Merge pull request #6075 from thinkyhead/rc_cleanup_ubl_1
Additional cleanup of UBL code
This commit is contained in:
commit
d29ab8f2a6
@ -669,7 +669,7 @@
|
||||
#define ABL_GRID (ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR))
|
||||
#define HAS_ABL (ABL_PLANAR || ABL_GRID || ENABLED(AUTO_BED_LEVELING_UBL))
|
||||
|
||||
#define PLANNER_LEVELING (HAS_ABL || ENABLED(MESH_BED_LEVELING))
|
||||
#define PLANNER_LEVELING ((HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)) || ENABLED(MESH_BED_LEVELING))
|
||||
#define HAS_PROBING_PROCEDURE (HAS_ABL || ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST))
|
||||
|
||||
#if HAS_PROBING_PROCEDURE
|
||||
|
@ -747,42 +747,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -841,25 +847,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -876,6 +863,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -32,7 +32,7 @@
|
||||
#define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place.
|
||||
#define BED_TEMP 60.0
|
||||
#define HOTEND_TEMP 205.0
|
||||
#define OOOOZE_AMOUNT 0.3
|
||||
#define OOZE_AMOUNT 0.3
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "Configuration.h"
|
||||
@ -111,7 +111,7 @@
|
||||
* Y # Y coordinate Specify the starting location of the drawing activity.
|
||||
*/
|
||||
|
||||
extern int UBL_has_control_of_LCD_Panel;
|
||||
extern bool ubl_has_control_of_lcd_panel;
|
||||
extern float feedrate;
|
||||
//extern bool relative_mode;
|
||||
extern Planner planner;
|
||||
@ -141,12 +141,12 @@
|
||||
bool prime_nozzle();
|
||||
void chirp_at_user();
|
||||
|
||||
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], Continue_with_closest = 0;
|
||||
float G26_E_AXIS_feedrate = 0.020,
|
||||
Random_Deviation = 0.0,
|
||||
Layer_Height = LAYER_HEIGHT;
|
||||
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], continue_with_closest = 0;
|
||||
float g26_e_axis_feedrate = 0.020,
|
||||
random_deviation = 0.0,
|
||||
layer_height = LAYER_HEIGHT;
|
||||
|
||||
bool G26_retracted = false; // We keep track of the state of the nozzle to know if it
|
||||
bool g26_retracted = false; // We keep track of the state of the nozzle to know if it
|
||||
// is currently retracted or not. This allows us to be
|
||||
// less careful because mis-matched retractions and un-retractions
|
||||
// won't leave us in a bad state.
|
||||
@ -157,24 +157,24 @@
|
||||
float valid_trig_angle(float);
|
||||
mesh_index_pair find_closest_circle_to_print(float, float);
|
||||
void debug_current_and_destination(char *title);
|
||||
void UBL_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
|
||||
void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
|
||||
//uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */
|
||||
|
||||
static float E_Pos_Delta,
|
||||
Extrusion_Multiplier = EXTRUSION_MULTIPLIER,
|
||||
Retraction_Multiplier = RETRACTION_MULTIPLIER,
|
||||
Nozzle = NOZZLE,
|
||||
Filament = FILAMENT,
|
||||
Prime_Length = PRIME_LENGTH,
|
||||
X_Pos, Y_Pos,
|
||||
static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
|
||||
retraction_multiplier = RETRACTION_MULTIPLIER,
|
||||
nozzle = NOZZLE,
|
||||
filament_diameter = FILAMENT,
|
||||
prime_length = PRIME_LENGTH,
|
||||
x_pos, y_pos,
|
||||
bed_temp = BED_TEMP,
|
||||
hotend_temp = HOTEND_TEMP,
|
||||
Ooooze_Amount = OOOOZE_AMOUNT;
|
||||
ooze_amount = OOZE_AMOUNT;
|
||||
|
||||
int8_t Prime_Flag = 0;
|
||||
int8_t prime_flag = 0;
|
||||
|
||||
bool Keep_Heaters_On = false,
|
||||
G26_Debug_flag = false;
|
||||
bool keep_heaters_on = false;
|
||||
|
||||
bool g26_debug_flag = false;
|
||||
|
||||
/**
|
||||
* These support functions allow the use of large bit arrays of flags that take very
|
||||
@ -217,7 +217,7 @@
|
||||
current_position[E_AXIS] = 0.0;
|
||||
sync_plan_position_e();
|
||||
|
||||
if (Prime_Flag && prime_nozzle()) // if prime_nozzle() returns an error, we just bail out.
|
||||
if (prime_flag && prime_nozzle()) // if prime_nozzle() returns an error, we just bail out.
|
||||
goto LEAVE;
|
||||
|
||||
/**
|
||||
@ -239,17 +239,19 @@
|
||||
// Move nozzle to the specified height for the first layer
|
||||
//
|
||||
set_destination_to_current();
|
||||
destination[Z_AXIS] = Layer_Height;
|
||||
destination[Z_AXIS] = layer_height;
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], Ooooze_Amount);
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
|
||||
|
||||
UBL_has_control_of_LCD_Panel = 1; // Take control of the LCD Panel!
|
||||
ubl_has_control_of_lcd_panel++; // Take control of the LCD Panel!
|
||||
debug_current_and_destination((char*)"Starting G26 Mesh Validation Pattern.");
|
||||
|
||||
wait_for_user = true;
|
||||
|
||||
do {
|
||||
if (G29_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
|
||||
|
||||
if (!wait_for_user) { // Check if the user wants to stop the Mesh Validation
|
||||
strcpy(lcd_status_message, "Mesh Validation Stopped."); // We can't do lcd_setstatus() without having it continue;
|
||||
while (G29_lcd_clicked()) idle(); // Debounce the switch click
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
lcd_setstatus("Mesh Validation Stopped.", true);
|
||||
lcd_quick_feedback();
|
||||
@ -257,14 +259,14 @@
|
||||
goto LEAVE;
|
||||
}
|
||||
|
||||
if (Continue_with_closest)
|
||||
if (continue_with_closest)
|
||||
location = find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]);
|
||||
else
|
||||
location = find_closest_circle_to_print(X_Pos, Y_Pos); // Find the closest Mesh Intersection to where we are now.
|
||||
location = find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
|
||||
|
||||
if (location.x_index >= 0 && location.y_index >= 0) {
|
||||
circle_x = blm.map_x_index_to_bed_location(location.x_index);
|
||||
circle_y = blm.map_y_index_to_bed_location(location.y_index);
|
||||
circle_x = ubl.map_x_index_to_bed_location(location.x_index);
|
||||
circle_y = ubl.map_y_index_to_bed_location(location.y_index);
|
||||
|
||||
// Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
|
||||
#ifdef DELTA
|
||||
@ -282,7 +284,7 @@
|
||||
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
|
||||
yi = location.y_index;
|
||||
|
||||
if (G26_Debug_flag) {
|
||||
if (g26_debug_flag) {
|
||||
SERIAL_ECHOPGM(" Doing circle at: (xi=");
|
||||
SERIAL_ECHO(xi);
|
||||
SERIAL_ECHOPGM(", yi=");
|
||||
@ -322,14 +324,13 @@
|
||||
* the CPU load and make the arc drawing faster and more smooth
|
||||
*/
|
||||
float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
|
||||
int tmp_div_30;
|
||||
for (i = 0; i <= 360 / 30; i++) {
|
||||
cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
|
||||
sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
|
||||
}
|
||||
|
||||
for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
|
||||
tmp_div_30 = tmp / 30.0;
|
||||
int tmp_div_30 = tmp / 30.0;
|
||||
if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
|
||||
|
||||
x = circle_x + cos_table[tmp_div_30]; // for speed, these are now a lookup table entry
|
||||
@ -348,7 +349,7 @@
|
||||
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
#endif
|
||||
|
||||
if (G26_Debug_flag) {
|
||||
if (g26_debug_flag) {
|
||||
char ccc, *cptr, seg_msg[50], seg_num[10];
|
||||
strcpy(seg_msg, " segment: ");
|
||||
strcpy(seg_num, " \n");
|
||||
@ -359,7 +360,7 @@
|
||||
debug_current_and_destination(seg_msg);
|
||||
}
|
||||
|
||||
print_line_from_here_to_there(x, y, Layer_Height, xe, ye, Layer_Height);
|
||||
print_line_from_here_to_there(x, y, layer_height, xe, ye, layer_height);
|
||||
}
|
||||
lcd_init_counter++;
|
||||
if (lcd_init_counter > 10) {
|
||||
@ -379,6 +380,8 @@
|
||||
|
||||
LEAVE:
|
||||
|
||||
wait_for_user = false;
|
||||
|
||||
retract_filament();
|
||||
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Raise the nozzle
|
||||
|
||||
@ -386,16 +389,16 @@
|
||||
move_to( destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
|
||||
debug_current_and_destination((char*)"done doing Z-Raise.");
|
||||
|
||||
destination[X_AXIS] = X_Pos; // Move back to the starting position
|
||||
destination[Y_AXIS] = Y_Pos;
|
||||
destination[X_AXIS] = x_pos; // Move back to the starting position
|
||||
destination[Y_AXIS] = y_pos;
|
||||
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
|
||||
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
|
||||
debug_current_and_destination((char*)"done doing X/Y move.");
|
||||
|
||||
UBL_has_control_of_LCD_Panel = 0; // Give back control of the LCD Panel!
|
||||
ubl_has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
|
||||
|
||||
if (!Keep_Heaters_On) {
|
||||
if (!keep_heaters_on) {
|
||||
#if HAS_TEMP_BED
|
||||
thermalManager.setTargetBed(0.0);
|
||||
#endif
|
||||
@ -420,22 +423,22 @@
|
||||
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
|
||||
if (!is_bit_set(circle_flags, i, j)) {
|
||||
mx = blm.map_x_index_to_bed_location(i); // We found a circle that needs to be printed
|
||||
my = blm.map_y_index_to_bed_location(j);
|
||||
mx = ubl.map_x_index_to_bed_location(i); // We found a circle that needs to be printed
|
||||
my = ubl.map_y_index_to_bed_location(j);
|
||||
|
||||
dx = X - mx; // Get the distance to this intersection
|
||||
dy = Y - my;
|
||||
f = HYPOT(dx, dy);
|
||||
|
||||
dx = X_Pos - mx; // It is possible that we are being called with the values
|
||||
dy = Y_Pos - my; // to let us find the closest circle to the start position.
|
||||
dx = x_pos - mx; // It is possible that we are being called with the values
|
||||
dy = y_pos - my; // to let us find the closest circle to the start position.
|
||||
f += HYPOT(dx, dy) / 15.0; // But if this is not the case,
|
||||
// we are going to add in a small
|
||||
// weighting to the distance calculation to help it choose
|
||||
// a better place to continue.
|
||||
|
||||
if (Random_Deviation > 1.0)
|
||||
f += random(0.0, Random_Deviation); // Add in the specified amount of Random Noise to our search
|
||||
if (random_deviation > 1.0)
|
||||
f += random(0.0, random_deviation); // Add in the specified amount of Random Noise to our search
|
||||
|
||||
if (f < closest) {
|
||||
closest = f; // We found a closer location that is still
|
||||
@ -466,11 +469,11 @@
|
||||
// We found two circles that need a horizontal line to connect them
|
||||
// Print it!
|
||||
//
|
||||
sx = blm.map_x_index_to_bed_location(i);
|
||||
sx = ubl.map_x_index_to_bed_location(i);
|
||||
sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
|
||||
sy = blm.map_y_index_to_bed_location(j);
|
||||
sy = ubl.map_y_index_to_bed_location(j);
|
||||
|
||||
ex = blm.map_x_index_to_bed_location(i + 1);
|
||||
ex = ubl.map_x_index_to_bed_location(i + 1);
|
||||
ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
|
||||
ey = sy;
|
||||
|
||||
@ -479,7 +482,7 @@
|
||||
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
|
||||
if (G26_Debug_flag) {
|
||||
if (g26_debug_flag) {
|
||||
SERIAL_ECHOPGM(" Connecting with horizontal line (sx=");
|
||||
SERIAL_ECHO(sx);
|
||||
SERIAL_ECHOPGM(", sy=");
|
||||
@ -492,7 +495,7 @@
|
||||
debug_current_and_destination((char*)"Connecting horizontal line.");
|
||||
}
|
||||
|
||||
print_line_from_here_to_there(sx, sy, Layer_Height, ex, ey, Layer_Height);
|
||||
print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
|
||||
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
|
||||
}
|
||||
}
|
||||
@ -506,12 +509,12 @@
|
||||
// We found two circles that need a vertical line to connect them
|
||||
// Print it!
|
||||
//
|
||||
sx = blm.map_x_index_to_bed_location(i);
|
||||
sy = blm.map_y_index_to_bed_location(j);
|
||||
sx = ubl.map_x_index_to_bed_location(i);
|
||||
sy = ubl.map_y_index_to_bed_location(j);
|
||||
sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
|
||||
|
||||
ex = sx;
|
||||
ey = blm.map_y_index_to_bed_location(j + 1);
|
||||
ey = ubl.map_y_index_to_bed_location(j + 1);
|
||||
ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
|
||||
|
||||
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
||||
@ -519,7 +522,7 @@
|
||||
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
|
||||
if (G26_Debug_flag) {
|
||||
if (g26_debug_flag) {
|
||||
SERIAL_ECHOPGM(" Connecting with vertical line (sx=");
|
||||
SERIAL_ECHO(sx);
|
||||
SERIAL_ECHOPGM(", sy=");
|
||||
@ -531,7 +534,7 @@
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
debug_current_and_destination((char*)"Connecting vertical line.");
|
||||
}
|
||||
print_line_from_here_to_there(sx, sy, Layer_Height, ex, ey, Layer_Height);
|
||||
print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
|
||||
bit_set( vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
|
||||
}
|
||||
}
|
||||
@ -545,8 +548,8 @@
|
||||
float dx, dy, de, xy_dist, fpmm;
|
||||
|
||||
// if the title message starts with a '!' it is so important, we are going to
|
||||
// ignore the status of the G26_Debug_Flag
|
||||
if (*title != '!' && !G26_Debug_flag) return;
|
||||
// ignore the status of the g26_debug_flag
|
||||
if (*title != '!' && !g26_debug_flag) return;
|
||||
|
||||
dx = current_position[X_AXIS] - destination[X_AXIS];
|
||||
dy = current_position[Y_AXIS] - destination[Y_AXIS];
|
||||
@ -563,43 +566,43 @@
|
||||
else {
|
||||
SERIAL_ECHOPGM(" fpmm=");
|
||||
fpmm = de / xy_dist;
|
||||
SERIAL_PROTOCOL_F(fpmm, 6);
|
||||
SERIAL_ECHO_F(fpmm, 6);
|
||||
}
|
||||
|
||||
SERIAL_ECHOPGM(" current=( ");
|
||||
SERIAL_PROTOCOL_F(current_position[X_AXIS], 6);
|
||||
SERIAL_ECHO_F(current_position[X_AXIS], 6);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
SERIAL_PROTOCOL_F(current_position[Y_AXIS], 6);
|
||||
SERIAL_ECHO_F(current_position[Y_AXIS], 6);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
||||
SERIAL_ECHO_F(current_position[Z_AXIS], 6);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
SERIAL_PROTOCOL_F(current_position[E_AXIS], 6);
|
||||
SERIAL_ECHO_F(current_position[E_AXIS], 6);
|
||||
SERIAL_ECHOPGM(" ) destination=( ");
|
||||
if (current_position[X_AXIS] == destination[X_AXIS])
|
||||
SERIAL_ECHOPGM("-------------");
|
||||
else
|
||||
SERIAL_PROTOCOL_F(destination[X_AXIS], 6);
|
||||
SERIAL_ECHO_F(destination[X_AXIS], 6);
|
||||
|
||||
SERIAL_ECHOPGM(", ");
|
||||
|
||||
if (current_position[Y_AXIS] == destination[Y_AXIS])
|
||||
SERIAL_ECHOPGM("-------------");
|
||||
else
|
||||
SERIAL_PROTOCOL_F(destination[Y_AXIS], 6);
|
||||
SERIAL_ECHO_F(destination[Y_AXIS], 6);
|
||||
|
||||
SERIAL_ECHOPGM(", ");
|
||||
|
||||
if (current_position[Z_AXIS] == destination[Z_AXIS])
|
||||
SERIAL_ECHOPGM("-------------");
|
||||
else
|
||||
SERIAL_PROTOCOL_F(destination[Z_AXIS], 6);
|
||||
SERIAL_ECHO_F(destination[Z_AXIS], 6);
|
||||
|
||||
SERIAL_ECHOPGM(", ");
|
||||
|
||||
if (current_position[E_AXIS] == destination[E_AXIS])
|
||||
SERIAL_ECHOPGM("-------------");
|
||||
else
|
||||
SERIAL_PROTOCOL_F(destination[E_AXIS], 6);
|
||||
SERIAL_ECHO_F(destination[E_AXIS], 6);
|
||||
|
||||
SERIAL_ECHOPGM(" ) ");
|
||||
SERIAL_ECHO(title);
|
||||
@ -617,16 +620,16 @@
|
||||
float feed_value;
|
||||
static float last_z = -999.99;
|
||||
|
||||
bool has_XY_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
|
||||
bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
|
||||
|
||||
if (G26_Debug_flag) {
|
||||
SERIAL_ECHOPAIR("in move_to() has_XY_component:", (int)has_XY_component);
|
||||
if (g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR("in move_to() has_xy_component:", (int)has_xy_component);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
if (z != last_z) {
|
||||
|
||||
if (G26_Debug_flag) {
|
||||
if (g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR("in move_to() changing Z to ", (int)z);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
@ -638,20 +641,20 @@
|
||||
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
|
||||
destination[E_AXIS] = current_position[E_AXIS];
|
||||
|
||||
UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
|
||||
ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
|
||||
|
||||
stepper.synchronize();
|
||||
set_destination_to_current();
|
||||
|
||||
if (G26_Debug_flag)
|
||||
if (g26_debug_flag)
|
||||
debug_current_and_destination((char*)" in move_to() done with Z move");
|
||||
}
|
||||
|
||||
// Check if X or Y is involved in the movement.
|
||||
// Yes: a 'normal' movement. No: a retract() or un_retract()
|
||||
feed_value = has_XY_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
|
||||
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
|
||||
|
||||
if (G26_Debug_flag) {
|
||||
if (g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR("in move_to() feed_value for XY:", feed_value);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
@ -660,12 +663,12 @@
|
||||
destination[Y_AXIS] = y;
|
||||
destination[E_AXIS] += e_delta;
|
||||
|
||||
if (G26_Debug_flag)
|
||||
if (g26_debug_flag)
|
||||
debug_current_and_destination((char*)" in move_to() doing last move");
|
||||
|
||||
UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
|
||||
ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
|
||||
|
||||
if (G26_Debug_flag)
|
||||
if (g26_debug_flag)
|
||||
debug_current_and_destination((char*)" in move_to() after last move");
|
||||
|
||||
stepper.synchronize();
|
||||
@ -673,19 +676,19 @@
|
||||
}
|
||||
|
||||
void retract_filament() {
|
||||
if (!G26_retracted) { // Only retract if we are not already retracted!
|
||||
G26_retracted = true;
|
||||
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * Retraction_Multiplier);
|
||||
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
|
||||
if (!g26_retracted) { // Only retract if we are not already retracted!
|
||||
g26_retracted = true;
|
||||
if (g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier);
|
||||
if (g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
|
||||
}
|
||||
}
|
||||
|
||||
void un_retract_filament() {
|
||||
if (G26_retracted) { // Only un-retract if we are retracted.
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * Retraction_Multiplier);
|
||||
G26_retracted = false;
|
||||
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
|
||||
if (g26_retracted) { // Only un-retract if we are retracted.
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier);
|
||||
g26_retracted = false;
|
||||
if (g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
|
||||
}
|
||||
}
|
||||
|
||||
@ -724,7 +727,7 @@
|
||||
// On very small lines we don't do the optimization because it just isn't worth it.
|
||||
//
|
||||
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(Line_Length)) {
|
||||
if (G26_Debug_flag)
|
||||
if (g26_debug_flag)
|
||||
SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
|
||||
print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
|
||||
return;
|
||||
@ -734,19 +737,19 @@
|
||||
|
||||
if (dist_start > 2.0) {
|
||||
retract_filament();
|
||||
if (G26_Debug_flag)
|
||||
if (g26_debug_flag)
|
||||
SERIAL_ECHOLNPGM(" filament retracted.");
|
||||
}
|
||||
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
|
||||
|
||||
E_Pos_Delta = Line_Length * G26_E_AXIS_feedrate * Extrusion_Multiplier;
|
||||
float e_pos_delta = Line_Length * g26_e_axis_feedrate * extrusion_multiplier;
|
||||
|
||||
un_retract_filament();
|
||||
if (G26_Debug_flag) {
|
||||
if (g26_debug_flag) {
|
||||
SERIAL_ECHOLNPGM(" doing printing move.");
|
||||
debug_current_and_destination((char*)"doing final move_to() inside print_line_from_here_to_there()");
|
||||
}
|
||||
move_to(ex, ey, ez, E_Pos_Delta); // Get to the ending point with an appropriate amount of extrusion
|
||||
move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
|
||||
}
|
||||
|
||||
/**
|
||||
@ -756,17 +759,17 @@
|
||||
*/
|
||||
bool parse_G26_parameters() {
|
||||
|
||||
Extrusion_Multiplier = EXTRUSION_MULTIPLIER;
|
||||
Retraction_Multiplier = RETRACTION_MULTIPLIER;
|
||||
Nozzle = NOZZLE;
|
||||
Filament = FILAMENT;
|
||||
Layer_Height = LAYER_HEIGHT;
|
||||
Prime_Length = PRIME_LENGTH;
|
||||
extrusion_multiplier = EXTRUSION_MULTIPLIER;
|
||||
retraction_multiplier = RETRACTION_MULTIPLIER;
|
||||
nozzle = NOZZLE;
|
||||
filament_diameter = FILAMENT;
|
||||
layer_height = LAYER_HEIGHT;
|
||||
prime_length = PRIME_LENGTH;
|
||||
bed_temp = BED_TEMP;
|
||||
hotend_temp = HOTEND_TEMP;
|
||||
Ooooze_Amount = OOOOZE_AMOUNT;
|
||||
Prime_Flag = 0;
|
||||
Keep_Heaters_On = false;
|
||||
ooze_amount = OOZE_AMOUNT;
|
||||
prime_flag = 0;
|
||||
keep_heaters_on = false;
|
||||
|
||||
if (code_seen('B')) {
|
||||
bed_temp = code_value_float();
|
||||
@ -776,11 +779,11 @@
|
||||
}
|
||||
}
|
||||
|
||||
if (code_seen('C')) Continue_with_closest++;
|
||||
if (code_seen('C')) continue_with_closest++;
|
||||
|
||||
if (code_seen('L')) {
|
||||
Layer_Height = code_value_float();
|
||||
if (Layer_Height<0.0 || Layer_Height>2.0) {
|
||||
layer_height = code_value_float();
|
||||
if (layer_height < 0.0 || layer_height > 2.0) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
@ -788,8 +791,8 @@
|
||||
|
||||
if (code_seen('Q')) {
|
||||
if (code_has_value()) {
|
||||
Retraction_Multiplier = code_value_float();
|
||||
if (Retraction_Multiplier<.05 || Retraction_Multiplier>15.0) {
|
||||
retraction_multiplier = code_value_float();
|
||||
if (retraction_multiplier < 0.05 || retraction_multiplier > 15.0) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
@ -801,25 +804,25 @@
|
||||
}
|
||||
|
||||
if (code_seen('N')) {
|
||||
Nozzle = code_value_float();
|
||||
if (Nozzle < 0.1 || Nozzle > 1.0) {
|
||||
nozzle = code_value_float();
|
||||
if (nozzle < 0.1 || nozzle > 1.0) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
if (code_seen('K')) Keep_Heaters_On++;
|
||||
if (code_seen('K')) keep_heaters_on++;
|
||||
|
||||
if (code_seen('O') && code_has_value())
|
||||
Ooooze_Amount = code_value_float();
|
||||
ooze_amount = code_value_float();
|
||||
|
||||
if (code_seen('P')) {
|
||||
if (!code_has_value())
|
||||
Prime_Flag = -1;
|
||||
prime_flag = -1;
|
||||
else {
|
||||
Prime_Flag++;
|
||||
Prime_Length = code_value_float();
|
||||
if (Prime_Length < 0.0 || Prime_Length > 25.0) {
|
||||
prime_flag++;
|
||||
prime_length = code_value_float();
|
||||
if (prime_length < 0.0 || prime_length > 25.0) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
@ -827,16 +830,17 @@
|
||||
}
|
||||
|
||||
if (code_seen('F')) {
|
||||
Filament = code_value_float();
|
||||
if (Filament < 1.0 || Filament > 4.0) {
|
||||
filament_diameter = code_value_float();
|
||||
if (filament_diameter < 1.0 || filament_diameter > 4.0) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
}
|
||||
Extrusion_Multiplier *= sq(1.75) / sq(Filament); // If we aren't using 1.75mm filament, we need to
|
||||
extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
|
||||
// scale up or down the length needed to get the
|
||||
// same volume of filament
|
||||
Extrusion_Multiplier *= Filament * sq(Nozzle) / sq(0.3); // Scale up by nozzle size
|
||||
|
||||
extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
|
||||
|
||||
if (code_seen('H')) {
|
||||
hotend_temp = code_value_float();
|
||||
@ -848,15 +852,15 @@
|
||||
|
||||
if (code_seen('R')) {
|
||||
randomSeed(millis());
|
||||
Random_Deviation = code_has_value() ? code_value_float() : 50.0;
|
||||
random_deviation = code_has_value() ? code_value_float() : 50.0;
|
||||
}
|
||||
|
||||
X_Pos = current_position[X_AXIS];
|
||||
Y_Pos = current_position[Y_AXIS];
|
||||
x_pos = current_position[X_AXIS];
|
||||
y_pos = current_position[Y_AXIS];
|
||||
|
||||
if (code_seen('X')) {
|
||||
X_Pos = code_value_float();
|
||||
if (X_Pos < X_MIN_POS || X_Pos > X_MAX_POS) {
|
||||
x_pos = code_value_float();
|
||||
if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
@ -864,8 +868,8 @@
|
||||
else
|
||||
|
||||
if (code_seen('Y')) {
|
||||
Y_Pos = code_value_float();
|
||||
if (Y_Pos < Y_MIN_POS || Y_Pos > Y_MAX_POS) {
|
||||
y_pos = code_value_float();
|
||||
if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) {
|
||||
SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
|
||||
return UBL_ERR;
|
||||
}
|
||||
@ -877,7 +881,7 @@
|
||||
* alter the system's status. We wait until we know everything is correct before altering the state
|
||||
* of the system.
|
||||
*/
|
||||
blm.state.active = !code_seen('D');
|
||||
ubl.state.active = !code_seen('D');
|
||||
|
||||
return UBL_OK;
|
||||
}
|
||||
@ -893,17 +897,18 @@
|
||||
lcd_setstatus("G26 Heating Bed.", true);
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
UBL_has_control_of_LCD_Panel++;
|
||||
ubl_has_control_of_lcd_panel++;
|
||||
thermalManager.setTargetBed(bed_temp);
|
||||
wait_for_user = true;
|
||||
while (abs(thermalManager.degBed() - bed_temp) > 3) {
|
||||
if (G29_lcd_clicked()) {
|
||||
if (!wait_for_user) {
|
||||
strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
|
||||
while (G29_lcd_clicked()) idle(); // Debounce the switch
|
||||
lcd_setstatus("Leaving G26", true); // Now we do it right.
|
||||
return UBL_ERR;
|
||||
}
|
||||
idle();
|
||||
}
|
||||
wait_for_user = false;
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
}
|
||||
lcd_setstatus("G26 Heating Nozzle.", true);
|
||||
@ -913,15 +918,16 @@
|
||||
|
||||
// Start heating the nozzle and wait for it to reach temperature.
|
||||
thermalManager.setTargetHotend(hotend_temp, 0);
|
||||
wait_for_user = true;
|
||||
while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
|
||||
if (G29_lcd_clicked()) {
|
||||
if (!wait_for_user) {
|
||||
strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
|
||||
while (G29_lcd_clicked()) idle(); // Debounce the switch
|
||||
lcd_setstatus("Leaving G26", true); // Now we do it right.
|
||||
return UBL_ERR;
|
||||
}
|
||||
idle();
|
||||
}
|
||||
wait_for_user = false;
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
lcd_setstatus("", true);
|
||||
@ -936,8 +942,8 @@
|
||||
bool prime_nozzle() {
|
||||
float Total_Prime = 0.0;
|
||||
|
||||
if (Prime_Flag == -1) { // The user wants to control how much filament gets purged
|
||||
lcd_setstatus("User Controled Prime", true);
|
||||
if (prime_flag == -1) { // The user wants to control how much filament gets purged
|
||||
lcd_setstatus("User-Controlled Prime", true);
|
||||
chirp_at_user();
|
||||
|
||||
set_destination_to_current();
|
||||
@ -946,15 +952,15 @@
|
||||
// retracted(). We are here because we want to prime the nozzle.
|
||||
// So let's just unretract just to be sure.
|
||||
|
||||
UBL_has_control_of_LCD_Panel++;
|
||||
while (!G29_lcd_clicked()) {
|
||||
wait_for_user = true;
|
||||
while (wait_for_user) {
|
||||
chirp_at_user();
|
||||
destination[E_AXIS] += 0.25;
|
||||
#ifdef PREVENT_LENGTHY_EXTRUDE
|
||||
Total_Prime += 0.25;
|
||||
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
|
||||
#endif
|
||||
UBL_line_to_destination(
|
||||
ubl_line_to_destination(
|
||||
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
|
||||
//planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
|
||||
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
|
||||
@ -971,10 +977,8 @@
|
||||
strcpy(lcd_status_message, "Done Priming"); // We can't do lcd_setstatus() without having it continue;
|
||||
// So... We cheat to get a message up.
|
||||
|
||||
while (G29_lcd_clicked()) idle(); // Debounce the switch
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
UBL_has_control_of_LCD_Panel = 0;
|
||||
ubl_has_control_of_lcd_panel = false;
|
||||
lcd_setstatus("Done Priming", true); // Now we do it right.
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
@ -985,8 +989,8 @@
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
set_destination_to_current();
|
||||
destination[E_AXIS] += Prime_Length;
|
||||
UBL_line_to_destination(
|
||||
destination[E_AXIS] += prime_length;
|
||||
ubl_line_to_destination(
|
||||
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
|
||||
//planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
|
||||
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
|
||||
|
@ -89,7 +89,7 @@ FORCE_INLINE void store_char(unsigned char c) {
|
||||
}
|
||||
}
|
||||
|
||||
#if defined(M_USARTx_UDRE_vect)
|
||||
#ifdef M_USARTx_UDRE_vect
|
||||
ISR(M_USARTx_UDRE_vect) {
|
||||
_tx_udr_empty_irq();
|
||||
}
|
||||
@ -97,7 +97,7 @@ FORCE_INLINE void store_char(unsigned char c) {
|
||||
|
||||
#endif // TX_BUFFER_SIZE
|
||||
|
||||
#if defined(M_USARTx_RX_vect)
|
||||
#ifdef M_USARTx_RX_vect
|
||||
ISR(M_USARTx_RX_vect) {
|
||||
unsigned char c = M_UDRx;
|
||||
store_char(c);
|
||||
|
103
Marlin/Marlin_main.cpp
Normal file → Executable file
103
Marlin/Marlin_main.cpp
Normal file → Executable file
@ -301,7 +301,7 @@
|
||||
#endif
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
bed_leveling blm;
|
||||
unified_bed_leveling ubl;
|
||||
#endif
|
||||
|
||||
bool Running = true;
|
||||
@ -508,7 +508,13 @@ static uint8_t target_extruder;
|
||||
#endif
|
||||
|
||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||
float z_endstop_adj = 0;
|
||||
float z_endstop_adj =
|
||||
#ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
|
||||
Z_DUAL_ENDSTOPS_ADJUSTMENT
|
||||
#else
|
||||
0
|
||||
#endif
|
||||
;
|
||||
#endif
|
||||
|
||||
// Extruder offsets
|
||||
@ -2281,7 +2287,7 @@ static void clean_up_after_endstop_or_probe_move() {
|
||||
if (enable) planner.unapply_leveling(current_position);
|
||||
}
|
||||
|
||||
#elif HAS_ABL
|
||||
#elif HAS_ABL && !ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
const bool can_change = (!enable || (bilinear_grid_spacing[0] && bilinear_grid_spacing[1]));
|
||||
@ -2302,7 +2308,11 @@ static void clean_up_after_endstop_or_probe_move() {
|
||||
else
|
||||
planner.unapply_leveling(current_position);
|
||||
}
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
if (ubl.state.eeprom_storage_slot == 0) {
|
||||
ubl.state.active = enable;
|
||||
ubl.store_state();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -2476,7 +2486,7 @@ static void clean_up_after_endstop_or_probe_move() {
|
||||
SERIAL_PROTOCOLCHAR(' ');
|
||||
float offset = fn(x, y);
|
||||
if (offset != UNPROBED) {
|
||||
if (offset >= 0) SERIAL_CHAR('+');
|
||||
if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
|
||||
SERIAL_PROTOCOL_F(offset, precision);
|
||||
}
|
||||
else
|
||||
@ -3248,7 +3258,9 @@ inline void gcode_G4() {
|
||||
#endif
|
||||
|
||||
SERIAL_ECHOPGM("Probe: ");
|
||||
#if ENABLED(FIX_MOUNTED_PROBE)
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
SERIAL_ECHOLNPGM("PROBE_MANUALLY");
|
||||
#elif ENABLED(FIX_MOUNTED_PROBE)
|
||||
SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
|
||||
#elif ENABLED(BLTOUCH)
|
||||
SERIAL_ECHOLNPGM("BLTOUCH");
|
||||
@ -3304,7 +3316,7 @@ inline void gcode_G4() {
|
||||
#endif
|
||||
if (planner.abl_enabled) {
|
||||
SERIAL_ECHOLNPGM(" (enabled)");
|
||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT) || ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
#if ABL_PLANAR
|
||||
float diff[XYZ] = {
|
||||
stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
|
||||
stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
|
||||
@ -3319,12 +3331,19 @@ inline void gcode_G4() {
|
||||
SERIAL_ECHOPGM(" Z");
|
||||
if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
|
||||
SERIAL_ECHO(diff[Z_AXIS]);
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
|
||||
#endif
|
||||
}
|
||||
else
|
||||
SERIAL_ECHOLNPGM(" (disabled)");
|
||||
|
||||
SERIAL_EOL;
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
SERIAL_ECHOPGM("Mesh Bed Leveling");
|
||||
if (mbl.active()) {
|
||||
float lz = current_position[Z_AXIS];
|
||||
@ -3332,9 +3351,12 @@ inline void gcode_G4() {
|
||||
SERIAL_ECHOLNPGM(" (enabled)");
|
||||
SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
|
||||
}
|
||||
SERIAL_EOL;
|
||||
#endif
|
||||
else
|
||||
SERIAL_ECHOPGM(" (disabled)");
|
||||
|
||||
SERIAL_EOL;
|
||||
|
||||
#endif // MESH_BED_LEVELING
|
||||
}
|
||||
|
||||
#endif // DEBUG_LEVELING_FEATURE
|
||||
@ -5344,7 +5366,7 @@ inline void gcode_M104() {
|
||||
SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
|
||||
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
||||
SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_PROTOCOLCHAR(')');
|
||||
#endif
|
||||
#endif
|
||||
#if HAS_TEMP_BED
|
||||
@ -5354,7 +5376,7 @@ inline void gcode_M104() {
|
||||
SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
|
||||
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
||||
SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_PROTOCOLCHAR(')');
|
||||
#endif
|
||||
#endif
|
||||
#if HOTENDS > 1
|
||||
@ -5366,7 +5388,7 @@ inline void gcode_M104() {
|
||||
SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
|
||||
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
||||
SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_PROTOCOLCHAR(')');
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
@ -7122,7 +7144,7 @@ void quickstop_stepper() {
|
||||
*
|
||||
* S[bool] Turns leveling on or off
|
||||
* Z[height] Sets the Z fade height (0 or none to disable)
|
||||
* V[bool] Verbose - Print the levelng grid
|
||||
* V[bool] Verbose - Print the leveling grid
|
||||
*/
|
||||
inline void gcode_M420() {
|
||||
bool to_enable = false;
|
||||
@ -7139,6 +7161,8 @@ void quickstop_stepper() {
|
||||
const bool new_status =
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
mbl.active()
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
ubl.state.active
|
||||
#else
|
||||
planner.abl_enabled
|
||||
#endif
|
||||
@ -7164,7 +7188,7 @@ void quickstop_stepper() {
|
||||
#endif
|
||||
}
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
blm.display_map(0); // Right now, we only support one type of map
|
||||
ubl.display_map(0); // Right now, we only support one type of map
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
if (mbl.has_mesh()) {
|
||||
SERIAL_ECHOLNPGM("Mesh Bed Level data:");
|
||||
@ -8001,7 +8025,7 @@ inline void gcode_M999() {
|
||||
inline void invalid_extruder_error(const uint8_t &e) {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_CHAR('T');
|
||||
SERIAL_PROTOCOL_F(e, DEC);
|
||||
SERIAL_ECHO_F(e, DEC);
|
||||
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
||||
}
|
||||
|
||||
@ -8604,13 +8628,13 @@ void process_next_command() {
|
||||
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
case 49: // M49: Turn on or off G26_Debug_flag for verbose output
|
||||
if (G26_Debug_flag) {
|
||||
case 49: // M49: Turn on or off g26_debug_flag for verbose output
|
||||
if (g26_debug_flag) {
|
||||
SERIAL_PROTOCOLPGM("UBL Debug Flag turned off.\n");
|
||||
G26_Debug_flag = 0; }
|
||||
g26_debug_flag = 0; }
|
||||
else {
|
||||
SERIAL_PROTOCOLPGM("UBL Debug Flag turned on.\n");
|
||||
G26_Debug_flag++; }
|
||||
g26_debug_flag++; }
|
||||
break;
|
||||
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
|
||||
|
||||
@ -9745,11 +9769,11 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||
}
|
||||
else
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
if (blm.state.active) {
|
||||
if (ubl.state.active) {
|
||||
|
||||
// UBL_line_to_destination(MMS_SCALED(feedrate_mm_s));
|
||||
// ubl_line_to_destination(MMS_SCALED(feedrate_mm_s));
|
||||
|
||||
UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
|
||||
ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
|
||||
// (feedrate*(1.0/60.0))*(feedrate_percentage*(1.0/100.0) ), active_extruder);
|
||||
MMS_SCALED(feedrate_mm_s), active_extruder);
|
||||
|
||||
@ -10188,35 +10212,35 @@ void prepare_move_to_destination() {
|
||||
void setPwmFrequency(uint8_t pin, int val) {
|
||||
val &= 0x07;
|
||||
switch (digitalPinToTimer(pin)) {
|
||||
#if defined(TCCR0A)
|
||||
#ifdef TCCR0A
|
||||
case TIMER0A:
|
||||
case TIMER0B:
|
||||
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
|
||||
// TCCR0B |= val;
|
||||
break;
|
||||
#endif
|
||||
#if defined(TCCR1A)
|
||||
#ifdef TCCR1A
|
||||
case TIMER1A:
|
||||
case TIMER1B:
|
||||
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
||||
// TCCR1B |= val;
|
||||
break;
|
||||
#endif
|
||||
#if defined(TCCR2)
|
||||
#ifdef TCCR2
|
||||
case TIMER2:
|
||||
case TIMER2:
|
||||
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
||||
TCCR2 |= val;
|
||||
break;
|
||||
#endif
|
||||
#if defined(TCCR2A)
|
||||
#ifdef TCCR2A
|
||||
case TIMER2A:
|
||||
case TIMER2B:
|
||||
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
|
||||
TCCR2B |= val;
|
||||
break;
|
||||
#endif
|
||||
#if defined(TCCR3A)
|
||||
#ifdef TCCR3A
|
||||
case TIMER3A:
|
||||
case TIMER3B:
|
||||
case TIMER3C:
|
||||
@ -10224,7 +10248,7 @@ void prepare_move_to_destination() {
|
||||
TCCR3B |= val;
|
||||
break;
|
||||
#endif
|
||||
#if defined(TCCR4A)
|
||||
#ifdef TCCR4A
|
||||
case TIMER4A:
|
||||
case TIMER4B:
|
||||
case TIMER4C:
|
||||
@ -10232,7 +10256,7 @@ void prepare_move_to_destination() {
|
||||
TCCR4B |= val;
|
||||
break;
|
||||
#endif
|
||||
#if defined(TCCR5A)
|
||||
#ifdef TCCR5A
|
||||
case TIMER5A:
|
||||
case TIMER5B:
|
||||
case TIMER5C:
|
||||
@ -10476,23 +10500,12 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
|
||||
|
||||
previous_cmd_ms = ms; // refresh_cmd_timeout()
|
||||
|
||||
#if IS_KINEMATIC
|
||||
inverse_kinematics(current_position);
|
||||
ADJUST_DELTA(current_position);
|
||||
planner.buffer_line(
|
||||
delta[A_AXIS], delta[B_AXIS], delta[C_AXIS],
|
||||
current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
|
||||
MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
|
||||
);
|
||||
#else
|
||||
planner.buffer_line(
|
||||
current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
|
||||
current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
|
||||
MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
|
||||
);
|
||||
#endif
|
||||
const float olde = current_position[E_AXIS];
|
||||
current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
|
||||
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
|
||||
current_position[E_AXIS] = olde;
|
||||
planner.set_e_position_mm(olde);
|
||||
stepper.synchronize();
|
||||
planner.set_e_position_mm(current_position[E_AXIS]);
|
||||
#if ENABLED(SWITCHING_EXTRUDER)
|
||||
E0_ENABLE_WRITE(oldstatus);
|
||||
#else
|
||||
|
@ -576,17 +576,15 @@ static_assert(1 >= 0
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Check if Probe_Offset * Grid Points is greater than Probing Range
|
||||
* Check auto bed leveling sub-options, especially probe points
|
||||
*/
|
||||
#if ABL_GRID
|
||||
#ifndef DELTA_PROBEABLE_RADIUS
|
||||
// Be sure points are in the right order
|
||||
#if LEFT_PROBE_BED_POSITION > RIGHT_PROBE_BED_POSITION
|
||||
#error "LEFT_PROBE_BED_POSITION must be less than RIGHT_PROBE_BED_POSITION."
|
||||
#elif FRONT_PROBE_BED_POSITION > BACK_PROBE_BED_POSITION
|
||||
#error "FRONT_PROBE_BED_POSITION must be less than BACK_PROBE_BED_POSITION."
|
||||
#endif
|
||||
// Make sure probing points are reachable
|
||||
#if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
|
||||
#error "The given LEFT_PROBE_BED_POSITION can't be reached by the Z probe."
|
||||
#elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
|
||||
@ -597,13 +595,25 @@ static_assert(1 >= 0
|
||||
#error "The given BACK_PROBE_BED_POSITION can't be reached by the Z probe."
|
||||
#endif
|
||||
#endif
|
||||
#else // !ABL_GRID
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
#ifndef EEPROM_SETTINGS
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
#if DISABLED(EEPROM_SETTINGS)
|
||||
#error "AUTO_BED_LEVELING_UBL requires EEPROM_SETTINGS. Please update your configuration."
|
||||
#elif UBL_MESH_NUM_X_POINTS < 3 || UBL_MESH_NUM_X_POINTS > 15 || UBL_MESH_NUM_Y_POINTS < 3 || UBL_MESH_NUM_Y_POINTS > 15
|
||||
#error "UBL_MESH_NUM_[XY]_POINTS must be a whole number between 3 and 15."
|
||||
#elif UBL_PROBE_PT_1_X < MIN_PROBE_X || UBL_PROBE_PT_1_X > MAX_PROBE_X
|
||||
#error "The given UBL_PROBE_PT_1_X can't be reached by the Z probe."
|
||||
#elif UBL_PROBE_PT_2_X < MIN_PROBE_X || UBL_PROBE_PT_2_X > MAX_PROBE_X
|
||||
#error "The given UBL_PROBE_PT_2_X can't be reached by the Z probe."
|
||||
#elif UBL_PROBE_PT_3_X < MIN_PROBE_X || UBL_PROBE_PT_3_X > MAX_PROBE_X
|
||||
#error "The given UBL_PROBE_PT_3_X can't be reached by the Z probe."
|
||||
#elif UBL_PROBE_PT_1_Y < MIN_PROBE_Y || UBL_PROBE_PT_1_Y > MAX_PROBE_Y
|
||||
#error "The given UBL_PROBE_PT_1_Y can't be reached by the Z probe."
|
||||
#elif UBL_PROBE_PT_2_Y < MIN_PROBE_Y || UBL_PROBE_PT_2_Y > MAX_PROBE_Y
|
||||
#error "The given UBL_PROBE_PT_2_Y can't be reached by the Z probe."
|
||||
#elif UBL_PROBE_PT_3_Y < MIN_PROBE_Y || UBL_PROBE_PT_3_Y > MAX_PROBE_Y
|
||||
#error "The given UBL_PROBE_PT_3_Y can't be reached by the Z probe."
|
||||
#endif
|
||||
#else // !UBL
|
||||
// Check the triangulation points
|
||||
#else // AUTO_BED_LEVELING_3POINT
|
||||
#if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
|
||||
#error "The given ABL_PROBE_PT_1_X can't be reached by the Z probe."
|
||||
#elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
|
||||
@ -617,9 +627,7 @@ static_assert(1 >= 0
|
||||
#elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
|
||||
#error "The given ABL_PROBE_PT_3_Y can't be reached by the Z probe."
|
||||
#endif
|
||||
#endif // !AUTO_BED_LEVEING_UBL
|
||||
|
||||
#endif // !ABL_GRID
|
||||
#endif // AUTO_BED_LEVELING_3POINT
|
||||
|
||||
#endif // HAS_ABL
|
||||
|
||||
|
68
Marlin/UBL.h
68
Marlin/UBL.h
@ -37,27 +37,27 @@
|
||||
// from the search location
|
||||
} mesh_index_pair;
|
||||
|
||||
struct vector { double dx, dy, dz; };
|
||||
typedef struct { double dx, dy, dz; } vector;
|
||||
|
||||
enum Mesh_Point_Type { INVALID, REAL, SET_IN_BITMAP };
|
||||
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
|
||||
|
||||
bool axis_unhomed_error(bool, bool, bool);
|
||||
void dump(char *str, float f);
|
||||
bool G29_lcd_clicked();
|
||||
bool ubl_lcd_clicked();
|
||||
void probe_entire_mesh(float, float, bool, bool);
|
||||
void UBL_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
|
||||
void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
|
||||
void manually_probe_remaining_mesh(float, float, float, float, bool);
|
||||
struct vector tilt_mesh_based_on_3pts(float, float, float);
|
||||
vector tilt_mesh_based_on_3pts(float, float, float);
|
||||
void new_set_bed_level_equation_3pts(float, float, float);
|
||||
float measure_business_card_thickness(float);
|
||||
mesh_index_pair find_closest_mesh_point_of_type(Mesh_Point_Type, float, float, bool, unsigned int[16]);
|
||||
void Find_Mean_Mesh_Height();
|
||||
void Shift_Mesh_Height();
|
||||
bool G29_Parameter_Parsing();
|
||||
void G29_What_Command();
|
||||
void G29_EEPROM_Dump();
|
||||
void G29_Kompare_Current_Mesh_to_Stored_Mesh();
|
||||
void fine_tune_mesh(float, float, float, bool);
|
||||
mesh_index_pair find_closest_mesh_point_of_type(MeshPointType, float, float, bool, unsigned int[16]);
|
||||
void find_mean_mesh_height();
|
||||
void shift_mesh_height();
|
||||
bool g29_parameter_parsing();
|
||||
void g29_what_command();
|
||||
void g29_eeprom_dump();
|
||||
void g29_compare_current_mesh_to_stored_mesh();
|
||||
void fine_tune_mesh(float, float, bool);
|
||||
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
|
||||
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
|
||||
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
|
||||
@ -68,8 +68,8 @@
|
||||
void gcode_G29();
|
||||
extern char conv[9];
|
||||
|
||||
void save_UBL_active_state_and_disable();
|
||||
void restore_UBL_active_state_and_leave();
|
||||
void save_ubl_active_state_and_disable();
|
||||
void restore_ubl_active_state_and_leave();
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
@ -83,19 +83,19 @@
|
||||
#define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0))
|
||||
#define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0))
|
||||
|
||||
extern bool G26_Debug_flag;
|
||||
extern bool g26_debug_flag;
|
||||
extern float last_specified_z;
|
||||
extern float fade_scaling_factor_for_current_height;
|
||||
extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
|
||||
extern float mesh_index_to_X_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
|
||||
extern float mesh_index_to_Y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
|
||||
extern float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
|
||||
extern float mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
|
||||
|
||||
class bed_leveling {
|
||||
class unified_bed_leveling {
|
||||
public:
|
||||
struct ubl_state {
|
||||
bool active = false;
|
||||
float z_offset = 0.0;
|
||||
int EEPROM_storage_slot = -1,
|
||||
int eeprom_storage_slot = -1,
|
||||
n_x = UBL_MESH_NUM_X_POINTS,
|
||||
n_y = UBL_MESH_NUM_Y_POINTS;
|
||||
float mesh_x_min = UBL_MESH_MIN_X,
|
||||
@ -104,8 +104,8 @@
|
||||
mesh_y_max = UBL_MESH_MAX_Y,
|
||||
mesh_x_dist = MESH_X_DIST,
|
||||
mesh_y_dist = MESH_Y_DIST,
|
||||
G29_Correction_Fade_Height = 10.0,
|
||||
G29_Fade_Height_Multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating
|
||||
g29_correction_fade_height = 10.0,
|
||||
g29_fade_height_multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating
|
||||
// point divide. So, we keep this number in both forms. The first
|
||||
// is for the user. The second one is the one that is actually used
|
||||
// again and again and again during the correction calculations.
|
||||
@ -119,8 +119,8 @@
|
||||
// the padding[] to keep the size the same!
|
||||
} state, pre_initialized;
|
||||
|
||||
bed_leveling();
|
||||
// ~bed_leveling(); // No destructor because this object never goes away!
|
||||
unified_bed_leveling();
|
||||
// ~unified_bed_leveling(); // No destructor because this object never goes away!
|
||||
|
||||
void display_map(int);
|
||||
|
||||
@ -203,7 +203,7 @@
|
||||
return NAN;
|
||||
}
|
||||
|
||||
const float a0ma1diva2ma1 = (x0 - mesh_index_to_X_location[x1_i]) * (1.0 / (MESH_X_DIST)),
|
||||
const float a0ma1diva2ma1 = (x0 - mesh_index_to_x_location[x1_i]) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = z_values[x1_i][yi],
|
||||
z2 = z_values[x1_i + 1][yi],
|
||||
dz = (z2 - z1);
|
||||
@ -224,7 +224,7 @@
|
||||
return NAN;
|
||||
}
|
||||
|
||||
const float a0ma1diva2ma1 = (y0 - mesh_index_to_Y_location[y1_i]) * (1.0 / (MESH_Y_DIST)),
|
||||
const float a0ma1diva2ma1 = (y0 - mesh_index_to_y_location[y1_i]) * (1.0 / (MESH_Y_DIST)),
|
||||
z1 = z_values[xi][y1_i],
|
||||
z2 = z_values[xi][y1_i + 1],
|
||||
dz = (z2 - z1);
|
||||
@ -271,20 +271,20 @@
|
||||
SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
|
||||
SERIAL_ECHOPAIR(",", y0);
|
||||
SERIAL_ECHOPGM(")=");
|
||||
SERIAL_PROTOCOL_F(z0, 6);
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPGM(" >>>---> ");
|
||||
SERIAL_PROTOCOL_F(z0, 6);
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||
z0 = 0.0; // in blm.z_values[][] and propagate through the
|
||||
z0 = 0.0; // in ubl.z_values[][] and propagate through the
|
||||
// calculations. If our correction is NAN, we throw it out
|
||||
// because part of the Mesh is undefined and we don't have the
|
||||
// information we need to complete the height correction.
|
||||
@ -311,21 +311,21 @@
|
||||
* If it must do a calcuation, it will return a scaling factor of 0.0 if the UBL System is not active
|
||||
* or if the current Z Height is past the specified 'Fade Height'
|
||||
*/
|
||||
FORCE_INLINE float fade_scaling_factor_for_Z(float current_z) {
|
||||
FORCE_INLINE float fade_scaling_factor_for_z(float current_z) {
|
||||
if (last_specified_z == current_z)
|
||||
return fade_scaling_factor_for_current_height;
|
||||
|
||||
last_specified_z = current_z;
|
||||
fade_scaling_factor_for_current_height =
|
||||
state.active && current_z < state.G29_Correction_Fade_Height
|
||||
? 1.0 - (current_z * state.G29_Fade_Height_Multiplier)
|
||||
state.active && current_z < state.g29_correction_fade_height
|
||||
? 1.0 - (current_z * state.g29_fade_height_multiplier)
|
||||
: 0.0;
|
||||
return fade_scaling_factor_for_current_height;
|
||||
}
|
||||
};
|
||||
|
||||
extern bed_leveling blm;
|
||||
extern int Unified_Bed_Leveling_EEPROM_start;
|
||||
extern unified_bed_leveling ubl;
|
||||
extern int ubl_eeprom_start;
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
#endif // UNIFIED_BED_LEVELING_H
|
@ -28,52 +28,59 @@
|
||||
#include "hex_print_routines.h"
|
||||
|
||||
/**
|
||||
* These variables used to be declared inside the bed_leveling class. We are going to still declare
|
||||
* them within the .cpp file for bed leveling. But there is only one instance of the bed leveling
|
||||
* object and we can get rid of a level of inderection by not making them 'member data'. So, in the
|
||||
* interest of speed, we do it this way. When we move to a 32-Bit processor, they can be moved
|
||||
* back inside the bed leveling class.
|
||||
* These variables used to be declared inside the unified_bed_leveling class. We are going to
|
||||
* still declare them within the .cpp file for bed leveling. But there is only one instance of
|
||||
* the bed leveling object and we can get rid of a level of inderection by not making them
|
||||
* 'member data'. So, in the interest of speed, we do it this way. On a 32-bit CPU they can be
|
||||
* moved back inside the bed leveling class.
|
||||
*/
|
||||
float last_specified_z,
|
||||
fade_scaling_factor_for_current_height,
|
||||
z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
|
||||
mesh_index_to_X_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the
|
||||
mesh_index_to_Y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
|
||||
mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the
|
||||
mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
|
||||
|
||||
bed_leveling::bed_leveling() {
|
||||
unified_bed_leveling::unified_bed_leveling() {
|
||||
for (uint8_t i = 0; i <= UBL_MESH_NUM_X_POINTS; i++) // We go one past what we expect to ever need for safety
|
||||
mesh_index_to_X_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i);
|
||||
mesh_index_to_x_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i);
|
||||
|
||||
for (uint8_t i = 0; i <= UBL_MESH_NUM_Y_POINTS; i++) // We go one past what we expect to ever need for safety
|
||||
mesh_index_to_Y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i);
|
||||
mesh_index_to_y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i);
|
||||
|
||||
reset();
|
||||
}
|
||||
|
||||
void bed_leveling::store_state() {
|
||||
int k = E2END - sizeof(blm.state);
|
||||
eeprom_write_block((void *)&blm.state, (void *)k, sizeof(blm.state));
|
||||
void unified_bed_leveling::store_state() {
|
||||
int k = E2END - sizeof(ubl.state);
|
||||
eeprom_write_block((void *)&ubl.state, (void *)k, sizeof(ubl.state));
|
||||
}
|
||||
|
||||
void bed_leveling::load_state() {
|
||||
int k = E2END - sizeof(blm.state);
|
||||
eeprom_read_block((void *)&blm.state, (void *)k, sizeof(blm.state));
|
||||
void unified_bed_leveling::load_state() {
|
||||
int k = E2END - sizeof(ubl.state);
|
||||
eeprom_read_block((void *)&ubl.state, (void *)k, sizeof(ubl.state));
|
||||
|
||||
if (sanity_check())
|
||||
SERIAL_PROTOCOLLNPGM("?In load_state() sanity_check() failed.\n");
|
||||
|
||||
// These lines can go away in a few weeks. They are just
|
||||
// to make sure people updating thier firmware won't be using
|
||||
if (blm.state.G29_Fade_Height_Multiplier != 1.0 / blm.state.G29_Correction_Fade_Height) { // an incomplete Bed_Leveling.state structure. For speed
|
||||
blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height; // we now multiply by the inverse of the Fade Height instead of
|
||||
store_state(); // dividing by it. Soon... all of the old structures will be
|
||||
} // updated, but until then, we try to ease the transition
|
||||
// for our Beta testers.
|
||||
/**
|
||||
* These lines can go away in a few weeks. They are just
|
||||
* to make sure people updating thier firmware won't be using
|
||||
* an incomplete Bed_Leveling.state structure. For speed
|
||||
* we now multiply by the inverse of the Fade Height instead of
|
||||
* dividing by it. Soon... all of the old structures will be
|
||||
* updated, but until then, we try to ease the transition
|
||||
* for our Beta testers.
|
||||
*/
|
||||
if (ubl.state.g29_fade_height_multiplier != 1.0 / ubl.state.g29_correction_fade_height) {
|
||||
ubl.state.g29_fade_height_multiplier = 1.0 / ubl.state.g29_correction_fade_height;
|
||||
store_state();
|
||||
}
|
||||
|
||||
void bed_leveling::load_mesh(int m) {
|
||||
int k = E2END - sizeof(blm.state),
|
||||
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
|
||||
}
|
||||
|
||||
void unified_bed_leveling::load_mesh(int m) {
|
||||
int k = E2END - sizeof(ubl.state),
|
||||
j = (k - ubl_eeprom_start) / sizeof(z_values);
|
||||
|
||||
if (m == -1) {
|
||||
SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n");
|
||||
@ -81,7 +88,7 @@
|
||||
return;
|
||||
}
|
||||
|
||||
if (m < 0 || m >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
|
||||
if (m < 0 || m >= j || ubl_eeprom_start <= 0) {
|
||||
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
|
||||
return;
|
||||
}
|
||||
@ -96,11 +103,11 @@
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
void bed_leveling:: store_mesh(int m) {
|
||||
void unified_bed_leveling:: store_mesh(int m) {
|
||||
int k = E2END - sizeof(state),
|
||||
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
|
||||
j = (k - ubl_eeprom_start) / sizeof(z_values);
|
||||
|
||||
if (m < 0 || m >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
|
||||
if (m < 0 || m >= j || ubl_eeprom_start <= 0) {
|
||||
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
|
||||
SERIAL_PROTOCOL(m);
|
||||
SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");
|
||||
@ -122,18 +129,18 @@
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
void bed_leveling::reset() {
|
||||
void unified_bed_leveling::reset() {
|
||||
state.active = false;
|
||||
state.z_offset = 0;
|
||||
state.EEPROM_storage_slot = -1;
|
||||
state.eeprom_storage_slot = -1;
|
||||
|
||||
ZERO(z_values);
|
||||
|
||||
last_specified_z = -999.9; // We can't pre-initialize these values in the declaration
|
||||
fade_scaling_factor_for_current_height = 0.0; // due to C++11 constraints
|
||||
last_specified_z = -999.9;
|
||||
fade_scaling_factor_for_current_height = 0.0;
|
||||
}
|
||||
|
||||
void bed_leveling::invalidate() {
|
||||
void unified_bed_leveling::invalidate() {
|
||||
prt_hex_word((unsigned int)this);
|
||||
SERIAL_EOL;
|
||||
|
||||
@ -144,7 +151,7 @@
|
||||
z_values[x][y] = NAN;
|
||||
}
|
||||
|
||||
void bed_leveling::display_map(int map_type) {
|
||||
void unified_bed_leveling::display_map(int map_type) {
|
||||
float f, current_xi, current_yi;
|
||||
int8_t i, j;
|
||||
UNUSED(map_type);
|
||||
@ -155,8 +162,8 @@
|
||||
SERIAL_ECHOPAIR(", ", UBL_MESH_NUM_Y_POINTS - 1);
|
||||
SERIAL_ECHOPGM(") ");
|
||||
|
||||
current_xi = blm.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0);
|
||||
current_yi = blm.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
|
||||
current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0);
|
||||
current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
|
||||
|
||||
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
|
||||
SERIAL_ECHOPGM(" ");
|
||||
@ -166,6 +173,7 @@
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
|
||||
// if (map_type || 1) {
|
||||
|
||||
SERIAL_ECHOPAIR("(", UBL_MESH_MIN_X);
|
||||
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
|
||||
SERIAL_CHAR(')');
|
||||
@ -176,6 +184,7 @@
|
||||
SERIAL_ECHOPAIR("(", UBL_MESH_MAX_X);
|
||||
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
|
||||
// }
|
||||
|
||||
for (j = UBL_MESH_NUM_Y_POINTS - 1; j >= 0; j--) {
|
||||
@ -235,7 +244,7 @@
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
bool bed_leveling::sanity_check() {
|
||||
bool unified_bed_leveling::sanity_check() {
|
||||
uint8_t error_flag = 0;
|
||||
|
||||
if (state.n_x != UBL_MESH_NUM_X_POINTS) {
|
||||
@ -278,8 +287,8 @@
|
||||
error_flag++;
|
||||
}
|
||||
|
||||
int k = E2END - sizeof(blm.state),
|
||||
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
|
||||
const int k = E2END - sizeof(ubl.state),
|
||||
j = (k - ubl_eeprom_start) / sizeof(z_values);
|
||||
|
||||
if (j < 1) {
|
||||
SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n");
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -19,52 +19,48 @@
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
#include "Marlin.h"
|
||||
#include "MarlinConfig.h"
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "UBL.h"
|
||||
#include "planner.h"
|
||||
#include <avr/io.h>
|
||||
#include <math.h>
|
||||
|
||||
extern void set_current_to_destination();
|
||||
extern bool G26_Debug_flag;
|
||||
void debug_current_and_destination(char *title);
|
||||
extern void debug_current_and_destination(char *title);
|
||||
|
||||
void wait_for_button_press();
|
||||
void ubl_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) {
|
||||
|
||||
void UBL_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) {
|
||||
int cell_start_xi, cell_start_yi, cell_dest_xi, cell_dest_yi,
|
||||
current_xi, current_yi,
|
||||
dxi, dyi, xi_cnt, yi_cnt;
|
||||
float x_start, y_start,
|
||||
x, y, z1, z2, z0 /*, z_optimized */,
|
||||
next_mesh_line_x, next_mesh_line_y, a0ma1diva2ma1,
|
||||
on_axis_distance, e_normalized_dist, e_position, e_start, z_normalized_dist, z_position, z_start,
|
||||
dx, dy, adx, ady, m, c;
|
||||
|
||||
int cell_start_xi, cell_start_yi, cell_dest_xi, cell_dest_yi;
|
||||
int left_flag, down_flag;
|
||||
int current_xi, current_yi;
|
||||
int dxi, dyi, xi_cnt, yi_cnt;
|
||||
bool use_X_dist, inf_normalized_flag, inf_m_flag;
|
||||
float x_start, y_start;
|
||||
float x, y, z1, z2, z0 /*, z_optimized */;
|
||||
float next_mesh_line_x, next_mesh_line_y, a0ma1diva2ma1;
|
||||
float on_axis_distance, e_normalized_dist, e_position, e_start, z_normalized_dist, z_position, z_start;
|
||||
float dx, dy, adx, ady, m, c;
|
||||
|
||||
//
|
||||
// Much of the nozzle movement will be within the same cell. So we will do as little computation
|
||||
// as possible to determine if this is the case. If this move is within the same cell, we will
|
||||
// just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
|
||||
//
|
||||
/**
|
||||
* Much of the nozzle movement will be within the same cell. So we will do as little computation
|
||||
* as possible to determine if this is the case. If this move is within the same cell, we will
|
||||
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
|
||||
*/
|
||||
|
||||
x_start = current_position[X_AXIS];
|
||||
y_start = current_position[Y_AXIS];
|
||||
z_start = current_position[Z_AXIS];
|
||||
e_start = current_position[E_AXIS];
|
||||
|
||||
cell_start_xi = blm.get_cell_index_x(x_start);
|
||||
cell_start_yi = blm.get_cell_index_y(y_start);
|
||||
cell_dest_xi = blm.get_cell_index_x(x_end);
|
||||
cell_dest_yi = blm.get_cell_index_y(y_end);
|
||||
cell_start_xi = ubl.get_cell_index_x(x_start);
|
||||
cell_start_yi = ubl.get_cell_index_y(y_start);
|
||||
cell_dest_xi = ubl.get_cell_index_x(x_end);
|
||||
cell_dest_yi = ubl.get_cell_index_y(y_end);
|
||||
|
||||
if (G26_Debug_flag!=0) {
|
||||
SERIAL_ECHOPGM(" UBL_line_to_destination(xe=");
|
||||
if (g26_debug_flag) {
|
||||
SERIAL_ECHOPGM(" ubl_line_to_destination(xe=");
|
||||
SERIAL_ECHO(x_end);
|
||||
SERIAL_ECHOPGM(", ye=");
|
||||
SERIAL_ECHO(y_end);
|
||||
@ -73,58 +69,64 @@
|
||||
SERIAL_ECHOPGM(", ee=");
|
||||
SERIAL_ECHO(e_end);
|
||||
SERIAL_ECHOPGM(")\n");
|
||||
debug_current_and_destination( (char *) "Start of UBL_line_to_destination()");
|
||||
debug_current_and_destination((char*)"Start of ubl_line_to_destination()");
|
||||
}
|
||||
|
||||
if ((cell_start_xi == cell_dest_xi) && (cell_start_yi == cell_dest_yi)) { // if the whole move is within the same cell,
|
||||
// we don't need to break up the move
|
||||
//
|
||||
// If we are moving off the print bed, we are going to allow the move at this level.
|
||||
// But we detect it and isolate it. For now, we just pass along the request.
|
||||
//
|
||||
if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
|
||||
/**
|
||||
* we don't need to break up the move
|
||||
*
|
||||
* If we are moving off the print bed, we are going to allow the move at this level.
|
||||
* But we detect it and isolate it. For now, we just pass along the request.
|
||||
*/
|
||||
|
||||
if (cell_dest_xi < 0 || cell_dest_yi < 0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) {
|
||||
|
||||
// Note: There is no Z Correction in this case. We are off the grid and don't know what
|
||||
// a reasonable correction would be.
|
||||
|
||||
planner.buffer_line(x_end, y_end, z_end + blm.state.z_offset, e_end, feed_rate, extruder);
|
||||
planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder);
|
||||
set_current_to_destination();
|
||||
if (G26_Debug_flag!=0) {
|
||||
debug_current_and_destination( (char *) "out of bounds in UBL_line_to_destination()");
|
||||
}
|
||||
|
||||
if (g26_debug_flag)
|
||||
debug_current_and_destination((char*)"out of bounds in ubl_line_to_destination()");
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
// we can optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
|
||||
// generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
|
||||
// We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
|
||||
// We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
|
||||
// instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
|
||||
// to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
|
||||
|
||||
FINAL_MOVE:
|
||||
a0ma1diva2ma1 = (x_end - mesh_index_to_X_location[cell_dest_xi]) * (float) (1.0 / MESH_X_DIST);
|
||||
|
||||
z1 = z_values[cell_dest_xi][cell_dest_yi] +
|
||||
(z_values[cell_dest_xi + 1][cell_dest_yi] - z_values[cell_dest_xi][cell_dest_yi]) * a0ma1diva2ma1;
|
||||
/**
|
||||
* Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
|
||||
* generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
|
||||
* We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
|
||||
* We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
|
||||
* instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
|
||||
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
|
||||
*/
|
||||
|
||||
z2 = z_values[cell_dest_xi][cell_dest_yi+1] +
|
||||
(z_values[cell_dest_xi+1][cell_dest_yi+1] - z_values[cell_dest_xi][cell_dest_yi+1]) * a0ma1diva2ma1;
|
||||
a0ma1diva2ma1 = (x_end - mesh_index_to_x_location[cell_dest_xi]) * 0.1 * (MESH_X_DIST);
|
||||
|
||||
z1 = z_values[cell_dest_xi ][cell_dest_yi ] + a0ma1diva2ma1 *
|
||||
(z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]);
|
||||
|
||||
z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + a0ma1diva2ma1 *
|
||||
(z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
|
||||
|
||||
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
|
||||
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
|
||||
|
||||
a0ma1diva2ma1 = (y_end - mesh_index_to_Y_location[cell_dest_yi]) * (float) (1.0 / MESH_Y_DIST);
|
||||
a0ma1diva2ma1 = (y_end - mesh_index_to_y_location[cell_dest_yi]) * 0.1 * (MESH_Y_DIST);
|
||||
|
||||
z0 = z1 + (z2 - z1) * a0ma1diva2ma1;
|
||||
|
||||
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||
// that the correct value is being passed to planner.buffer_line()
|
||||
//
|
||||
/**
|
||||
* Debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||
* that the correct value is being passed to planner.buffer_line()
|
||||
*/
|
||||
/*
|
||||
z_optimized = z0;
|
||||
z0 = blm.get_z_correction( x_end, y_end);
|
||||
z0 = ubl.get_z_correction( x_end, y_end);
|
||||
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
|
||||
debug_current_and_destination((char*)"FINAL_MOVE: z_correction()");
|
||||
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
|
||||
@ -136,40 +138,42 @@
|
||||
SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0));
|
||||
SERIAL_EOL;
|
||||
}
|
||||
//*/
|
||||
z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
* in z_values[][] and propagate through the
|
||||
* calculations. If our correction is NAN, we throw it out
|
||||
* because part of the Mesh is undefined and we don't have the
|
||||
* information we need to complete the height correction.
|
||||
*/
|
||||
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||
z0 = 0.0; // in z_values[][] and propagate through the
|
||||
// calculations. If our correction is NAN, we throw it out
|
||||
// because part of the Mesh is undefined and we don't have the
|
||||
// information we need to complete the height correction.
|
||||
}
|
||||
planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder);
|
||||
|
||||
if (g26_debug_flag)
|
||||
debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()");
|
||||
|
||||
planner.buffer_line(x_end, y_end, z_end + z0 + blm.state.z_offset, e_end, feed_rate, extruder);
|
||||
if (G26_Debug_flag!=0) {
|
||||
debug_current_and_destination( (char *) "FINAL_MOVE in UBL_line_to_destination()");
|
||||
}
|
||||
set_current_to_destination();
|
||||
return;
|
||||
}
|
||||
|
||||
//
|
||||
// If we get here, we are processing a move that crosses at least one Mesh Line. We will check
|
||||
// for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
|
||||
// of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
|
||||
// computation and in fact most lines are of this nature. We will check for that in the following
|
||||
// blocks of code:
|
||||
|
||||
left_flag = 0;
|
||||
down_flag = 0;
|
||||
inf_m_flag = false;
|
||||
inf_normalized_flag = false;
|
||||
/**
|
||||
* If we get here, we are processing a move that crosses at least one Mesh Line. We will check
|
||||
* for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
|
||||
* of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
|
||||
* computation and in fact most lines are of this nature. We will check for that in the following
|
||||
* blocks of code:
|
||||
*/
|
||||
|
||||
dx = x_end - x_start;
|
||||
dy = y_end - y_start;
|
||||
|
||||
if (dx<0.0) { // figure out which way we need to move to get to the next cell
|
||||
const int left_flag = dx < 0.0 ? 1 : 0,
|
||||
down_flag = dy < 0.0 ? 1 : 0;
|
||||
|
||||
if (left_flag) { // figure out which way we need to move to get to the next cell
|
||||
dxi = -1;
|
||||
adx = -dx; // absolute value of dx. We already need to check if dx and dy are negative.
|
||||
}
|
||||
@ -186,71 +190,64 @@
|
||||
ady = dy;
|
||||
}
|
||||
|
||||
if (dx<0.0) left_flag = 1;
|
||||
if (dy<0.0) down_flag = 1;
|
||||
if (cell_start_xi == cell_dest_xi) dxi = 0;
|
||||
if (cell_start_yi == cell_dest_yi) dyi = 0;
|
||||
|
||||
//
|
||||
// Compute the scaling factor for the extruder for each partial move.
|
||||
// We need to watch out for zero length moves because it will cause us to
|
||||
// have an infinate scaling factor. We are stuck doing a floating point
|
||||
// divide to get our scaling factor, but after that, we just multiply by this
|
||||
// number. We also pick our scaling factor based on whether the X or Y
|
||||
// component is larger. We use the biggest of the two to preserve precision.
|
||||
//
|
||||
if ( adx > ady ) {
|
||||
use_X_dist = true;
|
||||
on_axis_distance = x_end-x_start;
|
||||
}
|
||||
else {
|
||||
use_X_dist = false;
|
||||
on_axis_distance = y_end-y_start;
|
||||
}
|
||||
/**
|
||||
* Compute the scaling factor for the extruder for each partial move.
|
||||
* We need to watch out for zero length moves because it will cause us to
|
||||
* have an infinate scaling factor. We are stuck doing a floating point
|
||||
* divide to get our scaling factor, but after that, we just multiply by this
|
||||
* number. We also pick our scaling factor based on whether the X or Y
|
||||
* component is larger. We use the biggest of the two to preserve precision.
|
||||
*/
|
||||
|
||||
const bool use_x_dist = adx > ady;
|
||||
|
||||
on_axis_distance = use_x_dist ? x_end - x_start : y_end - y_start;
|
||||
|
||||
e_position = e_end - e_start;
|
||||
e_normalized_dist = e_position / on_axis_distance;
|
||||
|
||||
z_position = z_end - z_start;
|
||||
z_normalized_dist = z_position / on_axis_distance;
|
||||
|
||||
if (e_normalized_dist==INFINITY || e_normalized_dist==-INFINITY) {
|
||||
inf_normalized_flag = true;
|
||||
}
|
||||
const bool inf_normalized_flag = e_normalized_dist == INFINITY || e_normalized_dist == -INFINITY;
|
||||
|
||||
current_xi = cell_start_xi;
|
||||
current_yi = cell_start_yi;
|
||||
|
||||
m = dy / dx;
|
||||
c = y_start - m * x_start;
|
||||
if (m == INFINITY || m == -INFINITY) {
|
||||
inf_m_flag = true;
|
||||
}
|
||||
//
|
||||
// This block handles vertical lines. These are lines that stay within the same
|
||||
// X Cell column. They do not need to be perfectly vertical. They just can
|
||||
// not cross into another X Cell column.
|
||||
//
|
||||
const bool inf_m_flag = (m == INFINITY || m == -INFINITY);
|
||||
|
||||
/**
|
||||
* This block handles vertical lines. These are lines that stay within the same
|
||||
* X Cell column. They do not need to be perfectly vertical. They just can
|
||||
* not cross into another X Cell column.
|
||||
*/
|
||||
if (dxi == 0) { // Check for a vertical line
|
||||
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
|
||||
while (current_yi != cell_dest_yi + down_flag) {
|
||||
current_yi += dyi;
|
||||
next_mesh_line_y = mesh_index_to_Y_location[current_yi];
|
||||
if (inf_m_flag) {
|
||||
x = x_start; // if the slope of the line is infinite, we won't do the calculations
|
||||
}
|
||||
// we know the next X is the same so we can recover and continue!
|
||||
else {
|
||||
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
|
||||
}
|
||||
next_mesh_line_y = mesh_index_to_y_location[current_yi];
|
||||
|
||||
z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi);
|
||||
/**
|
||||
* inf_m_flag? the slope of the line is infinite, we won't do the calculations
|
||||
* else, we know the next X is the same so we can recover and continue!
|
||||
* Calculate X at the next Y mesh line
|
||||
*/
|
||||
x = inf_m_flag ? x_start : (next_mesh_line_y - c) / m;
|
||||
|
||||
//
|
||||
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||
// that the correct value is being passed to planner.buffer_line()
|
||||
//
|
||||
z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi);
|
||||
|
||||
/**
|
||||
* Debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||
* that the correct value is being passed to planner.buffer_line()
|
||||
*/
|
||||
/*
|
||||
z_optimized = z0;
|
||||
z0 = blm.get_z_correction( x, next_mesh_line_y);
|
||||
z0 = ubl.get_z_correction( x, next_mesh_line_y);
|
||||
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
|
||||
debug_current_and_destination((char*)"VERTICAL z_correction()");
|
||||
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
|
||||
@ -262,24 +259,29 @@
|
||||
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
|
||||
SERIAL_ECHO("\n");
|
||||
}
|
||||
//*/
|
||||
|
||||
z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
* in z_values[][] and propagate through the
|
||||
* calculations. If our correction is NAN, we throw it out
|
||||
* because part of the Mesh is undefined and we don't have the
|
||||
* information we need to complete the height correction.
|
||||
*/
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||
y = mesh_index_to_y_location[current_yi];
|
||||
|
||||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||
z0 = 0.0; // in z_values[][] and propagate through the
|
||||
// calculations. If our correction is NAN, we throw it out
|
||||
// because part of the Mesh is undefined and we don't have the
|
||||
// information we need to complete the height correction.
|
||||
}
|
||||
y = mesh_index_to_Y_location[current_yi];
|
||||
|
||||
// Without this check, it is possible for the algorythm to generate a zero length move in the case
|
||||
// where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
|
||||
// happens, it might be best to remove the check and always 'schedule' the move because
|
||||
// the planner.buffer_line() routine will filter it if that happens.
|
||||
/**
|
||||
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
||||
* where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
|
||||
* happens, it might be best to remove the check and always 'schedule' the move because
|
||||
* the planner.buffer_line() routine will filter it if that happens.
|
||||
*/
|
||||
if (y != y_start) {
|
||||
if ( inf_normalized_flag == false ) {
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = y - y_start; // we don't need to check if the extruder position
|
||||
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
|
||||
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||
@ -289,45 +291,48 @@
|
||||
z_position = z_start;
|
||||
}
|
||||
|
||||
planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
|
||||
planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
|
||||
} //else printf("FIRST MOVE PRUNED ");
|
||||
}
|
||||
|
||||
if (g26_debug_flag)
|
||||
debug_current_and_destination((char*)"vertical move done in ubl_line_to_destination()");
|
||||
|
||||
//
|
||||
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
|
||||
//
|
||||
if (G26_Debug_flag!=0) {
|
||||
debug_current_and_destination( (char *) "vertical move done in UBL_line_to_destination()");
|
||||
}
|
||||
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) {
|
||||
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
|
||||
goto FINAL_MOVE;
|
||||
}
|
||||
|
||||
set_current_to_destination();
|
||||
return;
|
||||
}
|
||||
|
||||
//
|
||||
// This block handles horizontal lines. These are lines that stay within the same
|
||||
// Y Cell row. They do not need to be perfectly horizontal. They just can
|
||||
// not cross into another Y Cell row.
|
||||
//
|
||||
/**
|
||||
*
|
||||
* This block handles horizontal lines. These are lines that stay within the same
|
||||
* Y Cell row. They do not need to be perfectly horizontal. They just can
|
||||
* not cross into another Y Cell row.
|
||||
*
|
||||
*/
|
||||
|
||||
if (dyi == 0) { // Check for a horiziontal line
|
||||
if (dyi == 0) { // Check for a horizontal line
|
||||
current_xi += left_flag; // Line is heading left, we just want to go to the left
|
||||
// edge of this cell for the first move.
|
||||
while (current_xi != cell_dest_xi + left_flag) {
|
||||
current_xi += dxi;
|
||||
next_mesh_line_x = mesh_index_to_X_location[current_xi];
|
||||
next_mesh_line_x = mesh_index_to_x_location[current_xi];
|
||||
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
|
||||
|
||||
z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
|
||||
z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
|
||||
|
||||
//
|
||||
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||
// that the correct value is being passed to planner.buffer_line()
|
||||
//
|
||||
/**
|
||||
* Debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||
* that the correct value is being passed to planner.buffer_line()
|
||||
*/
|
||||
/*
|
||||
z_optimized = z0;
|
||||
z0 = blm.get_z_correction( next_mesh_line_x, y);
|
||||
z0 = ubl.get_z_correction( next_mesh_line_x, y);
|
||||
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
|
||||
debug_current_and_destination((char*)"HORIZONTAL z_correction()");
|
||||
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
|
||||
@ -339,24 +344,29 @@
|
||||
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
|
||||
SERIAL_ECHO("\n");
|
||||
}
|
||||
//*/
|
||||
|
||||
z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
* in z_values[][] and propagate through the
|
||||
* calculations. If our correction is NAN, we throw it out
|
||||
* because part of the Mesh is undefined and we don't have the
|
||||
* information we need to complete the height correction.
|
||||
*/
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||
x = mesh_index_to_x_location[current_xi];
|
||||
|
||||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||
z0 = 0.0; // in z_values[][] and propagate through the
|
||||
// calculations. If our correction is NAN, we throw it out
|
||||
// because part of the Mesh is undefined and we don't have the
|
||||
// information we need to complete the height correction.
|
||||
}
|
||||
x = mesh_index_to_X_location[current_xi];
|
||||
|
||||
// Without this check, it is possible for the algorythm to generate a zero length move in the case
|
||||
// where the line is heading left and it is starting right on a Mesh Line boundary. For how often
|
||||
// that happens, it might be best to remove the check and always 'schedule' the move because
|
||||
// the planner.buffer_line() routine will filter it if that happens.
|
||||
/**
|
||||
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
||||
* where the line is heading left and it is starting right on a Mesh Line boundary. For how often
|
||||
* that happens, it might be best to remove the check and always 'schedule' the move because
|
||||
* the planner.buffer_line() routine will filter it if that happens.
|
||||
*/
|
||||
if (x != x_start) {
|
||||
if ( inf_normalized_flag == false ) {
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = x - x_start; // we don't need to check if the extruder position
|
||||
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
|
||||
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||
@ -366,47 +376,39 @@
|
||||
z_position = z_start;
|
||||
}
|
||||
|
||||
planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
|
||||
planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
|
||||
} //else printf("FIRST MOVE PRUNED ");
|
||||
}
|
||||
if (G26_Debug_flag!=0) {
|
||||
debug_current_and_destination( (char *) "horizontal move done in UBL_line_to_destination()");
|
||||
}
|
||||
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) {
|
||||
|
||||
if (g26_debug_flag)
|
||||
debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()");
|
||||
|
||||
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
|
||||
goto FINAL_MOVE;
|
||||
}
|
||||
|
||||
set_current_to_destination();
|
||||
return;
|
||||
}
|
||||
|
||||
//
|
||||
//
|
||||
//
|
||||
//
|
||||
// This block handles the generic case of a line crossing both X and Y
|
||||
// Mesh lines.
|
||||
//
|
||||
//
|
||||
//
|
||||
//
|
||||
/**
|
||||
*
|
||||
* This block handles the generic case of a line crossing both X and Y Mesh lines.
|
||||
*
|
||||
*/
|
||||
|
||||
xi_cnt = cell_start_xi - cell_dest_xi;
|
||||
if ( xi_cnt < 0 ) {
|
||||
xi_cnt = -xi_cnt;
|
||||
}
|
||||
if (xi_cnt < 0) xi_cnt = -xi_cnt;
|
||||
|
||||
yi_cnt = cell_start_yi - cell_dest_yi;
|
||||
if ( yi_cnt < 0 ) {
|
||||
yi_cnt = -yi_cnt;
|
||||
}
|
||||
if (yi_cnt < 0) yi_cnt = -yi_cnt;
|
||||
|
||||
current_xi += left_flag;
|
||||
current_yi += down_flag;
|
||||
|
||||
while (xi_cnt > 0 || yi_cnt > 0) {
|
||||
|
||||
next_mesh_line_x = mesh_index_to_X_location[current_xi + dxi];
|
||||
next_mesh_line_y = mesh_index_to_Y_location[current_yi + dyi];
|
||||
next_mesh_line_x = mesh_index_to_x_location[current_xi + dxi];
|
||||
next_mesh_line_y = mesh_index_to_y_location[current_yi + dyi];
|
||||
|
||||
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
|
||||
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry
|
||||
@ -414,22 +416,19 @@
|
||||
// detected this as a vertical line move up above and we wouldn't
|
||||
// be down here doing a generic type of move.
|
||||
|
||||
if ((left_flag && (x>next_mesh_line_x)) || (!left_flag && (x<next_mesh_line_x))) { // Check if we hit the Y line first
|
||||
if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
|
||||
//
|
||||
// Yes! Crossing a Y Mesh Line next
|
||||
//
|
||||
z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi-left_flag, current_yi+dyi);
|
||||
|
||||
//
|
||||
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||
// that the correct value is being passed to planner.buffer_line()
|
||||
//
|
||||
z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi - left_flag, current_yi + dyi);
|
||||
|
||||
/**
|
||||
* Debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||
* that the correct value is being passed to planner.buffer_line()
|
||||
*/
|
||||
/*
|
||||
|
||||
z_optimized = z0;
|
||||
|
||||
z0 = blm.get_z_correction( x, next_mesh_line_y);
|
||||
z0 = ubl.get_z_correction( x, next_mesh_line_y);
|
||||
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
|
||||
debug_current_and_destination((char*)"General_1: z_correction()");
|
||||
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
|
||||
@ -442,23 +441,21 @@
|
||||
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
|
||||
SERIAL_ECHO("\n");
|
||||
}
|
||||
//*/
|
||||
|
||||
z0 *= ubl.fade_scaling_factor_for_z(z_end);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
* in z_values[][] and propagate through the
|
||||
* calculations. If our correction is NAN, we throw it out
|
||||
* because part of the Mesh is undefined and we don't have the
|
||||
* information we need to complete the height correction.
|
||||
*/
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||
z0 = 0.0; // in z_values[][] and propagate through the
|
||||
// calculations. If our correction is NAN, we throw it out
|
||||
// because part of the Mesh is undefined and we don't have the
|
||||
// information we need to complete the height correction.
|
||||
}
|
||||
|
||||
if ( inf_normalized_flag == false ) {
|
||||
if ( use_X_dist ) {
|
||||
on_axis_distance = x - x_start;
|
||||
}
|
||||
else {
|
||||
on_axis_distance = next_mesh_line_y - y_start;
|
||||
}
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = use_x_dist ? x - x_start : next_mesh_line_y - y_start;
|
||||
e_position = e_start + on_axis_distance * e_normalized_dist;
|
||||
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
@ -466,7 +463,7 @@
|
||||
e_position = e_start;
|
||||
z_position = z_start;
|
||||
}
|
||||
planner.buffer_line(x, next_mesh_line_y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
|
||||
planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
|
||||
current_yi += dyi;
|
||||
yi_cnt--;
|
||||
}
|
||||
@ -474,16 +471,15 @@
|
||||
//
|
||||
// Yes! Crossing a X Mesh Line next
|
||||
//
|
||||
z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi+dxi, current_yi-down_flag);
|
||||
z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi + dxi, current_yi - down_flag);
|
||||
|
||||
|
||||
//
|
||||
// debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||
// that the correct value is being passed to planner.buffer_line()
|
||||
//
|
||||
/**
|
||||
* Debug code to use non-optimized get_z_correction() and to do a sanity check
|
||||
* that the correct value is being passed to planner.buffer_line()
|
||||
*/
|
||||
/*
|
||||
z_optimized = z0;
|
||||
z0 = blm.get_z_correction( next_mesh_line_x, y);
|
||||
z0 = ubl.get_z_correction( next_mesh_line_x, y);
|
||||
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
|
||||
debug_current_and_destination((char*)"General_2: z_correction()");
|
||||
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
|
||||
@ -495,23 +491,21 @@
|
||||
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
|
||||
SERIAL_ECHO("\n");
|
||||
}
|
||||
//*/
|
||||
|
||||
z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
|
||||
|
||||
/**
|
||||
* If part of the Mesh is undefined, it will show up as NAN
|
||||
* in z_values[][] and propagate through the
|
||||
* calculations. If our correction is NAN, we throw it out
|
||||
* because part of the Mesh is undefined and we don't have the
|
||||
* information we need to complete the height correction.
|
||||
*/
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
|
||||
|
||||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||
z0 = 0.0; // in z_values[][] and propagate through the
|
||||
// calculations. If our correction is NAN, we throw it out
|
||||
// because part of the Mesh is undefined and we don't have the
|
||||
// information we need to complete the height correction.
|
||||
}
|
||||
if ( inf_normalized_flag == false ) {
|
||||
if ( use_X_dist ) {
|
||||
on_axis_distance = next_mesh_line_x - x_start;
|
||||
}
|
||||
else {
|
||||
on_axis_distance = y - y_start;
|
||||
}
|
||||
if (!inf_normalized_flag) {
|
||||
on_axis_distance = use_x_dist ? next_mesh_line_x - x_start : y - y_start;
|
||||
e_position = e_start + on_axis_distance * e_normalized_dist;
|
||||
z_position = z_start + on_axis_distance * z_normalized_dist;
|
||||
}
|
||||
@ -520,34 +514,19 @@
|
||||
z_position = z_start;
|
||||
}
|
||||
|
||||
planner.buffer_line(next_mesh_line_x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
|
||||
planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
|
||||
current_xi += dxi;
|
||||
xi_cnt--;
|
||||
}
|
||||
}
|
||||
if (G26_Debug_flag) {
|
||||
debug_current_and_destination( (char *) "generic move done in UBL_line_to_destination()");
|
||||
}
|
||||
if (current_position[0] != x_end || current_position[1] != y_end) {
|
||||
|
||||
if (g26_debug_flag)
|
||||
debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()");
|
||||
|
||||
if (current_position[0] != x_end || current_position[1] != y_end)
|
||||
goto FINAL_MOVE;
|
||||
}
|
||||
|
||||
set_current_to_destination();
|
||||
return;
|
||||
}
|
||||
|
||||
void wait_for_button_press() {
|
||||
// if ( !been_to_2_6 )
|
||||
//return; // bob - I think this should be commented out
|
||||
|
||||
SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
|
||||
SET_OUTPUT(64);
|
||||
while (READ(66) & 0x01) idle();
|
||||
|
||||
delay(50);
|
||||
while (!(READ(66) & 0x01)) idle();
|
||||
delay(50);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -540,9 +540,9 @@ void Config_Postprocess() {
|
||||
}
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
blm.store_state();
|
||||
if (blm.state.EEPROM_storage_slot >= 0)
|
||||
blm.store_mesh(blm.state.EEPROM_storage_slot);
|
||||
ubl.store_state();
|
||||
if (ubl.state.eeprom_storage_slot >= 0)
|
||||
ubl.store_mesh(ubl.state.eeprom_storage_slot);
|
||||
#endif
|
||||
|
||||
return !eeprom_write_error;
|
||||
@ -846,39 +846,39 @@ void Config_Postprocess() {
|
||||
}
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
Unified_Bed_Leveling_EEPROM_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
|
||||
ubl_eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
|
||||
// can float up or down a little bit without
|
||||
// disrupting the Unified Bed Leveling data
|
||||
blm.load_state();
|
||||
ubl.load_state();
|
||||
|
||||
SERIAL_ECHOPGM(" UBL ");
|
||||
if (!blm.state.active) SERIAL_ECHO("not ");
|
||||
if (!ubl.state.active) SERIAL_ECHO("not ");
|
||||
SERIAL_ECHOLNPGM("active!");
|
||||
|
||||
if (!blm.sanity_check()) {
|
||||
if (!ubl.sanity_check()) {
|
||||
int tmp_mesh; // We want to preserve whether the UBL System is Active
|
||||
bool tmp_active; // If it is, we want to preserve the Mesh that is being used.
|
||||
tmp_mesh = blm.state.EEPROM_storage_slot;
|
||||
tmp_active = blm.state.active;
|
||||
tmp_mesh = ubl.state.eeprom_storage_slot;
|
||||
tmp_active = ubl.state.active;
|
||||
SERIAL_ECHOLNPGM("\nInitializing Bed Leveling State to current firmware settings.\n");
|
||||
blm.state = blm.pre_initialized; // Initialize with the pre_initialized data structure
|
||||
blm.state.EEPROM_storage_slot = tmp_mesh; // But then restore some data we don't want mangled
|
||||
blm.state.active = tmp_active;
|
||||
ubl.state = ubl.pre_initialized; // Initialize with the pre_initialized data structure
|
||||
ubl.state.eeprom_storage_slot = tmp_mesh; // But then restore some data we don't want mangled
|
||||
ubl.state.active = tmp_active;
|
||||
}
|
||||
else {
|
||||
SERIAL_PROTOCOLPGM("?Unable to enable Unified Bed Leveling.\n");
|
||||
blm.state = blm.pre_initialized;
|
||||
blm.reset();
|
||||
blm.store_state();
|
||||
ubl.state = ubl.pre_initialized;
|
||||
ubl.reset();
|
||||
ubl.store_state();
|
||||
}
|
||||
|
||||
if (blm.state.EEPROM_storage_slot >= 0) {
|
||||
blm.load_mesh(blm.state.EEPROM_storage_slot);
|
||||
SERIAL_ECHOPAIR("Mesh ", blm.state.EEPROM_storage_slot);
|
||||
if (ubl.state.eeprom_storage_slot >= 0) {
|
||||
ubl.load_mesh(ubl.state.eeprom_storage_slot);
|
||||
SERIAL_ECHOPAIR("Mesh ", ubl.state.eeprom_storage_slot);
|
||||
SERIAL_ECHOLNPGM(" loaded from storage.");
|
||||
}
|
||||
else {
|
||||
blm.reset();
|
||||
ubl.reset();
|
||||
SERIAL_ECHOPGM("UBL System reset() \n");
|
||||
}
|
||||
#endif
|
||||
@ -1183,19 +1183,19 @@ void Config_ResetDefault() {
|
||||
CONFIG_ECHO_START;
|
||||
|
||||
SERIAL_ECHOPGM("System is: ");
|
||||
if (blm.state.active)
|
||||
if (ubl.state.active)
|
||||
SERIAL_ECHOLNPGM("Active\n");
|
||||
else
|
||||
SERIAL_ECHOLNPGM("Deactive\n");
|
||||
|
||||
SERIAL_ECHOPAIR("Active Mesh Slot: ", blm.state.EEPROM_storage_slot);
|
||||
SERIAL_ECHOPAIR("Active Mesh Slot: ", ubl.state.eeprom_storage_slot);
|
||||
SERIAL_EOL;
|
||||
|
||||
SERIAL_ECHOPGM("z_offset: ");
|
||||
SERIAL_ECHO_F(blm.state.z_offset, 6);
|
||||
SERIAL_ECHO_F(ubl.state.z_offset, 6);
|
||||
SERIAL_EOL;
|
||||
|
||||
SERIAL_ECHOPAIR("EEPROM can hold ", (int)((E2END - sizeof(blm.state) - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values)));
|
||||
SERIAL_ECHOPAIR("EEPROM can hold ", (int)((E2END - sizeof(ubl.state) - ubl_eeprom_start) / sizeof(z_values)));
|
||||
SERIAL_ECHOLNPGM(" meshes. \n");
|
||||
|
||||
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);
|
||||
|
1
Marlin/enum.h
Normal file → Executable file
1
Marlin/enum.h
Normal file → Executable file
@ -75,6 +75,7 @@ enum DebugFlags {
|
||||
DEBUG_DRYRUN = _BV(3), ///< Ignore temperature setting and E movement commands
|
||||
DEBUG_COMMUNICATION = _BV(4), ///< Not implemented
|
||||
DEBUG_LEVELING = _BV(5), ///< Print detailed output for homing and leveling
|
||||
DEBUG_MESH_ADJUST = _BV(6), ///< UBL bed leveling
|
||||
DEBUG_ALL = 0xFF
|
||||
};
|
||||
|
||||
|
@ -748,41 +748,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -841,25 +848,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -876,6 +864,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -731,41 +731,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -824,25 +831,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -859,6 +847,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -731,41 +731,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -824,25 +831,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -859,6 +847,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -740,41 +740,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -833,25 +840,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -868,6 +856,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -742,41 +742,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -835,25 +842,6 @@
|
||||
#define ABL_PROBE_PT_3_X ((X_MIN_POS + X_MAX_POS) / 2)
|
||||
#define ABL_PROBE_PT_3_Y Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -870,6 +858,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -777,41 +777,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -870,25 +877,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -905,6 +893,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -748,41 +748,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -841,25 +848,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -876,6 +864,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -748,41 +748,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -841,25 +848,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -876,6 +864,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -748,41 +748,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -841,25 +848,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -876,6 +864,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -747,41 +747,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -840,25 +847,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -875,6 +863,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -763,41 +763,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -856,25 +863,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -891,6 +879,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -769,41 +769,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -862,25 +869,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -897,6 +885,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -740,41 +740,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -833,25 +840,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -868,6 +856,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -748,41 +748,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -841,25 +848,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -876,6 +864,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -853,41 +853,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT // Only AUTO_BED_LEVELING_BILINEAR is supported for DELTA bed leveling.
|
||||
//#define AUTO_BED_LEVELING_LINEAR // Only AUTO_BED_LEVELING_BILINEAR is supported for DELTA bed leveling.
|
||||
#define AUTO_BED_LEVELING_BILINEAR // Only AUTO_BED_LEVELING_BILINEAR is supported for DELTA bed leveling.
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -946,25 +953,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -981,6 +969,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -838,41 +838,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -932,25 +939,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -967,6 +955,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -841,41 +841,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -936,25 +943,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -971,6 +959,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -840,41 +840,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -935,25 +942,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -970,6 +958,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -851,41 +851,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -945,25 +952,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -980,6 +968,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -751,41 +751,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -844,25 +851,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -879,6 +867,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -744,41 +744,48 @@
|
||||
// @section bedlevel
|
||||
|
||||
/**
|
||||
* Select one form of Auto Bed Leveling below.
|
||||
* Choose one of the options below to enable G29 Bed Leveling. The parameters
|
||||
* and behavior of G29 will change depending on your selection.
|
||||
*
|
||||
* If you're also using the Probe for Z Homing, it's
|
||||
* highly recommended to enable Z_SAFE_HOMING also!
|
||||
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
|
||||
*
|
||||
* - 3POINT
|
||||
* - AUTO_BED_LEVELING_3POINT
|
||||
* Probe 3 arbitrary points on the bed (that aren't collinear)
|
||||
* You specify the XY coordinates of all 3 points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - LINEAR
|
||||
* - AUTO_BED_LEVELING_LINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a single tilted plane. Best for a flat bed.
|
||||
*
|
||||
* - BILINEAR
|
||||
* - AUTO_BED_LEVELING_BILINEAR
|
||||
* Probe several points in a grid.
|
||||
* You specify the rectangle and the density of sample points.
|
||||
* The result is a mesh, best for large or uneven beds.
|
||||
*
|
||||
* - UBL Unified Bed Leveling
|
||||
* A comprehensive bed leveling system that combines features and benefits from previous
|
||||
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
|
||||
* Mesh Generation, Mesh Validation and Mesh Editing system.
|
||||
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
|
||||
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
|
||||
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
|
||||
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
|
||||
* test on.
|
||||
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
|
||||
* A comprehensive bed leveling system combining the features and benefits
|
||||
* of other systems. UBL also includes integrated Mesh Generation, Mesh
|
||||
* Validation and Mesh Editing systems. Currently, UBL is only checked out
|
||||
* for Cartesian Printers. That said, it was primarily designed to correct
|
||||
* poor quality Delta Printers. If you feel adventurous and have a Delta,
|
||||
* please post an issue if something doesn't work correctly. Initially,
|
||||
* you will need to set a reduced bed size so you have a rectangular area
|
||||
* to test on.
|
||||
*
|
||||
* - MESH_BED_LEVELING
|
||||
* Probe a grid manually
|
||||
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
|
||||
* For machines without a probe, Mesh Bed Leveling provides a method to perform
|
||||
* leveling in steps so you can manually adjust the Z height at each grid-point.
|
||||
* With an LCD controller the process is guided step-by-step.
|
||||
*/
|
||||
//#define AUTO_BED_LEVELING_3POINT
|
||||
//#define AUTO_BED_LEVELING_LINEAR
|
||||
//#define AUTO_BED_LEVELING_BILINEAR
|
||||
//#define MESH_BED_LEVELING
|
||||
//#define AUTO_BED_LEVELING_UBL
|
||||
//#define MESH_BED_LEVELING
|
||||
|
||||
/**
|
||||
* Enable detailed logging of G28, G29, M48, etc.
|
||||
@ -837,25 +844,6 @@
|
||||
#define ABL_PROBE_PT_3_X 170
|
||||
#define ABL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
//===========================================================================
|
||||
@ -872,6 +860,25 @@
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
//===========================================================================
|
||||
//=================================== Mesh ==================================
|
||||
//===========================================================================
|
||||
|
||||
#define MESH_INSET 10 // Mesh inset margin on print area
|
||||
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
|
||||
#define MESH_NUM_Y_POINTS 3
|
||||
|
||||
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
|
||||
|
||||
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
|
||||
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
|
||||
|
||||
#if ENABLED(MANUAL_BED_LEVELING)
|
||||
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
|
||||
#endif
|
||||
|
||||
#endif // BED_LEVELING
|
||||
|
||||
/**
|
||||
|
@ -700,7 +700,7 @@ static bool pwm_status(uint8_t pin) {
|
||||
#if defined(TCCR3A) && defined(COM3A1)
|
||||
PWM_CASE(3,A);
|
||||
PWM_CASE(3,B);
|
||||
#if defined(COM3C1)
|
||||
#ifdef COM3C1
|
||||
PWM_CASE(3,C);
|
||||
#endif
|
||||
#endif
|
||||
@ -829,7 +829,7 @@ static void pwm_details(uint8_t pin) {
|
||||
else if (TIMSK3 & (_BV(TOIE3) | _BV(ICIE3))) err_prob_interrupt();
|
||||
else can_be_used();
|
||||
break;
|
||||
#if defined(COM3C1)
|
||||
#ifdef COM3C1
|
||||
case TIMER3C:
|
||||
TIMER_PREFIX(3,C,3);
|
||||
if (WGM_TEST2) err_is_counter();
|
||||
|
@ -26,7 +26,7 @@
|
||||
|
||||
#define BOARD_NAME "Melzi"
|
||||
|
||||
#if defined(__AVR_ATmega1284P__)
|
||||
#ifdef __AVR_ATmega1284P__
|
||||
#define LARGE_FLASH true
|
||||
#endif
|
||||
|
||||
|
@ -26,7 +26,7 @@
|
||||
|
||||
#define BOARD_NAME "Melzi ATmega1284"
|
||||
|
||||
#if defined(__AVR_ATmega1284P__)
|
||||
#ifdef __AVR_ATmega1284P__
|
||||
#define LARGE_FLASH true
|
||||
#endif
|
||||
|
||||
|
@ -34,7 +34,7 @@
|
||||
|
||||
#define BOARD_NAME "Sanguinololu 1.2"
|
||||
|
||||
#if defined(__AVR_ATmega1284P__)
|
||||
#ifdef __AVR_ATmega1284P__
|
||||
#define LARGE_FLASH true
|
||||
#endif
|
||||
|
||||
|
@ -26,7 +26,7 @@
|
||||
|
||||
#define BOARD_NAME "STB V1.1"
|
||||
|
||||
#if defined(__AVR_ATmega1284P__)
|
||||
#ifdef __AVR_ATmega1284P__
|
||||
#define LARGE_FLASH true
|
||||
#endif
|
||||
|
||||
|
@ -455,7 +455,7 @@ void Planner::check_axes_activity() {
|
||||
|
||||
#if FAN_COUNT > 0
|
||||
|
||||
#if defined(FAN_MIN_PWM)
|
||||
#ifdef FAN_MIN_PWM
|
||||
#define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0)
|
||||
#else
|
||||
#define CALC_FAN_SPEED(f) tail_fan_speed[f]
|
||||
|
@ -126,7 +126,7 @@ static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t
|
||||
SIGNAL (TIMER5_COMPA_vect) { handle_interrupts(_timer5, &TCNT5, &OCR5A); }
|
||||
#endif
|
||||
|
||||
#else //!WIRING
|
||||
#else // WIRING
|
||||
|
||||
// Interrupt handlers for Wiring
|
||||
#if ENABLED(_useTimer1)
|
||||
@ -136,7 +136,7 @@ static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t
|
||||
void Timer3Service() { handle_interrupts(_timer3, &TCNT3, &OCR3A); }
|
||||
#endif
|
||||
|
||||
#endif //!WIRING
|
||||
#endif // WIRING
|
||||
|
||||
|
||||
static void initISR(timer16_Sequence_t timer) {
|
||||
|
@ -124,8 +124,8 @@ uint16_t max_display_update_time = 0;
|
||||
int32_t lastEncoderMovementMillis;
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
extern int UBL_has_control_of_LCD_Panel;
|
||||
extern int G29_encoderDiff;
|
||||
extern bool ubl_has_control_of_lcd_panel;
|
||||
extern uint8_t ubl_encoderDiff;
|
||||
#endif
|
||||
|
||||
#if HAS_POWER_SWITCH
|
||||
@ -854,45 +854,39 @@ void kill_screen(const char* lcd_msg) {
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
float Mesh_Edit_Value, Mesh_Edit_Accumulator; // We round Mesh_Edit_Value to 2.5 decimal places. So we keep a
|
||||
float mesh_edit_value, mesh_edit_accumulator; // We round mesh_edit_value to 2.5 decimal places. So we keep a
|
||||
// seperate value that doesn't lose precision.
|
||||
static int loop_cnt=0, last_seen_bits, UBL_encoderPosition=0;
|
||||
static int ubl_encoderPosition = 0;
|
||||
|
||||
static void _lcd_mesh_fine_tune(const char* msg) {
|
||||
static unsigned long last_click=0;
|
||||
int last_digit, movement;
|
||||
long int rounded;
|
||||
static millis_t next_click = 0;
|
||||
int16_t last_digit, movement;
|
||||
int32_t rounded;
|
||||
|
||||
defer_return_to_status = true;
|
||||
if (ubl_encoderDiff) {
|
||||
// If moving the Encoder wheel very slowly, move by just 1 position
|
||||
ubl_encoderPosition = ELAPSED(millis(), next_click)
|
||||
? ubl_encoderDiff > 0 ? 1 : -1
|
||||
: ubl_encoderDiff * 2;
|
||||
|
||||
if (G29_encoderDiff) { // If moving the Encoder wheel very slowly, we just go
|
||||
if ( (millis() - last_click) > 200L) { // up or down by 1 position
|
||||
if ( G29_encoderDiff > 0 )
|
||||
UBL_encoderPosition = 1;
|
||||
else {
|
||||
UBL_encoderPosition = -1;
|
||||
}
|
||||
} else
|
||||
UBL_encoderPosition = G29_encoderDiff * 2;
|
||||
ubl_encoderDiff = 0;
|
||||
next_click = millis() + 200L;
|
||||
|
||||
G29_encoderDiff = 0;
|
||||
last_click = millis();
|
||||
|
||||
Mesh_Edit_Accumulator += ( (float) (UBL_encoderPosition)) * .005 / 2.0 ;
|
||||
Mesh_Edit_Value = Mesh_Edit_Accumulator;
|
||||
mesh_edit_accumulator += float((int32_t)ubl_encoderPosition) * .005 / 2.0;
|
||||
mesh_edit_value = mesh_edit_accumulator;
|
||||
encoderPosition = 0;
|
||||
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
|
||||
|
||||
rounded = (long int) (Mesh_Edit_Value * 1000.0);
|
||||
rounded = (int32_t)(mesh_edit_value * 1000.0);
|
||||
last_digit = rounded % 5L; //10L;
|
||||
rounded = rounded - last_digit;
|
||||
rounded -= last_digit;
|
||||
last_digit = rounded % 5L; //10L;
|
||||
Mesh_Edit_Value = ((float) rounded) / 1000.0;
|
||||
mesh_edit_value = float(rounded) / 1000.0;
|
||||
}
|
||||
|
||||
if (lcdDrawUpdate) {
|
||||
lcd_implementation_drawedit(msg, ftostr43sign( (float) Mesh_Edit_Value ));
|
||||
}
|
||||
if (lcdDrawUpdate)
|
||||
lcd_implementation_drawedit(msg, ftostr43sign(mesh_edit_value));
|
||||
}
|
||||
|
||||
|
||||
@ -903,39 +897,29 @@ void kill_screen(const char* lcd_msg) {
|
||||
|
||||
float lcd_mesh_edit() {
|
||||
lcd_goto_screen(_lcd_mesh_edit);
|
||||
_lcd_mesh_fine_tune( PSTR("Mesh Editor: "));
|
||||
defer_return_to_status = true;
|
||||
return Mesh_Edit_Value;
|
||||
return mesh_edit_value;
|
||||
}
|
||||
|
||||
|
||||
void lcd_mesh_edit_setup(float inital) {
|
||||
Mesh_Edit_Value = inital;
|
||||
Mesh_Edit_Accumulator = inital;
|
||||
void lcd_mesh_edit_setup(float initial) {
|
||||
mesh_edit_value = mesh_edit_accumulator = initial;
|
||||
lcd_goto_screen(_lcd_mesh_edit);
|
||||
defer_return_to_status = true;
|
||||
return ;
|
||||
}
|
||||
|
||||
void _lcd_z_offset_edit() {
|
||||
_lcd_mesh_fine_tune(PSTR("Z-Offset: "));
|
||||
defer_return_to_status = true;
|
||||
}
|
||||
|
||||
float lcd_z_offset_edit() {
|
||||
lcd_goto_screen(_lcd_z_offset_edit);
|
||||
defer_return_to_status = true;
|
||||
return Mesh_Edit_Value;
|
||||
return mesh_edit_value;
|
||||
}
|
||||
|
||||
void lcd_z_offset_edit_setup(float inital) {
|
||||
Mesh_Edit_Value = inital;
|
||||
Mesh_Edit_Accumulator = inital;
|
||||
void lcd_z_offset_edit_setup(float initial) {
|
||||
mesh_edit_value = mesh_edit_accumulator = initial;
|
||||
lcd_goto_screen(_lcd_z_offset_edit);
|
||||
defer_return_to_status = true;
|
||||
return ;
|
||||
}
|
||||
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
|
||||
|
||||
@ -3232,7 +3216,7 @@ void lcd_update() {
|
||||
lcd_buttons_update();
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
const bool UBL_CONDITION = !UBL_has_control_of_LCD_Panel;
|
||||
const bool UBL_CONDITION = !ubl_has_control_of_lcd_panel;
|
||||
#else
|
||||
constexpr bool UBL_CONDITION = true;
|
||||
#endif
|
||||
@ -3648,8 +3632,8 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
|
||||
case encrot3: ENCODER_SPIN(encrot2, encrot0); break;
|
||||
}
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
if (UBL_has_control_of_LCD_Panel) {
|
||||
G29_encoderDiff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor
|
||||
if (ubl_has_control_of_lcd_panel) {
|
||||
ubl_encoderDiff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor
|
||||
encoderDiff = 0; // We are going to lie to the LCD Panel and claim the encoder
|
||||
// wheel has not turned.
|
||||
}
|
||||
@ -3665,6 +3649,7 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
|
||||
#endif
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
void chirp_at_user() {
|
||||
#if ENABLED(LCD_USE_I2C_BUZZER)
|
||||
lcd.buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
|
||||
@ -3673,7 +3658,7 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
|
||||
#endif
|
||||
}
|
||||
|
||||
bool G29_lcd_clicked() { return LCD_CLICKED; }
|
||||
bool ubl_lcd_clicked() { return LCD_CLICKED; }
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -164,4 +164,11 @@
|
||||
|
||||
#endif // ULTRA_LCD
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
void lcd_mesh_edit_setup(float initial);
|
||||
float lcd_mesh_edit();
|
||||
void lcd_z_offset_edit_setup(float);
|
||||
float lcd_z_offset_edit();
|
||||
#endif
|
||||
|
||||
#endif // ULTRALCD_H
|
||||
|
@ -161,7 +161,7 @@ extern volatile uint8_t buttons; //an extended version of the last checked butt
|
||||
#include <LCD.h>
|
||||
#include <LiquidCrystal_SR.h>
|
||||
#define LCD_CLASS LiquidCrystal_SR
|
||||
#if defined(SR_STROBE_PIN)
|
||||
#if PIN_EXISTS(SR_STROBE)
|
||||
LCD_CLASS lcd(SR_DATA_PIN, SR_CLK_PIN, SR_STROBE_PIN);
|
||||
#else
|
||||
LCD_CLASS lcd(SR_DATA_PIN, SR_CLK_PIN);
|
||||
|
Loading…
x
Reference in New Issue
Block a user