATE) WRITE(Y2_DIR_PIN,STATE)
#define Y2_DIR_READ READ(Y2_DIR_PIN)
#define Y2_ENABLE_INIT SET_OUTPUT(Y2_ENABLE_PIN)
#define Y2_ENABLE_WRITE(STATE) WRITE(Y2_ENABLE_PIN,STATE)
#define Y2_ENABLE_READ READ(Y2_ENABLE_PIN)
// Z motor
#define Z_STEP_INIT SET_OUTPUT(Z_STEP_PIN)
#define Z_STEP_WRITE(STATE) WRITE(Z_STEP_PIN,STATE)
#define Z_STEP_READ READ(Z_STEP_PIN)
#define Z_DIR_INIT SET_OUTPUT(Z_DIR_PIN)
#define Z_DIR_WRITE(STATE) WRITE(Z_DIR_PIN,STATE)
#define Z_DIR_READ READ(Z_DIR_PIN)
#define Z_ENABLE_INIT SET_OUTPUT(Z_ENABLE_PIN)
#define Z_ENABLE_WRITE(STATE) WRITE(Z_ENABLE_PIN,STATE)
#define Z_ENABLE_READ READ(Z_ENABLE_PIN)
// Z2 motor
#define Z2_STEP_INIT SET_OUTPUT(Z2_STEP_PIN)
#define Z2_STEP_WRITE(STATE) WRITE(Z2_STEP_PIN,STATE)
#define Z2_STEP_READ READ(Z2_STEP_PIN)
#define Z2_DIR_INIT SET_OUTPUT(Z2_DIR_PIN)
#define Z2_DIR_WRITE(STATE) WRITE(Z2_DIR_PIN,STATE)
#define Z2_DIR_READ READ(Z2_DIR_PIN)
#define Z2_ENABLE_INIT SET_OUTPUT(Z2_ENABLE_PIN)
#define Z2_ENABLE_WRITE(STATE) WRITE(Z2_ENABLE_PIN,STATE)
#define Z2_ENABLE_READ READ(Z2_ENABLE_PIN)
// E0 motor
#define E0_STEP_INIT SET_OUTPUT(E0_STEP_PIN)
#define E0_STEP_WRITE(STATE) WRITE(E0_STEP_PIN,STATE)
#define E0_STEP_READ READ(E0_STEP_PIN)
#define E0_DIR_INIT SET_OUTPUT(E0_DIR_PIN)
#define E0_DIR_WRITE(STATE) WRITE(E0_DIR_PIN,STATE)
#define E0_DIR_READ READ(E0_DIR_PIN)
#define E0_ENABLE_INIT SET_OUTPUT(E0_ENABLE_PIN)
#define E0_ENABLE_WRITE(STATE) WRITE(E0_ENABLE_PIN,STATE)
#define E0_ENABLE_READ READ(E0_ENABLE_PIN)
// E1 motor
#define E1_STEP_INIT SET_OUTPUT(E1_STEP_PIN)
#define E1_STEP_WRITE(STATE) WRITE(E1_STEP_PIN,STATE)
#define E1_STEP_READ READ(E1_STEP_PIN)
#define E1_DIR_INIT SET_OUTPUT(E1_DIR_PIN)
#define E1_DIR_WRITE(STATE) WRITE(E1_DIR_PIN,STATE)
#define E1_DIR_READ READ(E1_DIR_PIN)
#define E1_ENABLE_INIT SET_OUTPUT(E1_ENABLE_PIN)
#define E1_ENABLE_WRITE(STATE) WRITE(E1_ENABLE_PIN,STATE)
#define E1_ENABLE_READ READ(E1_ENABLE_PIN)
// E2 motor
#define E2_STEP_INIT SET_OUTPUT(E2_STEP_PIN)
#define E2_STEP_WRITE(STATE) WRITE(E2_STEP_PIN,STATE)
#define E2_STEP_READ READ(E2_STEP_PIN)
#define E2_DIR_INIT SET_OUTPUT(E2_DIR_PIN)
#define E2_DIR_WRITE(STATE) WRITE(E2_DIR_PIN,STATE)
#define E2_DIR_READ READ(E2_DIR_PIN)
#define E2_ENABLE_INIT SET_OUTPUT(E2_ENABLE_PIN)
#define E2_ENABLE_WRITE(STATE) WRITE(E2_ENABLE_PIN,STATE)
#define E2_ENABLE_READ READ(E2_ENABLE_PIN)
// E3 motor
#define E3_STEP_INIT SET_OUTPUT(E3_STEP_PIN)
#define E3_STEP_WRITE(STATE) WRITE(E3_STEP_PIN,STATE)
#define E3_STEP_READ READ(E3_STEP_PIN)
#define E3_DIR_INIT SET_OUTPUT(E3_DIR_PIN)
#define E3_DIR_WRITE(STATE) WRITE(E3_DIR_PIN,STATE)
#define E3_DIR_READ READ(E3_DIR_PIN)
#define E3_ENABLE_INIT SET_OUTPUT(E3_ENABLE_PIN)
#define E3_ENABLE_WRITE(STATE) WRITE(E3_ENABLE_PIN,STATE)
#define E3_ENABLE_READ READ(E3_ENABLE_PIN)
//////////////////////////////////
// Pin redefines for TMC drivers.
// TMC26X drivers have step and dir on normal pins, but everything else via SPI
//////////////////////////////////
#ifdef HAVE_TMCDRIVER
#include <SPI.h>
#include <TMC26XStepper.h>
void tmc_init();
#ifdef X_IS_TMC
extern TMC26XStepper stepperX;
#undef X_ENABLE_INIT
#define X_ENABLE_INIT ((void)0)
#undef X_ENABLE_WRITE
#define X_ENABLE_WRITE(STATE) stepperX.setEnabled(STATE)
#undef X_ENABLE_READ
#define X_ENABLE_READ stepperX.isEnabled()
#endif
#ifdef X2_IS_TMC
extern TMC26XStepper stepperX2;
#undef X2_ENABLE_INIT
#define X2_ENABLE_INIT ((void)0)
#undef X2_ENABLE_WRITE
#define X2_ENABLE_WRITE(STATE) stepperX2.setEnabled(STATE)
#undef X2_ENABLE_READ
#define X2_ENABLE_READ stepperX2.isEnabled()
#endif
#ifdef Y_IS_TMC
extern TMC26XStepper stepperY;
#undef Y_ENABLE_INIT
#define Y_ENABLE_INIT ((void)0)
#undef Y_ENABLE_WRITE
#define Y_ENABLE_WRITE(STATE) stepperY.setEnabled(STATE)
#undef Y_ENABLE_READ
#define Y_ENABLE_READ stepperY.isEnabled()
#endif
#ifdef Y2_IS_TMC
extern TMC26XStepper stepperY2;
#undef Y2_ENABLE_INIT
#define Y2_ENABLE_INIT ((void)0)
#undef Y2_ENABLE_WRITE
#define Y2_ENABLE_WRITE(STATE) stepperY2.setEnabled(STATE)
#undef Y2_ENABLE_READ
#define Y2_ENABLE_READ stepperY2.isEnabled()
#endif
#ifdef Z_IS_TMC
extern TMC26XStepper stepperZ;
#undef Z_ENABLE_INIT
#define Z_ENABLE_INIT ((void)0)
#undef Z_ENABLE_WRITE
#define Z_ENABLE_WRITE(STATE) stepperZ.setEnabled(STATE)
#undef Z_ENABLE_READ
#define Z_ENABLE_READ stepperZ.isEnabled()
#endif
#ifdef Z2_IS_TMC
extern TMC26XStepper stepperZ2;
#undef Z2_ENABLE_INIT
#define Z2_ENABLE_INIT ((void)0)
#undef Z2_ENABLE_WRITE
#define Z2_ENABLE_WRITE(STATE) stepperZ2.setEnabled(STATE)
#undef Z2_ENABLE_READ
#define Z2_ENABLE_READ stepperZ2.isEnabled()
#endif
#ifdef E0_IS_TMC
extern TMC26XStepper stepperE0;
#undef E0_ENABLE_INIT
#define E0_ENABLE_INIT ((void)0)
#undef E0_ENABLE_WRITE
#define E0_ENABLE_WRITE(STATE) stepperE0.setEnabled(STATE)
#undef E0_ENABLE_READ
#define E0_ENABLE_READ stepperE0.isEnabled()
#endif
#ifdef E1_IS_TMC
extern TMC26XStepper stepperE1;
#undef E1_ENABLE_INIT
#define E1_ENABLE_INIT ((void)0)
#undef E1_ENABLE_WRITE
#define E1_ENABLE_WRITE(STATE) stepperE1.setEnabled(STATE)
#undef E1_ENABLE_READ
#define E1_ENABLE_READ stepperE1.isEnabled()
#endif
#ifdef E2_IS_TMC
extern TMC26XStepper stepperE2;
#undef E2_ENABLE_INIT
#define E2_ENABLE_INIT ((void)0)
#undef E2_ENABLE_WRITE
#define E2_ENABLE_WRITE(STATE) stepperE2.setEnabled(STATE)
#undef E2_ENABLE_READ
#define E2_ENABLE_READ stepperE2.isEnabled()
#endif
#ifdef E3_IS_TMC
extern TMC26XStepper stepperE3;
#undef E3_ENABLE_INIT
#define E3_ENABLE_INIT ((void)0)
#undef E3_ENABLE_WRITE
#define E3_ENABLE_WRITE(STATE) stepperE3.setEnabled(STATE)
#undef E3_ENABLE_READ
#define E3_ENABLE_READ stepperE3.isEnabled()
#endif
#endif // HAVE_TMCDRIVER
//////////////////////////////////
// Pin redefines for L6470 drivers.
// L640 drivers have step on normal pins, but dir and everything else via SPI
//////////////////////////////////
#ifdef HAVE_L6470DRIVER
#include <SPI.h>
#include <L6470.h>
void L6470_init();
#ifdef X_IS_L6470
extern L6470 stepperX;
#undef X_ENABLE_INIT
#define X_ENABLE_INIT ((void)0)
#undef X_ENABLE_WRITE
#define X_ENABLE_WRITE(STATE) {if(STATE) stepperX.Step_Clock(stepperX.getStatus() & STATUS_HIZ); else stepperX.softFree();}
#undef X_ENABLE_READ
#define X_ENABLE_READ (stepperX.getStatus() & STATUS_HIZ)
#undef X_DIR_INIT
#define X_DIR_INIT ((void)0)
#undef X_DIR_WRITE
#define X_DIR_WRITE(STATE) stepperX.Step_Clock(STATE)
#undef X_DIR_READ
#define X_DIR_READ (stepperX.getStatus() & STATUS_DIR)
#endif
#ifdef X2_IS_L6470
extern L6470 stepperX2;
#undef X2_ENABLE_INIT
#define X2_ENABLE_INIT ((void)0)
#undef X2_ENABLE_WRITE
#define X2_ENABLE_WRITE(STATE) (if(STATE) stepperX2.Step_Clock(stepperX2.getStatus() & STATUS_HIZ); else stepperX2.softFree();)
#undef X2_ENABLE_READ
#define X2_ENABLE_READ (stepperX2.getStatus() & STATUS_HIZ)
#undef X2_DIR_INIT
#define X2_DIR_INIT ((void)0)
#undef X2_DIR_WRITE
#define X2_DIR_WRITE(STATE) stepperX2.Step_Clock(STATE)
#undef X2_DIR_READ
#define X2_DIR_READ (stepperX2.getStatus() & STATUS_DIR)
#endif
#ifdef Y_IS_L6470
extern L6470 stepperY;
#undef Y_ENABLE_INIT
#define Y_ENABLE_INIT ((void)0)
#undef Y_ENABLE_WRITE
#define Y_ENABLE_WRITE(STATE) (if(STATE) stepperY.Step_Clock(stepperY.getStatus() & STATUS_HIZ); else stepperY.softFree();)
#undef Y_ENABLE_READ
#define Y_ENABLE_READ (stepperY.getStatus() & STATUS_HIZ)
#undef Y_DIR_INIT
#define Y_DIR_INIT ((void)0)
#undef Y_DIR_WRITE
#define Y_DIR_WRITE(STATE) stepperY.Step_Clock(STATE)
#undef Y_DIR_READ
#define Y_DIR_READ (stepperY.getStatus() & STATUS_DIR)
#endif
#ifdef Y2_IS_L6470
extern L6470 stepperY2;
#undef Y2_ENABLE_INIT
#define Y2_ENABLE_INIT ((void)0)
#undef Y2_ENABLE_WRITE
#define Y2_ENABLE_WRITE(STATE) (if(STATE) stepperY2.Step_Clock(stepperY2.getStatus() & STATUS_HIZ); else stepperY2.softFree();)
#undef Y2_ENABLE_READ
#define Y2_ENABLE_READ (stepperY2.getStatus() & STATUS_HIZ)
#undef Y2_DIR_INIT
#define Y2_DIR_INIT ((void)0)
#undef Y2_DIR_WRITE
#define Y2_DIR_WRITE(STATE) stepperY2.Step_Clock(STATE)
#undef Y2_DIR_READ
#define Y2_DIR_READ (stepperY2.getStatus() & STATUS_DIR)
#endif
#ifdef Z_IS_L6470
extern L6470 stepperZ;
#undef Z_ENABLE_INIT
#define Z_ENABLE_INIT ((void)0)
#undef Z_ENABLE_WRITE
#define Z_ENABLE_WRITE(STATE) (if(STATE) stepperZ.Step_Clock(stepperZ.getStatus() & STATUS_HIZ); else stepperZ.softFree();)
#undef Z_ENABLE_READ
#define Z_ENABLE_READ (stepperZ.getStatus() & STATUS_HIZ)
#undef Z_DIR_INIT
#define Z_DIR_INIT ((void)0)
#undef Z_DIR_WRITE
#define Z_DIR_WRITE(STATE) stepperZ.Step_Clock(STATE)
#undef Y_DIR_READ
#define Y_DIR_READ (stepperZ.getStatus() & STATUS_DIR)
#endif
#ifdef Z2_IS_L6470
extern L6470 stepperZ2;
#undef Z2_ENABLE_INIT
#define Z2_ENABLE_INIT ((void)0)
#undef Z2_ENABLE_WRITE
#define Z2_ENABLE_WRITE(STATE) (if(STATE) stepperZ2.Step_Clock(stepperZ2.getStatus() & STATUS_HIZ); else stepperZ2.softFree();)
#undef Z2_ENABLE_READ
#define Z2_ENABLE_READ (stepperZ2.getStatus() & STATUS_HIZ)
#undef Z2_DIR_INIT
#define Z2_DIR_INIT ((void)0)
#undef Z2_DIR_WRITE
#define Z2_DIR_WRITE(STATE) stepperZ2.Step_Clock(STATE)
#undef Y2_DIR_READ
#define Y2_DIR_READ (stepperZ2.getStatus() & STATUS_DIR)
#endif
#ifdef E0_IS_L6470
extern L6470 stepperE0;
#undef E0_ENABLE_INIT
#define E0_ENABLE_INIT ((void)0)
#undef E0_ENABLE_WRITE
#define E0_ENABLE_WRITE(STATE) (if(STATE) stepperE0.Step_Clock(stepperE0.getStatus() & STATUS_HIZ); else stepperE0.softFree();)
#undef E0_ENABLE_READ
#define E0_ENABLE_READ (stepperE0.getStatus() & STATUS_HIZ)
#undef E0_DIR_INIT
#define E0_DIR_INIT ((void)0)
#undef E0_DIR_WRITE
#define E0_DIR_WRITE(STATE) stepperE0.Step_Clock(STATE)
#undef E0_DIR_READ
#define E0_DIR_READ (stepperE0.getStatus() & STATUS_DIR)
#endif
#ifdef E1_IS_L6470
extern L6470 stepperE1;
#undef E1_ENABLE_INIT
#define E1_ENABLE_INIT ((void)0)
#undef E1_ENABLE_WRITE
#define E1_ENABLE_WRITE(STATE) (if(STATE) stepperE1.Step_Clock(stepperE1.getStatus() & STATUS_HIZ); else stepperE1.softFree();)
#undef E1_ENABLE_READ
#define E1_ENABLE_READ (stepperE1.getStatus() & STATUS_HIZ)
#undef E1_DIR_INIT
#define E1_DIR_INIT ((void)0)
#undef E1_DIR_WRITE
#define E1_DIR_WRITE(STATE) stepperE1.Step_Clock(STATE)
#undef E1_DIR_READ
#define E1_DIR_READ (stepperE1.getStatus() & STATUS_DIR)
#endif
#ifdef E2_IS_L6470
extern L6470 stepperE2;
#undef E2_ENABLE_INIT
#define E2_ENABLE_INIT ((void)0)
#undef E2_ENABLE_WRITE
#define E2_ENABLE_WRITE(STATE) (if(STATE) stepperE2.Step_Clock(stepperE2.getStatus() & STATUS_HIZ); else stepperE2.softFree();)
#undef E2_ENABLE_READ
#define E2_ENABLE_READ (stepperE2.getStatus() & STATUS_HIZ)
#undef E2_DIR_INIT
#define E2_DIR_INIT ((void)0)
#undef E2_DIR_WRITE
#define E2_DIR_WRITE(STATE) stepperE2.Step_Clock(STATE)
#undef E2_DIR_READ
#define E2_DIR_READ (stepperE2.getStatus() & STATUS_DIR)
#endif
#ifdef E3_IS_L6470
extern L6470 stepperE3;
#undef E3_ENABLE_INIT
#define E3_ENABLE_INIT ((void)0)
#undef E3_ENABLE_WRITE
#define E3_ENABLE_WRITE(STATE) (if(STATE) stepperE3.Step_Clock(stepperE3.getStatus() & STATUS_HIZ); else stepperE3.softFree();)
#undef E3_ENABLE_READ
#define E3_ENABLE_READ (stepperE3.getStatus() & STATUS_HIZ)
#undef E3_DIR_INIT
#define E3_DIR_INIT ((void)0)
#undef E3_DIR_WRITE
#define E3_DIR_WRITE(STATE) stepperE3.Step_Clock(STATE)
#undef E3_DIR_READ
#define E3_DIR_READ (stepperE3.getStatus() & STATUS_DIR)
#endif
#endif //HAVE_L6470DRIVER
#endif // STEPPER_INDIRECTION_H