⚡️ Fix and improve Inline Laser Power (#22690)
This commit is contained in:
committed by
Scott Lahteine
parent
5b6c46db29
commit
d965303a7a
@ -128,8 +128,13 @@ uint8_t Planner::delay_before_delivering; // This counter delays delivery
|
||||
|
||||
planner_settings_t Planner::settings; // Initialized by settings.load()
|
||||
|
||||
#if ENABLED(LASER_POWER_INLINE)
|
||||
/**
|
||||
* Set up inline block variables
|
||||
* Set laser_power_floor based on SPEED_POWER_MIN to pevent a zero power output state with LASER_POWER_TRAP
|
||||
*/
|
||||
#if ENABLED(LASER_FEATURE)
|
||||
laser_state_t Planner::laser_inline; // Current state for blocks
|
||||
const uint8_t laser_power_floor = cutter.pct_to_ocr(SPEED_POWER_MIN);
|
||||
#endif
|
||||
|
||||
uint32_t Planner::max_acceleration_steps_per_s2[DISTINCT_AXES]; // (steps/s^2) Derived from mm_per_s2
|
||||
@ -799,6 +804,7 @@ void Planner::calculate_trapezoid_for_block(block_t * const block, const_float_t
|
||||
if (plateau_steps < 0) {
|
||||
const float accelerate_steps_float = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
|
||||
accelerate_steps = _MIN(uint32_t(_MAX(accelerate_steps_float, 0)), block->step_event_count);
|
||||
decelerate_steps = block->step_event_count - accelerate_steps;
|
||||
plateau_steps = 0;
|
||||
|
||||
#if ENABLED(S_CURVE_ACCELERATION)
|
||||
@ -822,7 +828,7 @@ void Planner::calculate_trapezoid_for_block(block_t * const block, const_float_t
|
||||
|
||||
// Store new block parameters
|
||||
block->accelerate_until = accelerate_steps;
|
||||
block->decelerate_after = accelerate_steps + plateau_steps;
|
||||
block->decelerate_after = block->step_event_count - decelerate_steps;
|
||||
block->initial_rate = initial_rate;
|
||||
#if ENABLED(S_CURVE_ACCELERATION)
|
||||
block->acceleration_time = acceleration_time;
|
||||
@ -833,46 +839,52 @@ void Planner::calculate_trapezoid_for_block(block_t * const block, const_float_t
|
||||
#endif
|
||||
block->final_rate = final_rate;
|
||||
|
||||
/**
|
||||
* Laser trapezoid calculations
|
||||
*
|
||||
* Approximate the trapezoid with the laser, incrementing the power every `entry_per` while accelerating
|
||||
* and decrementing it every `exit_power_per` while decelerating, thus ensuring power is related to feedrate.
|
||||
*
|
||||
* LASER_POWER_INLINE_TRAPEZOID_CONT doesn't need this as it continuously approximates
|
||||
*
|
||||
* Note this may behave unreliably when running with S_CURVE_ACCELERATION
|
||||
*/
|
||||
#if ENABLED(LASER_POWER_INLINE_TRAPEZOID)
|
||||
if (block->laser.power > 0) { // No need to care if power == 0
|
||||
const uint8_t entry_power = block->laser.power * entry_factor; // Power on block entry
|
||||
#if DISABLED(LASER_POWER_INLINE_TRAPEZOID_CONT)
|
||||
// Speedup power
|
||||
const uint8_t entry_power_diff = block->laser.power - entry_power;
|
||||
if (entry_power_diff) {
|
||||
block->laser.entry_per = accelerate_steps / entry_power_diff;
|
||||
block->laser.power_entry = entry_power;
|
||||
#if ENABLED(LASER_POWER_TRAP)
|
||||
/**
|
||||
* Laser Trapezoid Calculations
|
||||
*
|
||||
* Approximate the trapezoid with the laser, incrementing the power every `trap_ramp_entry_incr` steps while accelerating,
|
||||
* and decrementing the power every `trap_ramp_exit_decr` while decelerating, to keep power proportional to feedrate.
|
||||
* Laser power trap will reduce the initial power to no less than the laser_power_floor value. Based on the number
|
||||
* of calculated accel/decel steps the power is distributed over the trapezoid entry- and exit-ramp steps.
|
||||
*
|
||||
* trap_ramp_active_pwr - The active power is initially set at a reduced level factor of initial power / accel steps and
|
||||
* will be additively incremented using a trap_ramp_entry_incr value for each accel step processed later in the stepper code.
|
||||
* The trap_ramp_exit_decr value is calculated as power / decel steps and is also adjusted to no less than the power floor.
|
||||
*
|
||||
* If the power == 0 the inline mode variables need to be set to zero to prevent stepper processing. The method allows
|
||||
* for simpler non-powered moves like G0 or G28.
|
||||
*
|
||||
* Laser Trap Power works for all Jerk and Curve modes; however Arc-based moves will have issues since the segments are
|
||||
* usually too small.
|
||||
*/
|
||||
if (cutter.cutter_mode == CUTTER_MODE_CONTINUOUS) {
|
||||
if (planner.laser_inline.status.isPowered && planner.laser_inline.status.isEnabled) {
|
||||
if (block->laser.power > 0) {
|
||||
NOLESS(block->laser.power, laser_power_floor);
|
||||
block->laser.trap_ramp_active_pwr = (block->laser.power - laser_power_floor) * (initial_rate / float(block->nominal_rate)) + laser_power_floor;
|
||||
block->laser.trap_ramp_entry_incr = (block->laser.power - block->laser.trap_ramp_active_pwr) / accelerate_steps;
|
||||
float laser_pwr = block->laser.power * (final_rate / float(block->nominal_rate));
|
||||
NOLESS(laser_pwr, laser_power_floor);
|
||||
block->laser.trap_ramp_exit_decr = (block->laser.power - laser_pwr) / decelerate_steps;
|
||||
#if ENABLED(DEBUG_LASER_TRAP)
|
||||
SERIAL_ECHO_MSG("lp:",block->laser.power);
|
||||
SERIAL_ECHO_MSG("as:",accelerate_steps);
|
||||
SERIAL_ECHO_MSG("ds:",decelerate_steps);
|
||||
SERIAL_ECHO_MSG("p.trap:",block->laser.trap_ramp_active_pwr);
|
||||
SERIAL_ECHO_MSG("p.incr:",block->laser.trap_ramp_entry_incr);
|
||||
SERIAL_ECHO_MSG("p.decr:",block->laser.trap_ramp_exit_decr);
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
block->laser.entry_per = 0;
|
||||
block->laser.power_entry = block->laser.power;
|
||||
block->laser.trap_ramp_active_pwr = 0;
|
||||
block->laser.trap_ramp_entry_incr = 0;
|
||||
block->laser.trap_ramp_exit_decr = 0;
|
||||
}
|
||||
// Slowdown power
|
||||
const uint8_t exit_power = block->laser.power * exit_factor, // Power on block entry
|
||||
exit_power_diff = block->laser.power - exit_power;
|
||||
if (exit_power_diff) {
|
||||
block->laser.exit_per = (block->step_event_count - block->decelerate_after) / exit_power_diff;
|
||||
block->laser.power_exit = exit_power;
|
||||
}
|
||||
else {
|
||||
block->laser.exit_per = 0;
|
||||
block->laser.power_exit = block->laser.power;
|
||||
}
|
||||
#else
|
||||
block->laser.power_entry = entry_power;
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#endif // LASER_POWER_TRAP
|
||||
}
|
||||
|
||||
/* PLANNER SPEED DEFINITION
|
||||
@ -1130,10 +1142,9 @@ void Planner::recalculate_trapezoids() {
|
||||
// The tail may be changed by the ISR so get a local copy.
|
||||
uint8_t block_index = block_buffer_tail,
|
||||
head_block_index = block_buffer_head;
|
||||
|
||||
// Since there could be non-move blocks in the head of the queue, and the
|
||||
// Since there could be a sync block in the head of the queue, and the
|
||||
// next loop must not recalculate the head block (as it needs to be
|
||||
// specially handled), scan backwards to the first move block.
|
||||
// specially handled), scan backwards to the first non-SYNC block.
|
||||
while (head_block_index != block_index) {
|
||||
|
||||
// Go back (head always point to the first free block)
|
||||
@ -1203,7 +1214,7 @@ void Planner::recalculate_trapezoids() {
|
||||
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
|
||||
if (next) {
|
||||
|
||||
// Mark the last block as RECALCULATE, to prevent the Stepper ISR running it.
|
||||
// Mark the next(last) block as RECALCULATE, to prevent the Stepper ISR running it.
|
||||
// As the last block is always recalculated here, there is a chance the block isn't
|
||||
// marked as RECALCULATE yet. That's the reason for the following line.
|
||||
block->flag.recalculate = true;
|
||||
@ -1295,7 +1306,7 @@ void Planner::recalculate() {
|
||||
#endif // HAS_FAN
|
||||
|
||||
/**
|
||||
* Maintain fans, paste extruder pressure,
|
||||
* Maintain fans, paste extruder pressure, spindle/laser power
|
||||
*/
|
||||
void Planner::check_axes_activity() {
|
||||
|
||||
@ -1359,7 +1370,7 @@ void Planner::check_axes_activity() {
|
||||
}
|
||||
else {
|
||||
|
||||
TERN_(HAS_CUTTER, cutter.refresh());
|
||||
TERN_(HAS_CUTTER, if (cutter.cutter_mode == CUTTER_MODE_STANDARD) cutter.refresh());
|
||||
|
||||
#if HAS_TAIL_FAN_SPEED
|
||||
FANS_LOOP(i) {
|
||||
@ -1459,7 +1470,7 @@ void Planner::check_axes_activity() {
|
||||
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
|
||||
const block_t * const block = &block_buffer[b];
|
||||
if (NUM_AXIS_GANG(block->steps.x, || block->steps.y, || block->steps.z, || block->steps.i, || block->steps.j, || block->steps.k, || block->steps.u, || block->steps.v, || block->steps.w)) {
|
||||
const float se = (float)block->steps.e / block->step_event_count * SQRT(block->nominal_speed_sqr); // mm/sec
|
||||
const float se = (float)block->steps.e / block->step_event_count * SQRT(block->nominal_speed_sqr); // mm/sec;
|
||||
NOLESS(high, se);
|
||||
}
|
||||
}
|
||||
@ -1781,7 +1792,7 @@ void Planner::synchronize() { while (busy()) idle(); }
|
||||
bool Planner::_buffer_steps(const xyze_long_t &target
|
||||
OPTARG(HAS_POSITION_FLOAT, const xyze_pos_t &target_float)
|
||||
OPTARG(HAS_DIST_MM_ARG, const xyze_float_t &cart_dist_mm)
|
||||
, feedRate_t fr_mm_s, const uint8_t extruder, const_float_t millimeters/*=0.0*/
|
||||
, feedRate_t fr_mm_s, const uint8_t extruder, const_float_t millimeters
|
||||
) {
|
||||
|
||||
// Wait for the next available block
|
||||
@ -1863,8 +1874,36 @@ bool Planner::_populate_block(
|
||||
);
|
||||
|
||||
/* <-- add a slash to enable
|
||||
#define _ALINE(A) " " STR_##A ":", target[_AXIS(A)], " (", int32_t(target[_AXIS(A)] - position[_AXIS(A)]), " steps)"
|
||||
SERIAL_ECHOLNPGM(" _populate_block FR:", fr_mm_s, LOGICAL_AXIS_MAP(_ALINE));
|
||||
SERIAL_ECHOLNPGM(
|
||||
" _populate_block FR:", fr_mm_s,
|
||||
" A:", target.a, " (", da, " steps)"
|
||||
#if HAS_Y_AXIS
|
||||
" B:", target.b, " (", db, " steps)"
|
||||
#endif
|
||||
#if HAS_Z_AXIS
|
||||
" C:", target.c, " (", dc, " steps)"
|
||||
#endif
|
||||
#if HAS_I_AXIS
|
||||
" " STR_I ":", target.i, " (", di, " steps)"
|
||||
#endif
|
||||
#if HAS_J_AXIS
|
||||
" " STR_J ":", target.j, " (", dj, " steps)"
|
||||
#endif
|
||||
#if HAS_K_AXIS
|
||||
" " STR_K ":", target.k, " (", dk, " steps)"
|
||||
#endif
|
||||
#if HAS_U_AXIS
|
||||
" " STR_U ":", target.u, " (", du, " steps)"
|
||||
#endif
|
||||
#if HAS_V_AXIS
|
||||
" " STR_V ":", target.v, " (", dv, " steps)"
|
||||
#endif
|
||||
#if HAS_W_AXIS
|
||||
" " STR_W ":", target.w, " (", dw, " steps)"
|
||||
#if HAS_EXTRUDERS
|
||||
" E:", target.e, " (", de, " steps)"
|
||||
#endif
|
||||
);
|
||||
//*/
|
||||
|
||||
#if EITHER(PREVENT_COLD_EXTRUSION, PREVENT_LENGTHY_EXTRUDE)
|
||||
@ -1962,11 +2001,34 @@ bool Planner::_populate_block(
|
||||
// Set direction bits
|
||||
block->direction_bits = dm;
|
||||
|
||||
// Update block laser power
|
||||
#if ENABLED(LASER_POWER_INLINE)
|
||||
laser_inline.status.isPlanned = true;
|
||||
block->laser.status = laser_inline.status;
|
||||
block->laser.power = laser_inline.power;
|
||||
/**
|
||||
* Update block laser power
|
||||
* For standard mode get the cutter.power value for processing, since it's
|
||||
* only set by apply_power().
|
||||
*/
|
||||
#if HAS_CUTTER
|
||||
switch (cutter.cutter_mode) {
|
||||
default: break;
|
||||
|
||||
case CUTTER_MODE_STANDARD: block->cutter_power = cutter.power; break;
|
||||
|
||||
#if ENABLED(LASER_FEATURE)
|
||||
/**
|
||||
* For inline mode get the laser_inline variables, including power and status.
|
||||
* Dynamic mode only needs to update if the feedrate has changed, since it's
|
||||
* calculated from the current feedrate and power level.
|
||||
*/
|
||||
case CUTTER_MODE_CONTINUOUS:
|
||||
block->laser.power = laser_inline.power;
|
||||
block->laser.status = laser_inline.status;
|
||||
break;
|
||||
|
||||
case CUTTER_MODE_DYNAMIC:
|
||||
if (cutter.laser_feedrate_changed()) // Only process changes in rate
|
||||
block->laser.power = laser_inline.power = cutter.calc_dynamic_power();
|
||||
break;
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
// Number of steps for each axis
|
||||
@ -2028,9 +2090,9 @@ bool Planner::_populate_block(
|
||||
#endif
|
||||
#elif ENABLED(MARKFORGED_XY)
|
||||
steps_dist_mm.a = (da - db) * mm_per_step[A_AXIS];
|
||||
steps_dist_mm.b = db * mm_per_step[B_AXIS];
|
||||
steps_dist_mm.b = db * mm_per_step[B_AXIS];
|
||||
#elif ENABLED(MARKFORGED_YX)
|
||||
steps_dist_mm.a = da * mm_per_step[A_AXIS];
|
||||
steps_dist_mm.a = da * mm_per_step[A_AXIS];
|
||||
steps_dist_mm.b = (db - da) * mm_per_step[B_AXIS];
|
||||
#else
|
||||
XYZ_CODE(
|
||||
@ -2076,21 +2138,12 @@ bool Planner::_populate_block(
|
||||
block->millimeters = millimeters;
|
||||
else {
|
||||
/**
|
||||
* Distance for interpretation of feedrate in accordance with LinuxCNC (the successor of
|
||||
* NIST RS274NGC interpreter - version 3) and its default CANON_XYZ feed reference mode.
|
||||
*
|
||||
* Assume:
|
||||
* - X, Y, Z are the primary linear axes;
|
||||
* - U, V, W are secondary linear axes;
|
||||
* - A, B, C are rotational axes.
|
||||
*
|
||||
* Then:
|
||||
* - dX, dY, dZ are the displacements of the primary linear axes;
|
||||
* - dU, dV, dW are the displacements of linear axes;
|
||||
* - dA, dB, dC are the displacements of rotational axes.
|
||||
*
|
||||
* The time it takes to execute move command with feedrate F is t = D/F,
|
||||
* where D is the total distance, calculated as follows:
|
||||
* Distance for interpretation of feedrate in accordance with LinuxCNC (the successor of NIST
|
||||
* RS274NGC interpreter - version 3) and its default CANON_XYZ feed reference mode.
|
||||
* Assume that X, Y, Z are the primary linear axes and U, V, W are secondary linear axes and A, B, C are
|
||||
* rotational axes. Then dX, dY, dZ are the displacements of the primary linear axes and dU, dV, dW are the displacements of linear axes and
|
||||
* dA, dB, dC are the displacements of rotational axes.
|
||||
* The time it takes to execute move command with feedrate F is t = D/F, where D is the total distance, calculated as follows:
|
||||
* D^2 = dX^2 + dY^2 + dZ^2
|
||||
* if D^2 == 0 (none of XYZ move but any secondary linear axes move, whether other axes are moved or not):
|
||||
* D^2 = dU^2 + dV^2 + dW^2
|
||||
@ -2099,9 +2152,8 @@ bool Planner::_populate_block(
|
||||
*/
|
||||
float distance_sqr = (
|
||||
#if ENABLED(ARTICULATED_ROBOT_ARM)
|
||||
// For articulated robots, interpreting feedrate like LinuxCNC would require inverse kinematics. As a workaround,
|
||||
// assume that motors sit on a mutually-orthogonal axes and we can think of distance as magnitude of an n-vector
|
||||
// in an n-dimensional Euclidian space.
|
||||
// For articulated robots, interpreting feedrate like LinuxCNC would require inverse kinematics. As a workaround, pretend that motors sit on n mutually orthogonal
|
||||
// axes and assume that we could think of distance as magnitude of an n-vector in an n-dimensional Euclidian space.
|
||||
NUM_AXIS_GANG(
|
||||
sq(steps_dist_mm.x), + sq(steps_dist_mm.y), + sq(steps_dist_mm.z),
|
||||
+ sq(steps_dist_mm.i), + sq(steps_dist_mm.j), + sq(steps_dist_mm.k),
|
||||
@ -2121,7 +2173,7 @@ bool Planner::_populate_block(
|
||||
#elif CORE_IS_YZ
|
||||
XYZ_GANG(sq(steps_dist_mm.x), + sq(steps_dist_mm.head.y), + sq(steps_dist_mm.head.z))
|
||||
#else
|
||||
XYZ_GANG(sq(steps_dist_mm.x), + sq(steps_dist_mm.y), + sq(steps_dist_mm.z))
|
||||
XYZ_GANG(sq(steps_dist_mm.x), + sq(steps_dist_mm.y), + sq(steps_dist_mm.z))
|
||||
#endif
|
||||
);
|
||||
|
||||
@ -2154,9 +2206,9 @@ bool Planner::_populate_block(
|
||||
|
||||
/**
|
||||
* At this point at least one of the axes has more steps than
|
||||
* MIN_STEPS_PER_SEGMENT, ensuring the segment won't get dropped
|
||||
* as zero-length. It's important to not apply corrections to blocks
|
||||
* that would get dropped!
|
||||
* MIN_STEPS_PER_SEGMENT, ensuring the segment won't get dropped as
|
||||
* zero-length. It's important to not apply corrections
|
||||
* to blocks that would get dropped!
|
||||
*
|
||||
* A correction function is permitted to add steps to an axis, it
|
||||
* should *never* remove steps!
|
||||
@ -2177,7 +2229,6 @@ bool Planner::_populate_block(
|
||||
|
||||
TERN_(MIXING_EXTRUDER, mixer.populate_block(block->b_color));
|
||||
|
||||
TERN_(HAS_CUTTER, block->cutter_power = cutter.power);
|
||||
|
||||
#if HAS_FAN
|
||||
FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
|
||||
@ -2192,9 +2243,15 @@ bool Planner::_populate_block(
|
||||
|
||||
#if ENABLED(AUTO_POWER_CONTROL)
|
||||
if (NUM_AXIS_GANG(
|
||||
block->steps.x, || block->steps.y, || block->steps.z,
|
||||
|| block->steps.i, || block->steps.j, || block->steps.k,
|
||||
|| block->steps.u, || block->steps.v, || block->steps.w
|
||||
block->steps.x,
|
||||
|| block->steps.y,
|
||||
|| block->steps.z,
|
||||
|| block->steps.i,
|
||||
|| block->steps.j,
|
||||
|| block->steps.k,
|
||||
|| block->steps.u,
|
||||
|| block->steps.v,
|
||||
|| block->steps.w
|
||||
)) powerManager.power_on();
|
||||
#endif
|
||||
|
||||
@ -2428,7 +2485,7 @@ bool Planner::_populate_block(
|
||||
if (speed_factor < 1.0f) {
|
||||
current_speed *= speed_factor;
|
||||
block->nominal_rate *= speed_factor;
|
||||
block->nominal_speed_sqr *= sq(speed_factor);
|
||||
block->nominal_speed_sqr = block->nominal_speed_sqr * sq(speed_factor);
|
||||
}
|
||||
|
||||
// Compute and limit the acceleration rate for the trapezoid generator.
|
||||
@ -2630,15 +2687,14 @@ bool Planner::_populate_block(
|
||||
vmax_junction_sqr = sq(float(MINIMUM_PLANNER_SPEED));
|
||||
}
|
||||
else {
|
||||
NOLESS(junction_cos_theta, -0.999999f); // Check for numerical round-off to avoid divide by zero.
|
||||
|
||||
// Convert delta vector to unit vector
|
||||
xyze_float_t junction_unit_vec = unit_vec - prev_unit_vec;
|
||||
normalize_junction_vector(junction_unit_vec);
|
||||
|
||||
const float junction_acceleration = limit_value_by_axis_maximum(block->acceleration, junction_unit_vec);
|
||||
|
||||
NOLESS(junction_cos_theta, -0.999999f); // Check for numerical round-off to avoid divide by zero.
|
||||
|
||||
const float sin_theta_d2 = SQRT(0.5f * (1.0f - junction_cos_theta)); // Trig half angle identity. Always positive.
|
||||
const float junction_acceleration = limit_value_by_axis_maximum(block->acceleration, junction_unit_vec),
|
||||
sin_theta_d2 = SQRT(0.5f * (1.0f - junction_cos_theta)); // Trig half angle identity. Always positive.
|
||||
|
||||
vmax_junction_sqr = junction_acceleration * junction_deviation_mm * sin_theta_d2 / (1.0f - sin_theta_d2);
|
||||
|
||||
@ -2889,21 +2945,19 @@ bool Planner::_populate_block(
|
||||
|
||||
/**
|
||||
* Planner::buffer_sync_block
|
||||
* Add a block to the buffer that just updates the position,
|
||||
* or in case of LASER_SYNCHRONOUS_M106_M107 the fan PWM
|
||||
* Add a block to the buffer that just updates the position
|
||||
* @param sync_flag BLOCK_FLAG_SYNC_FANS & BLOCK_FLAG_LASER_PWR
|
||||
* Supports LASER_SYNCHRONOUS_M106_M107 and LASER_POWER_SYNC power sync block buffer queueing.
|
||||
*/
|
||||
void Planner::buffer_sync_block(TERN_(LASER_SYNCHRONOUS_M106_M107, const BlockFlagBit sync_flag/*=BLOCK_BIT_SYNC_POSITION*/)) {
|
||||
#if DISABLED(LASER_SYNCHRONOUS_M106_M107)
|
||||
constexpr BlockFlagBit sync_flag = BLOCK_BIT_SYNC_POSITION;
|
||||
#endif
|
||||
|
||||
void Planner::buffer_sync_block(const BlockFlagBit sync_flag/*=BLOCK_BIT_SYNC_POSITION*/) {
|
||||
|
||||
// Wait for the next available block
|
||||
uint8_t next_buffer_head;
|
||||
block_t * const block = get_next_free_block(next_buffer_head);
|
||||
|
||||
// Clear block
|
||||
block->reset();
|
||||
|
||||
memset(block, 0, sizeof(block_t));
|
||||
block->flag.apply(sync_flag);
|
||||
|
||||
block->position = position;
|
||||
@ -2915,6 +2969,12 @@ void Planner::buffer_sync_block(TERN_(LASER_SYNCHRONOUS_M106_M107, const BlockFl
|
||||
FANS_LOOP(i) block->fan_speed[i] = thermalManager.fan_speed[i];
|
||||
#endif
|
||||
|
||||
/**
|
||||
* M3-based power setting can be processed inline with a laser power sync block.
|
||||
* During active moves cutter.power is processed immediately, otherwise on the next move.
|
||||
*/
|
||||
TERN_(LASER_POWER_SYNC, block->laser.power = cutter.power);
|
||||
|
||||
// If this is the first added movement, reload the delay, otherwise, cancel it.
|
||||
if (block_buffer_head == block_buffer_tail) {
|
||||
// If it was the first queued block, restart the 1st block delivery delay, to
|
||||
@ -3052,8 +3112,8 @@ bool Planner::buffer_segment(const abce_pos_t &abce
|
||||
if (!_buffer_steps(target
|
||||
OPTARG(HAS_POSITION_FLOAT, target_float)
|
||||
OPTARG(HAS_DIST_MM_ARG, cart_dist_mm)
|
||||
, fr_mm_s, extruder, millimeters
|
||||
)) return false;
|
||||
, fr_mm_s, extruder, millimeters)
|
||||
) return false;
|
||||
|
||||
stepper.wake_up();
|
||||
return true;
|
||||
@ -3099,7 +3159,7 @@ bool Planner::buffer_line(const xyze_pos_t &cart, const_feedRate_t fr_mm_s, cons
|
||||
inverse_kinematics(machine);
|
||||
|
||||
#if ENABLED(SCARA_FEEDRATE_SCALING)
|
||||
// For SCARA scale the feed rate from mm/s to degrees/s
|
||||
// For SCARA scale the feedrate from mm/s to degrees/s
|
||||
// i.e., Complete the angular vector in the given time.
|
||||
const float duration_recip = inv_duration ?: fr_mm_s / mm;
|
||||
const xyz_pos_t diff = delta - position_float;
|
||||
@ -3120,14 +3180,6 @@ bool Planner::buffer_line(const xyze_pos_t &cart, const_feedRate_t fr_mm_s, cons
|
||||
|
||||
#if ENABLED(DIRECT_STEPPING)
|
||||
|
||||
/**
|
||||
* @brief Add a direct stepping page block to the buffer
|
||||
* and wake up the Stepper ISR to process it.
|
||||
*
|
||||
* @param page_idx Page index provided by G6 I<index>
|
||||
* @param extruder The extruder to use in the move
|
||||
* @param num_steps Number of steps to process in the ISR
|
||||
*/
|
||||
void Planner::buffer_page(const page_idx_t page_idx, const uint8_t extruder, const uint16_t num_steps) {
|
||||
if (!last_page_step_rate) {
|
||||
kill(GET_TEXT_F(MSG_BAD_PAGE_SPEED));
|
||||
@ -3212,7 +3264,7 @@ void Planner::set_machine_position_mm(const abce_pos_t &abce) {
|
||||
if (has_blocks_queued()) {
|
||||
//previous_nominal_speed_sqr = 0.0; // Reset planner junction speeds. Assume start from rest.
|
||||
//previous_speed.reset();
|
||||
buffer_sync_block();
|
||||
buffer_sync_block(BLOCK_BIT_SYNC_POSITION);
|
||||
}
|
||||
else {
|
||||
#if ENABLED(BACKLASH_COMPENSATION)
|
||||
@ -3225,12 +3277,6 @@ void Planner::set_machine_position_mm(const abce_pos_t &abce) {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Set the Planner position in mm
|
||||
* @details Set the Planner position from a native machine position in mm
|
||||
*
|
||||
* @param xyze A native (Cartesian) machine position
|
||||
*/
|
||||
void Planner::set_position_mm(const xyze_pos_t &xyze) {
|
||||
xyze_pos_t machine = xyze;
|
||||
TERN_(HAS_POSITION_MODIFIERS, apply_modifiers(machine, true));
|
||||
@ -3259,20 +3305,14 @@ void Planner::set_position_mm(const xyze_pos_t &xyze) {
|
||||
TERN_(IS_KINEMATIC, TERN_(HAS_EXTRUDERS, position_cart.e = e));
|
||||
|
||||
if (has_blocks_queued())
|
||||
buffer_sync_block();
|
||||
buffer_sync_block(BLOCK_BIT_SYNC_POSITION);
|
||||
else
|
||||
stepper.set_axis_position(E_AXIS, position.e);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/**
|
||||
* @brief Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
|
||||
* @details Update planner movement factors after a change to certain settings:
|
||||
* - max_acceleration_steps_per_s2 from settings max_acceleration_mm_per_s2 * axis_steps_per_mm (M201, M92)
|
||||
* - acceleration_long_cutoff based on the largest max_acceleration_steps_per_s2 (M201)
|
||||
* - max_e_jerk for all extruders based on junction_deviation_mm (M205 J)
|
||||
*/
|
||||
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
|
||||
void Planner::refresh_acceleration_rates() {
|
||||
uint32_t highest_rate = 1;
|
||||
LOOP_DISTINCT_AXES(i) {
|
||||
@ -3285,8 +3325,8 @@ void Planner::refresh_acceleration_rates() {
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Recalculate 'position' and 'mm_per_step'.
|
||||
* @details Required whenever settings.axis_steps_per_mm changes!
|
||||
* Recalculate 'position' and 'mm_per_step'.
|
||||
* Must be called whenever settings.axis_steps_per_mm changes!
|
||||
*/
|
||||
void Planner::refresh_positioning() {
|
||||
LOOP_DISTINCT_AXES(i) mm_per_step[i] = 1.0f / settings.axis_steps_per_mm[i];
|
||||
|
Reference in New Issue
Block a user