Merge pull request #4868 from thinkyhead/rc_autumn_fixups
Cleanups for the Autumn release
This commit is contained in:
commit
d0796fc54c
@ -1453,26 +1453,23 @@ inline float get_homing_bump_feedrate(AxisEnum axis) {
|
|||||||
return homing_feedrate_mm_s[axis] / hbd;
|
return homing_feedrate_mm_s[axis] / hbd;
|
||||||
}
|
}
|
||||||
|
|
||||||
#if !IS_KINEMATIC
|
//
|
||||||
//
|
// line_to_current_position
|
||||||
// line_to_current_position
|
// Move the planner to the current position from wherever it last moved
|
||||||
// Move the planner to the current position from wherever it last moved
|
// (or from wherever it has been told it is located).
|
||||||
// (or from wherever it has been told it is located).
|
//
|
||||||
//
|
inline void line_to_current_position() {
|
||||||
inline void line_to_current_position() {
|
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
|
||||||
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
|
}
|
||||||
}
|
|
||||||
|
|
||||||
//
|
//
|
||||||
// line_to_destination
|
// line_to_destination
|
||||||
// Move the planner, not necessarily synced with current_position
|
// Move the planner, not necessarily synced with current_position
|
||||||
//
|
//
|
||||||
inline void line_to_destination(float fr_mm_s) {
|
inline void line_to_destination(float fr_mm_s) {
|
||||||
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
|
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
|
||||||
}
|
}
|
||||||
inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
|
inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
|
||||||
|
|
||||||
#endif // !IS_KINEMATIC
|
|
||||||
|
|
||||||
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
|
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
|
||||||
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
|
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
|
||||||
@ -1485,12 +1482,19 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
|
|||||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
|
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
if ( current_position[X_AXIS] == destination[X_AXIS]
|
||||||
|
&& current_position[Y_AXIS] == destination[Y_AXIS]
|
||||||
|
&& current_position[Z_AXIS] == destination[Z_AXIS]
|
||||||
|
&& current_position[E_AXIS] == destination[E_AXIS]
|
||||||
|
) return;
|
||||||
|
|
||||||
refresh_cmd_timeout();
|
refresh_cmd_timeout();
|
||||||
inverse_kinematics(destination);
|
inverse_kinematics(destination);
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], destination[E_AXIS], MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
|
||||||
set_current_to_destination();
|
set_current_to_destination();
|
||||||
}
|
}
|
||||||
#endif
|
#endif // IS_KINEMATIC
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Plan a move to (X, Y, Z) and set the current_position
|
* Plan a move to (X, Y, Z) and set the current_position
|
||||||
@ -1557,16 +1561,12 @@ void do_blocking_move_to(const float &x, const float &y, const float &z, const f
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
||||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#elif IS_SCARA
|
#elif IS_SCARA
|
||||||
|
|
||||||
set_destination_to_current();
|
set_destination_to_current();
|
||||||
|
|
||||||
// If Z needs to raise, do it before moving XY
|
// If Z needs to raise, do it before moving XY
|
||||||
if (current_position[Z_AXIS] < z) {
|
if (destination[Z_AXIS] < z) {
|
||||||
destination[Z_AXIS] = z;
|
destination[Z_AXIS] = z;
|
||||||
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
|
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
|
||||||
}
|
}
|
||||||
@ -1576,7 +1576,7 @@ void do_blocking_move_to(const float &x, const float &y, const float &z, const f
|
|||||||
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
|
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
|
||||||
|
|
||||||
// If Z needs to lower, do it after moving XY
|
// If Z needs to lower, do it after moving XY
|
||||||
if (current_position[Z_AXIS] > z) {
|
if (destination[Z_AXIS] > z) {
|
||||||
destination[Z_AXIS] = z;
|
destination[Z_AXIS] = z;
|
||||||
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
|
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
|
||||||
}
|
}
|
||||||
@ -1607,6 +1607,10 @@ void do_blocking_move_to(const float &x, const float &y, const float &z, const f
|
|||||||
stepper.synchronize();
|
stepper.synchronize();
|
||||||
|
|
||||||
feedrate_mm_s = old_feedrate_mm_s;
|
feedrate_mm_s = old_feedrate_mm_s;
|
||||||
|
|
||||||
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
|
void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
|
||||||
do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
|
do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
|
||||||
@ -1999,12 +2003,12 @@ static void clean_up_after_endstop_or_probe_move() {
|
|||||||
// Clear endstop flags
|
// Clear endstop flags
|
||||||
endstops.hit_on_purpose();
|
endstops.hit_on_purpose();
|
||||||
|
|
||||||
|
// Tell the planner where we actually are
|
||||||
|
planner.sync_from_steppers();
|
||||||
|
|
||||||
// Get Z where the steppers were interrupted
|
// Get Z where the steppers were interrupted
|
||||||
set_current_from_steppers_for_axis(Z_AXIS);
|
set_current_from_steppers_for_axis(Z_AXIS);
|
||||||
|
|
||||||
// Tell the planner where we actually are
|
|
||||||
SYNC_PLAN_POSITION_KINEMATIC();
|
|
||||||
|
|
||||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
|
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
|
||||||
#endif
|
#endif
|
||||||
@ -2122,8 +2126,13 @@ static void clean_up_after_endstop_or_probe_move() {
|
|||||||
|
|
||||||
/**
|
/**
|
||||||
* Reset calibration results to zero.
|
* Reset calibration results to zero.
|
||||||
|
*
|
||||||
|
* TODO: Proper functions to disable / enable
|
||||||
|
* bed leveling via a flag, correcting the
|
||||||
|
* current position in each case.
|
||||||
*/
|
*/
|
||||||
void reset_bed_level() {
|
void reset_bed_level() {
|
||||||
|
planner.abl_enabled = false;
|
||||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
|
||||||
#endif
|
#endif
|
||||||
@ -2131,7 +2140,6 @@ static void clean_up_after_endstop_or_probe_move() {
|
|||||||
planner.bed_level_matrix.set_to_identity();
|
planner.bed_level_matrix.set_to_identity();
|
||||||
#elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
|
#elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
|
||||||
memset(bed_level_grid, 0, sizeof(bed_level_grid));
|
memset(bed_level_grid, 0, sizeof(bed_level_grid));
|
||||||
nonlinear_grid_spacing[X_AXIS] = nonlinear_grid_spacing[Y_AXIS] = 0;
|
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -2188,18 +2196,27 @@ static void clean_up_after_endstop_or_probe_move() {
|
|||||||
/**
|
/**
|
||||||
* Home an individual linear axis
|
* Home an individual linear axis
|
||||||
*/
|
*/
|
||||||
|
static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
|
||||||
static void do_homing_move(AxisEnum axis, float where, float fr_mm_s=0.0) {
|
|
||||||
|
|
||||||
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
|
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
|
||||||
bool deploy_bltouch = (axis == Z_AXIS && where < 0);
|
bool deploy_bltouch = (axis == Z_AXIS && where < 0);
|
||||||
if (deploy_bltouch) set_bltouch_deployed(true);
|
if (deploy_bltouch) set_bltouch_deployed(true);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
// Tell the planner we're at Z=0
|
||||||
current_position[axis] = 0;
|
current_position[axis] = 0;
|
||||||
sync_plan_position();
|
|
||||||
current_position[axis] = where;
|
#if IS_SCARA
|
||||||
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
|
SYNC_PLAN_POSITION_KINEMATIC();
|
||||||
|
current_position[axis] = distance;
|
||||||
|
inverse_kinematics(current_position);
|
||||||
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
|
||||||
|
#else
|
||||||
|
sync_plan_position();
|
||||||
|
current_position[axis] = distance;
|
||||||
|
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
|
||||||
|
#endif
|
||||||
|
|
||||||
stepper.synchronize();
|
stepper.synchronize();
|
||||||
|
|
||||||
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
|
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
|
||||||
@ -2256,6 +2273,9 @@ static void homeaxis(AxisEnum axis) {
|
|||||||
if (axis == Z_AXIS) stepper.set_homing_flag(true);
|
if (axis == Z_AXIS) stepper.set_homing_flag(true);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
// Fast move towards endstop until triggered
|
||||||
|
do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
|
||||||
|
|
||||||
// When homing Z with probe respect probe clearance
|
// When homing Z with probe respect probe clearance
|
||||||
const float bump = axis_home_dir * (
|
const float bump = axis_home_dir * (
|
||||||
#if HOMING_Z_WITH_PROBE
|
#if HOMING_Z_WITH_PROBE
|
||||||
@ -2264,12 +2284,13 @@ static void homeaxis(AxisEnum axis) {
|
|||||||
home_bump_mm(axis)
|
home_bump_mm(axis)
|
||||||
);
|
);
|
||||||
|
|
||||||
// 1. Fast move towards endstop until triggered
|
// If a second homing move is configured...
|
||||||
// 2. Move away from the endstop by the axis HOME_BUMP_MM
|
if (bump) {
|
||||||
// 3. Slow move towards endstop until triggered
|
// Move away from the endstop by the axis HOME_BUMP_MM
|
||||||
do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
|
do_homing_move(axis, -bump);
|
||||||
do_homing_move(axis, -bump);
|
// Slow move towards endstop until triggered
|
||||||
do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
|
do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
|
||||||
|
}
|
||||||
|
|
||||||
#if ENABLED(Z_DUAL_ENDSTOPS)
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
||||||
if (axis == Z_AXIS) {
|
if (axis == Z_AXIS) {
|
||||||
@ -2849,7 +2870,8 @@ inline void gcode_G4() {
|
|||||||
|
|
||||||
// Move all carriages together linearly until an endstop is hit.
|
// Move all carriages together linearly until an endstop is hit.
|
||||||
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
|
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
|
||||||
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate_mm_s[X_AXIS], active_extruder);
|
feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
|
||||||
|
line_to_current_position();
|
||||||
stepper.synchronize();
|
stepper.synchronize();
|
||||||
endstops.hit_on_purpose(); // clear endstop hit flags
|
endstops.hit_on_purpose(); // clear endstop hit flags
|
||||||
|
|
||||||
@ -2902,22 +2924,20 @@ inline void gcode_G4() {
|
|||||||
destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
|
destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
|
||||||
destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
|
destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
|
||||||
|
|
||||||
#if HAS_BED_PROBE
|
|
||||||
destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
||||||
destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
||||||
if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
if (position_is_reachable(
|
if (position_is_reachable(
|
||||||
destination
|
destination
|
||||||
#if HAS_BED_PROBE
|
#if HOMING_Z_WITH_PROBE
|
||||||
, true
|
, true
|
||||||
#endif
|
#endif
|
||||||
)
|
)
|
||||||
) {
|
) {
|
||||||
|
#if HOMING_Z_WITH_PROBE
|
||||||
|
destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
|
||||||
|
destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
|
||||||
|
#endif
|
||||||
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
|
if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
|
||||||
|
#endif
|
||||||
do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
|
do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
|
||||||
HOMEAXIS(Z);
|
HOMEAXIS(Z);
|
||||||
}
|
}
|
||||||
@ -3133,19 +3153,13 @@ inline void gcode_G28() {
|
|||||||
#if ENABLED(MESH_G28_REST_ORIGIN)
|
#if ENABLED(MESH_G28_REST_ORIGIN)
|
||||||
current_position[Z_AXIS] = 0.0;
|
current_position[Z_AXIS] = 0.0;
|
||||||
set_destination_to_current();
|
set_destination_to_current();
|
||||||
feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
|
line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
|
||||||
line_to_destination();
|
|
||||||
stepper.synchronize();
|
stepper.synchronize();
|
||||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
|
if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
|
||||||
#endif
|
#endif
|
||||||
#else
|
#else
|
||||||
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
|
planner.unapply_leveling(current_position);
|
||||||
mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
|
|
||||||
#if Z_HOME_DIR > 0
|
|
||||||
+ Z_MAX_POS
|
|
||||||
#endif
|
|
||||||
;
|
|
||||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
|
if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
|
||||||
#endif
|
#endif
|
||||||
@ -3155,8 +3169,7 @@ inline void gcode_G28() {
|
|||||||
current_position[Z_AXIS] = pre_home_z;
|
current_position[Z_AXIS] = pre_home_z;
|
||||||
SYNC_PLAN_POSITION_KINEMATIC();
|
SYNC_PLAN_POSITION_KINEMATIC();
|
||||||
mbl.set_active(true);
|
mbl.set_active(true);
|
||||||
current_position[Z_AXIS] = pre_home_z -
|
planner.unapply_leveling(current_position);
|
||||||
mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
|
|
||||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
|
if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
|
||||||
#endif
|
#endif
|
||||||
@ -3505,16 +3518,15 @@ inline void gcode_G28() {
|
|||||||
|
|
||||||
stepper.synchronize();
|
stepper.synchronize();
|
||||||
|
|
||||||
|
// Disable auto bed leveling during G29
|
||||||
|
bool auto_bed_leveling_was_enabled = planner.abl_enabled,
|
||||||
|
abl_should_reenable = auto_bed_leveling_was_enabled;
|
||||||
|
|
||||||
|
planner.abl_enabled = false;
|
||||||
|
|
||||||
if (!dryrun) {
|
if (!dryrun) {
|
||||||
|
|
||||||
// Reset the bed_level_matrix because leveling
|
|
||||||
// needs to be done without leveling enabled.
|
|
||||||
reset_bed_level();
|
|
||||||
|
|
||||||
//
|
|
||||||
// Re-orient the current position without leveling
|
// Re-orient the current position without leveling
|
||||||
// based on where the steppers are positioned.
|
// based on where the steppers are positioned.
|
||||||
//
|
|
||||||
get_cartesian_from_steppers();
|
get_cartesian_from_steppers();
|
||||||
memcpy(current_position, cartes, sizeof(cartes));
|
memcpy(current_position, cartes, sizeof(cartes));
|
||||||
|
|
||||||
@ -3525,9 +3537,12 @@ inline void gcode_G28() {
|
|||||||
setup_for_endstop_or_probe_move();
|
setup_for_endstop_or_probe_move();
|
||||||
|
|
||||||
// Deploy the probe. Probe will raise if needed.
|
// Deploy the probe. Probe will raise if needed.
|
||||||
if (DEPLOY_PROBE()) return;
|
if (DEPLOY_PROBE()) {
|
||||||
|
planner.abl_enabled = abl_should_reenable;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
float xProbe, yProbe, measured_z = 0;
|
float xProbe = 0, yProbe = 0, measured_z = 0;
|
||||||
|
|
||||||
#if ENABLED(AUTO_BED_LEVELING_GRID)
|
#if ENABLED(AUTO_BED_LEVELING_GRID)
|
||||||
|
|
||||||
@ -3537,11 +3552,16 @@ inline void gcode_G28() {
|
|||||||
|
|
||||||
#if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
|
#if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
|
||||||
|
|
||||||
nonlinear_grid_spacing[X_AXIS] = xGridSpacing;
|
|
||||||
nonlinear_grid_spacing[Y_AXIS] = yGridSpacing;
|
|
||||||
float zoffset = zprobe_zoffset;
|
float zoffset = zprobe_zoffset;
|
||||||
if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
|
if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
|
||||||
|
|
||||||
|
if (xGridSpacing != nonlinear_grid_spacing[X_AXIS] || yGridSpacing != nonlinear_grid_spacing[Y_AXIS]) {
|
||||||
|
nonlinear_grid_spacing[X_AXIS] = xGridSpacing;
|
||||||
|
nonlinear_grid_spacing[Y_AXIS] = yGridSpacing;
|
||||||
|
// Can't re-enable (on error) until the new grid is written
|
||||||
|
abl_should_reenable = false;
|
||||||
|
}
|
||||||
|
|
||||||
#elif ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
|
#elif ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
|
||||||
|
|
||||||
/**
|
/**
|
||||||
@ -3600,6 +3620,11 @@ inline void gcode_G28() {
|
|||||||
|
|
||||||
measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
|
measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
|
||||||
|
|
||||||
|
if (measured_z == NAN) {
|
||||||
|
planner.abl_enabled = abl_should_reenable;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR_GRID)
|
||||||
|
|
||||||
mean += measured_z;
|
mean += measured_z;
|
||||||
@ -3639,6 +3664,11 @@ inline void gcode_G28() {
|
|||||||
measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
|
measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (measured_z == NAN) {
|
||||||
|
planner.abl_enabled = abl_should_reenable;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
if (!dryrun) {
|
if (!dryrun) {
|
||||||
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
|
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
|
||||||
if (planeNormal.z < 0) {
|
if (planeNormal.z < 0) {
|
||||||
@ -3647,12 +3677,23 @@ inline void gcode_G28() {
|
|||||||
planeNormal.z *= -1;
|
planeNormal.z *= -1;
|
||||||
}
|
}
|
||||||
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
||||||
|
|
||||||
|
// Can't re-enable (on error) until the new grid is written
|
||||||
|
abl_should_reenable = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif // AUTO_BED_LEVELING_3POINT
|
#endif // AUTO_BED_LEVELING_3POINT
|
||||||
|
|
||||||
// Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
|
// Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
|
||||||
if (STOW_PROBE()) return;
|
if (STOW_PROBE()) {
|
||||||
|
planner.abl_enabled = abl_should_reenable;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
//
|
||||||
|
// Unless this is a dry run, auto bed leveling will
|
||||||
|
// definitely be enabled after this point
|
||||||
|
//
|
||||||
|
|
||||||
// Restore state after probing
|
// Restore state after probing
|
||||||
clean_up_after_endstop_or_probe_move();
|
clean_up_after_endstop_or_probe_move();
|
||||||
@ -3842,6 +3883,9 @@ inline void gcode_G28() {
|
|||||||
report_current_position();
|
report_current_position();
|
||||||
|
|
||||||
KEEPALIVE_STATE(IN_HANDLER);
|
KEEPALIVE_STATE(IN_HANDLER);
|
||||||
|
|
||||||
|
// Auto Bed Leveling is complete! Enable if possible.
|
||||||
|
planner.abl_enabled = dryrun ? abl_should_reenable : true;
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif // AUTO_BED_LEVELING_FEATURE
|
#endif // AUTO_BED_LEVELING_FEATURE
|
||||||
@ -3925,6 +3969,8 @@ inline void gcode_G92() {
|
|||||||
SYNC_PLAN_POSITION_KINEMATIC();
|
SYNC_PLAN_POSITION_KINEMATIC();
|
||||||
else if (didE)
|
else if (didE)
|
||||||
sync_plan_position_e();
|
sync_plan_position_e();
|
||||||
|
|
||||||
|
report_current_position();
|
||||||
}
|
}
|
||||||
|
|
||||||
#if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
|
#if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
|
||||||
@ -4186,7 +4232,11 @@ inline void gcode_M42() {
|
|||||||
if (pin_number < 0) return;
|
if (pin_number < 0) return;
|
||||||
|
|
||||||
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
|
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
|
||||||
if (pin_number == sensitive_pins[i]) return;
|
if (pin_number == sensitive_pins[i]) {
|
||||||
|
SERIAL_ERROR_START;
|
||||||
|
SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
pinMode(pin_number, OUTPUT);
|
pinMode(pin_number, OUTPUT);
|
||||||
digitalWrite(pin_number, pin_status);
|
digitalWrite(pin_number, pin_status);
|
||||||
@ -7736,7 +7786,7 @@ void ok_to_send() {
|
|||||||
|
|
||||||
// Get the Z adjustment for non-linear bed leveling
|
// Get the Z adjustment for non-linear bed leveling
|
||||||
float nonlinear_z_offset(float cartesian[XYZ]) {
|
float nonlinear_z_offset(float cartesian[XYZ]) {
|
||||||
if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return 0; // G29 not done!
|
if (planner.abl_enabled) return;
|
||||||
|
|
||||||
int half_x = (ABL_GRID_POINTS_X - 1) / 2,
|
int half_x = (ABL_GRID_POINTS_X - 1) / 2,
|
||||||
half_y = (ABL_GRID_POINTS_Y - 1) / 2;
|
half_y = (ABL_GRID_POINTS_Y - 1) / 2;
|
||||||
@ -7846,15 +7896,19 @@ void ok_to_send() {
|
|||||||
) \
|
) \
|
||||||
)
|
)
|
||||||
|
|
||||||
|
#define DELTA_RAW_IK() do { \
|
||||||
|
delta[A_AXIS] = DELTA_Z(1); \
|
||||||
|
delta[B_AXIS] = DELTA_Z(2); \
|
||||||
|
delta[C_AXIS] = DELTA_Z(3); \
|
||||||
|
} while(0)
|
||||||
|
|
||||||
#define DELTA_LOGICAL_IK() do { \
|
#define DELTA_LOGICAL_IK() do { \
|
||||||
const float raw[XYZ] = { \
|
const float raw[XYZ] = { \
|
||||||
RAW_X_POSITION(logical[X_AXIS]), \
|
RAW_X_POSITION(logical[X_AXIS]), \
|
||||||
RAW_Y_POSITION(logical[Y_AXIS]), \
|
RAW_Y_POSITION(logical[Y_AXIS]), \
|
||||||
RAW_Z_POSITION(logical[Z_AXIS]) \
|
RAW_Z_POSITION(logical[Z_AXIS]) \
|
||||||
}; \
|
}; \
|
||||||
delta[A_AXIS] = DELTA_Z(1); \
|
DELTA_RAW_IK(); \
|
||||||
delta[B_AXIS] = DELTA_Z(2); \
|
|
||||||
delta[C_AXIS] = DELTA_Z(3); \
|
|
||||||
} while(0)
|
} while(0)
|
||||||
|
|
||||||
#define DELTA_DEBUG() do { \
|
#define DELTA_DEBUG() do { \
|
||||||
@ -8012,7 +8066,7 @@ void get_cartesian_from_steppers() {
|
|||||||
void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||||
get_cartesian_from_steppers();
|
get_cartesian_from_steppers();
|
||||||
#if PLANNER_LEVELING
|
#if PLANNER_LEVELING
|
||||||
planner.unapply_leveling(cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS]);
|
planner.unapply_leveling(cartes);
|
||||||
#endif
|
#endif
|
||||||
if (axis == ALL_AXES)
|
if (axis == ALL_AXES)
|
||||||
memcpy(current_position, cartes, sizeof(cartes));
|
memcpy(current_position, cartes, sizeof(cartes));
|
||||||
@ -8091,101 +8145,123 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|||||||
* This calls planner.buffer_line several times, adding
|
* This calls planner.buffer_line several times, adding
|
||||||
* small incremental moves for DELTA or SCARA.
|
* small incremental moves for DELTA or SCARA.
|
||||||
*/
|
*/
|
||||||
inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) {
|
inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
|
||||||
|
|
||||||
// Get the top feedrate of the move in the XY plane
|
// Get the top feedrate of the move in the XY plane
|
||||||
float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
|
float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
|
||||||
|
|
||||||
// If the move is only in Z don't split up the move.
|
// If the move is only in Z/E don't split up the move
|
||||||
// This shortcut cannot be used if planar bed leveling
|
if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
|
||||||
// is in use, but is fine with mesh-based bed leveling
|
inverse_kinematics(ltarget);
|
||||||
if (logical[X_AXIS] == current_position[X_AXIS] && logical[Y_AXIS] == current_position[Y_AXIS]) {
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
|
||||||
inverse_kinematics(logical);
|
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Get the distance moved in XYZ
|
// Get the cartesian distances moved in XYZE
|
||||||
float difference[NUM_AXIS];
|
float difference[NUM_AXIS];
|
||||||
LOOP_XYZE(i) difference[i] = logical[i] - current_position[i];
|
LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
|
||||||
|
|
||||||
|
// Get the linear distance in XYZ
|
||||||
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
|
||||||
|
|
||||||
|
// If the move is very short, check the E move distance
|
||||||
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
|
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
|
||||||
|
|
||||||
|
// No E move either? Game over.
|
||||||
if (UNEAR_ZERO(cartesian_mm)) return false;
|
if (UNEAR_ZERO(cartesian_mm)) return false;
|
||||||
|
|
||||||
// Minimum number of seconds to move the given distance
|
// Minimum number of seconds to move the given distance
|
||||||
float seconds = cartesian_mm / _feedrate_mm_s;
|
float seconds = cartesian_mm / _feedrate_mm_s;
|
||||||
|
|
||||||
// The number of segments-per-second times the duration
|
// The number of segments-per-second times the duration
|
||||||
// gives the number of segments we should produce
|
// gives the number of segments
|
||||||
uint16_t segments = delta_segments_per_second * seconds;
|
uint16_t segments = delta_segments_per_second * seconds;
|
||||||
|
|
||||||
|
// For SCARA minimum segment size is 0.5mm
|
||||||
#if IS_SCARA
|
#if IS_SCARA
|
||||||
NOMORE(segments, cartesian_mm * 2);
|
NOMORE(segments, cartesian_mm * 2);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
// At least one segment is required
|
||||||
NOLESS(segments, 1);
|
NOLESS(segments, 1);
|
||||||
|
|
||||||
// Each segment produces this much of the move
|
// The approximate length of each segment
|
||||||
float inv_segments = 1.0 / segments,
|
float segment_distance[XYZE] = {
|
||||||
segment_distance[XYZE] = {
|
difference[X_AXIS] / segments,
|
||||||
difference[X_AXIS] * inv_segments,
|
difference[Y_AXIS] / segments,
|
||||||
difference[Y_AXIS] * inv_segments,
|
difference[Z_AXIS] / segments,
|
||||||
difference[Z_AXIS] * inv_segments,
|
difference[E_AXIS] / segments
|
||||||
difference[E_AXIS] * inv_segments
|
|
||||||
};
|
};
|
||||||
|
|
||||||
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
|
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
|
||||||
// SERIAL_ECHOPAIR(" seconds=", seconds);
|
// SERIAL_ECHOPAIR(" seconds=", seconds);
|
||||||
// SERIAL_ECHOLNPAIR(" segments=", segments);
|
// SERIAL_ECHOLNPAIR(" segments=", segments);
|
||||||
|
|
||||||
// Send all the segments to the planner
|
// Drop one segment so the last move is to the exact target.
|
||||||
|
// If there's only 1 segment, loops will be skipped entirely.
|
||||||
|
--segments;
|
||||||
|
|
||||||
#if ENABLED(DELTA) && ENABLED(USE_RAW_KINEMATICS)
|
// Using "raw" coordinates saves 6 float subtractions
|
||||||
|
// per segment, saving valuable CPU cycles
|
||||||
|
|
||||||
#define DELTA_E raw[E_AXIS]
|
#if ENABLED(USE_RAW_KINEMATICS)
|
||||||
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) raw[i] += ADDEND;
|
|
||||||
#define DELTA_IK() do { \
|
|
||||||
delta[A_AXIS] = DELTA_Z(1); \
|
|
||||||
delta[B_AXIS] = DELTA_Z(2); \
|
|
||||||
delta[C_AXIS] = DELTA_Z(3); \
|
|
||||||
} while(0)
|
|
||||||
|
|
||||||
// Get the raw current position as starting point
|
// Get the raw current position as starting point
|
||||||
float raw[ABC] = {
|
float raw[XYZE] = {
|
||||||
RAW_CURRENT_POSITION(X_AXIS),
|
RAW_CURRENT_POSITION(X_AXIS),
|
||||||
RAW_CURRENT_POSITION(Y_AXIS),
|
RAW_CURRENT_POSITION(Y_AXIS),
|
||||||
RAW_CURRENT_POSITION(Z_AXIS)
|
RAW_CURRENT_POSITION(Z_AXIS),
|
||||||
|
current_position[E_AXIS]
|
||||||
};
|
};
|
||||||
|
|
||||||
|
#define DELTA_VAR raw
|
||||||
|
|
||||||
|
// Delta can inline its kinematics
|
||||||
|
#if ENABLED(DELTA)
|
||||||
|
#define DELTA_IK() DELTA_RAW_IK()
|
||||||
|
#else
|
||||||
|
#define DELTA_IK() inverse_kinematics(raw)
|
||||||
|
#endif
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
#define DELTA_E logical[E_AXIS]
|
// Get the logical current position as starting point
|
||||||
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) logical[i] += ADDEND;
|
float logical[XYZE];
|
||||||
|
memcpy(logical, current_position, sizeof(logical));
|
||||||
|
|
||||||
|
#define DELTA_VAR logical
|
||||||
|
|
||||||
|
// Delta can inline its kinematics
|
||||||
#if ENABLED(DELTA)
|
#if ENABLED(DELTA)
|
||||||
#define DELTA_IK() DELTA_LOGICAL_IK()
|
#define DELTA_IK() DELTA_LOGICAL_IK()
|
||||||
#else
|
#else
|
||||||
#define DELTA_IK() inverse_kinematics(logical)
|
#define DELTA_IK() inverse_kinematics(logical)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Get the logical current position as starting point
|
|
||||||
LOOP_XYZE(i) logical[i] = current_position[i];
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ENABLED(USE_DELTA_IK_INTERPOLATION)
|
#if ENABLED(USE_DELTA_IK_INTERPOLATION)
|
||||||
|
|
||||||
// Get the starting delta for interpolation
|
// Only interpolate XYZ. Advance E normally.
|
||||||
if (segments >= 2) inverse_kinematics(logical);
|
#define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
|
||||||
|
|
||||||
|
// Get the starting delta if interpolation is possible
|
||||||
|
if (segments >= 2) DELTA_IK();
|
||||||
|
|
||||||
|
// Loop using decrement
|
||||||
for (uint16_t s = segments + 1; --s;) {
|
for (uint16_t s = segments + 1; --s;) {
|
||||||
if (s > 1) {
|
// Are there at least 2 moves left?
|
||||||
|
if (s >= 2) {
|
||||||
// Save the previous delta for interpolation
|
// Save the previous delta for interpolation
|
||||||
float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
|
float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
|
||||||
|
|
||||||
// Get the delta 2 segments ahead (rather than the next)
|
// Get the delta 2 segments ahead (rather than the next)
|
||||||
DELTA_NEXT(segment_distance[i] + segment_distance[i]);
|
DELTA_NEXT(segment_distance[i] + segment_distance[i]);
|
||||||
|
|
||||||
|
// Advance E normally
|
||||||
|
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
|
||||||
|
|
||||||
|
// Get the exact delta for the move after this
|
||||||
DELTA_IK();
|
DELTA_IK();
|
||||||
|
|
||||||
// Move to the interpolated delta position first
|
// Move to the interpolated delta position first
|
||||||
@ -8193,33 +8269,43 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|||||||
(prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
|
(prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
|
||||||
(prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
|
(prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
|
||||||
(prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
|
(prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
|
||||||
logical[E_AXIS], _feedrate_mm_s, active_extruder
|
DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
|
||||||
);
|
);
|
||||||
|
|
||||||
|
// Advance E once more for the next move
|
||||||
|
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
|
||||||
|
|
||||||
// Do an extra decrement of the loop
|
// Do an extra decrement of the loop
|
||||||
--s;
|
--s;
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
// Get the last segment delta (only when segments is odd)
|
// Get the last segment delta. (Used when segments is odd)
|
||||||
DELTA_NEXT(segment_distance[i])
|
DELTA_NEXT(segment_distance[i]);
|
||||||
|
DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
|
||||||
DELTA_IK();
|
DELTA_IK();
|
||||||
}
|
}
|
||||||
|
|
||||||
// Move to the non-interpolated position
|
// Move to the non-interpolated position
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_E, _feedrate_mm_s, active_extruder);
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
|
||||||
}
|
}
|
||||||
|
|
||||||
#else
|
#else
|
||||||
|
|
||||||
|
#define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
|
||||||
|
|
||||||
// For non-interpolated delta calculate every segment
|
// For non-interpolated delta calculate every segment
|
||||||
for (uint16_t s = segments + 1; --s;) {
|
for (uint16_t s = segments + 1; --s;) {
|
||||||
DELTA_NEXT(segment_distance[i])
|
DELTA_NEXT(segment_distance[i]);
|
||||||
DELTA_IK();
|
DELTA_IK();
|
||||||
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
// Since segment_distance is only approximate,
|
||||||
|
// the final move must be to the exact destination.
|
||||||
|
inverse_kinematics(ltarget);
|
||||||
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], _feedrate_mm_s, active_extruder);
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -8554,7 +8640,7 @@ void prepare_move_to_destination() {
|
|||||||
cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
|
cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
|
||||||
|
|
||||||
/*
|
/*
|
||||||
SERIAL_ECHOPAIR("Angle a=", a);
|
SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
|
||||||
SERIAL_ECHOPAIR(" b=", b);
|
SERIAL_ECHOPAIR(" b=", b);
|
||||||
SERIAL_ECHOPAIR(" a_sin=", a_sin);
|
SERIAL_ECHOPAIR(" a_sin=", a_sin);
|
||||||
SERIAL_ECHOPAIR(" a_cos=", a_cos);
|
SERIAL_ECHOPAIR(" a_cos=", a_cos);
|
||||||
|
@ -48,7 +48,7 @@
|
|||||||
#error "You are using an old Configuration_adv.h file, update it before building Marlin."
|
#error "You are using an old Configuration_adv.h file, update it before building Marlin."
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Warnings for old configurations
|
* Warnings for old configurations
|
||||||
*/
|
*/
|
||||||
#if WATCH_TEMP_PERIOD > 500
|
#if WATCH_TEMP_PERIOD > 500
|
||||||
@ -450,6 +450,13 @@
|
|||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Homing Bump
|
||||||
|
*/
|
||||||
|
#if X_HOME_BUMP_MM < 0 || Y_HOME_BUMP_MM < 0 || Z_HOME_BUMP_MM < 0
|
||||||
|
#error "[XYZ]_HOME_BUMP_MM must be greater than or equal to 0."
|
||||||
|
#endif
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Make sure Z_SAFE_HOMING point is reachable
|
* Make sure Z_SAFE_HOMING point is reachable
|
||||||
*/
|
*/
|
||||||
|
@ -151,6 +151,7 @@
|
|||||||
#define MSG_ERR_M421_PARAMETERS "M421 requires XYZ or IJZ parameters"
|
#define MSG_ERR_M421_PARAMETERS "M421 requires XYZ or IJZ parameters"
|
||||||
#define MSG_ERR_MESH_XY "Mesh XY or IJ cannot be resolved"
|
#define MSG_ERR_MESH_XY "Mesh XY or IJ cannot be resolved"
|
||||||
#define MSG_ERR_ARC_ARGS "G2/G3 bad parameters"
|
#define MSG_ERR_ARC_ARGS "G2/G3 bad parameters"
|
||||||
|
#define MSG_ERR_PROTECTED_PIN "Protected Pin"
|
||||||
#define MSG_ERR_M428_TOO_FAR "Too far from reference point"
|
#define MSG_ERR_M428_TOO_FAR "Too far from reference point"
|
||||||
#define MSG_ERR_M303_DISABLED "PIDTEMP disabled"
|
#define MSG_ERR_M303_DISABLED "PIDTEMP disabled"
|
||||||
#define MSG_M119_REPORT "Reporting endstop status"
|
#define MSG_M119_REPORT "Reporting endstop status"
|
||||||
|
@ -98,6 +98,10 @@ float Planner::min_feedrate_mm_s,
|
|||||||
Planner::max_e_jerk,
|
Planner::max_e_jerk,
|
||||||
Planner::min_travel_feedrate_mm_s;
|
Planner::min_travel_feedrate_mm_s;
|
||||||
|
|
||||||
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||||
|
bool Planner::abl_enabled = false; // Flag that auto bed leveling is enabled
|
||||||
|
#endif
|
||||||
|
|
||||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||||
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
|
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
|
||||||
#endif
|
#endif
|
||||||
@ -135,8 +139,8 @@ Planner::Planner() { init(); }
|
|||||||
|
|
||||||
void Planner::init() {
|
void Planner::init() {
|
||||||
block_buffer_head = block_buffer_tail = 0;
|
block_buffer_head = block_buffer_tail = 0;
|
||||||
memset(position, 0, sizeof(position)); // clear position
|
memset(position, 0, sizeof(position));
|
||||||
LOOP_XYZE(i) previous_speed[i] = 0.0;
|
memset(previous_speed, 0, sizeof(previous_speed));
|
||||||
previous_nominal_speed = 0.0;
|
previous_nominal_speed = 0.0;
|
||||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||||
bed_level_matrix.set_to_identity();
|
bed_level_matrix.set_to_identity();
|
||||||
@ -524,6 +528,11 @@ void Planner::check_axes_activity() {
|
|||||||
#if PLANNER_LEVELING
|
#if PLANNER_LEVELING
|
||||||
|
|
||||||
void Planner::apply_leveling(float &lx, float &ly, float &lz) {
|
void Planner::apply_leveling(float &lx, float &ly, float &lz) {
|
||||||
|
|
||||||
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||||
|
if (!abl_enabled) return;
|
||||||
|
#endif
|
||||||
|
|
||||||
#if ENABLED(MESH_BED_LEVELING)
|
#if ENABLED(MESH_BED_LEVELING)
|
||||||
|
|
||||||
if (mbl.active())
|
if (mbl.active())
|
||||||
@ -561,28 +570,34 @@ void Planner::check_axes_activity() {
|
|||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
void Planner::unapply_leveling(float &lx, float &ly, float &lz) {
|
void Planner::unapply_leveling(float logical[XYZ]) {
|
||||||
|
|
||||||
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||||
|
if (!abl_enabled) return;
|
||||||
|
#endif
|
||||||
|
|
||||||
#if ENABLED(MESH_BED_LEVELING)
|
#if ENABLED(MESH_BED_LEVELING)
|
||||||
|
|
||||||
if (mbl.active())
|
if (mbl.active())
|
||||||
lz -= mbl.get_z(RAW_X_POSITION(lx), RAW_Y_POSITION(ly));
|
logical[Z_AXIS] -= mbl.get_z(RAW_X_POSITION(logical[X_AXIS]), RAW_Y_POSITION(logical[Y_AXIS]));
|
||||||
|
|
||||||
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
|
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||||
|
|
||||||
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
|
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
|
||||||
|
|
||||||
float dx = lx - (X_TILT_FULCRUM), dy = ly - (Y_TILT_FULCRUM), dz = lz;
|
float dx = RAW_X_POSITION(logical[X_AXIS]) - (X_TILT_FULCRUM),
|
||||||
|
dy = RAW_Y_POSITION(logical[Y_AXIS]) - (Y_TILT_FULCRUM),
|
||||||
|
dz = RAW_Z_POSITION(logical[Z_AXIS]);
|
||||||
|
|
||||||
apply_rotation_xyz(inverse, dx, dy, dz);
|
apply_rotation_xyz(inverse, dx, dy, dz);
|
||||||
|
|
||||||
lx = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
|
logical[X_AXIS] = LOGICAL_X_POSITION(dx + X_TILT_FULCRUM);
|
||||||
ly = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
|
logical[Y_AXIS] = LOGICAL_Y_POSITION(dy + Y_TILT_FULCRUM);
|
||||||
lz = LOGICAL_Z_POSITION(dz);
|
logical[Z_AXIS] = LOGICAL_Z_POSITION(dz);
|
||||||
|
|
||||||
#elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
|
#elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
|
||||||
|
|
||||||
float tmp[XYZ] = { lx, ly, 0 };
|
logical[Z_AXIS] -= nonlinear_z_offset(logical);
|
||||||
lz -= nonlinear_z_offset(tmp);
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
@ -625,30 +640,29 @@ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, co
|
|||||||
dz = target[Z_AXIS] - position[Z_AXIS];
|
dz = target[Z_AXIS] - position[Z_AXIS];
|
||||||
|
|
||||||
/*
|
/*
|
||||||
SERIAL_ECHO_START;
|
SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s);
|
||||||
SERIAL_ECHOPGM("Planner ", x);
|
SERIAL_CHAR(' ');
|
||||||
#if IS_KINEMATIC
|
#if IS_KINEMATIC
|
||||||
SERIAL_ECHOPAIR("A:", x);
|
SERIAL_ECHOPAIR("A:", lx);
|
||||||
SERIAL_ECHOPAIR(" (", dx);
|
SERIAL_ECHOPAIR(" (", dx);
|
||||||
SERIAL_ECHOPAIR(") B:", y);
|
SERIAL_ECHOPAIR(") B:", ly);
|
||||||
#else
|
#else
|
||||||
SERIAL_ECHOPAIR("X:", x);
|
SERIAL_ECHOPAIR("X:", lx);
|
||||||
SERIAL_ECHOPAIR(" (", dx);
|
SERIAL_ECHOPAIR(" (", dx);
|
||||||
SERIAL_ECHOPAIR(") Y:", y);
|
SERIAL_ECHOPAIR(") Y:", ly);
|
||||||
#endif
|
#endif
|
||||||
SERIAL_ECHOPAIR(" (", dy);
|
SERIAL_ECHOPAIR(" (", dy);
|
||||||
#elif ENABLED(DELTA)
|
#if ENABLED(DELTA)
|
||||||
SERIAL_ECHOPAIR(") C:", z);
|
SERIAL_ECHOPAIR(") C:", lz);
|
||||||
#else
|
#else
|
||||||
SERIAL_ECHOPAIR(") Z:", z);
|
SERIAL_ECHOPAIR(") Z:", lz);
|
||||||
#endif
|
#endif
|
||||||
SERIAL_ECHOPAIR(" (", dz);
|
SERIAL_ECHOPAIR(" (", dz);
|
||||||
SERIAL_ECHOLNPGM(")");
|
SERIAL_ECHOLNPGM(")");
|
||||||
//*/
|
//*/
|
||||||
|
|
||||||
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
|
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied
|
||||||
if (DEBUGGING(DRYRUN))
|
if (DEBUGGING(DRYRUN)) position[E_AXIS] = target[E_AXIS];
|
||||||
position[E_AXIS] = target[E_AXIS];
|
|
||||||
|
|
||||||
long de = target[E_AXIS] - position[E_AXIS];
|
long de = target[E_AXIS] - position[E_AXIS];
|
||||||
|
|
||||||
@ -1131,7 +1145,7 @@ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, co
|
|||||||
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
||||||
|
|
||||||
// Update previous path unit_vector and nominal speed
|
// Update previous path unit_vector and nominal speed
|
||||||
LOOP_XYZE(i) previous_speed[i] = current_speed[i];
|
memcpy(previous_speed, current_speed, sizeof(previous_speed));
|
||||||
previous_nominal_speed = block->nominal_speed;
|
previous_nominal_speed = block->nominal_speed;
|
||||||
|
|
||||||
#if ENABLED(LIN_ADVANCE)
|
#if ENABLED(LIN_ADVANCE)
|
||||||
@ -1177,8 +1191,8 @@ void Planner::buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, float fr_mm_s, co
|
|||||||
// Move buffer head
|
// Move buffer head
|
||||||
block_buffer_head = next_buffer_head;
|
block_buffer_head = next_buffer_head;
|
||||||
|
|
||||||
// Update position
|
// Update the position (only when a move was queued)
|
||||||
LOOP_XYZE(i) position[i] = target[i];
|
memcpy(position, target, sizeof(position));
|
||||||
|
|
||||||
recalculate();
|
recalculate();
|
||||||
|
|
||||||
@ -1204,7 +1218,14 @@ void Planner::set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
|
|||||||
stepper.set_position(nx, ny, nz, ne);
|
stepper.set_position(nx, ny, nz, ne);
|
||||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||||
|
|
||||||
LOOP_XYZE(i) previous_speed[i] = 0.0;
|
memset(previous_speed, 0, sizeof(previous_speed));
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sync from the stepper positions. (e.g., after an interrupted move)
|
||||||
|
*/
|
||||||
|
void Planner::sync_from_steppers() {
|
||||||
|
LOOP_XYZE(i) position[i] = stepper.position((AxisEnum)i);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -137,6 +137,7 @@ class Planner {
|
|||||||
static float min_travel_feedrate_mm_s;
|
static float min_travel_feedrate_mm_s;
|
||||||
|
|
||||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||||
|
static bool abl_enabled; // Flag that bed leveling is enabled
|
||||||
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
|
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@ -218,7 +219,7 @@ class Planner {
|
|||||||
* as it will be given to the planner and steppers.
|
* as it will be given to the planner and steppers.
|
||||||
*/
|
*/
|
||||||
static void apply_leveling(float &lx, float &ly, float &lz);
|
static void apply_leveling(float &lx, float &ly, float &lz);
|
||||||
static void unapply_leveling(float &lx, float &ly, float &lz);
|
static void unapply_leveling(float logical[XYZ]);
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@ -242,6 +243,11 @@ class Planner {
|
|||||||
*/
|
*/
|
||||||
static void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float& e);
|
static void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float& e);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Sync from the stepper positions. (e.g., after an interrupted move)
|
||||||
|
*/
|
||||||
|
static void sync_from_steppers();
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Set the E position (mm) of the planner (and the E stepper)
|
* Set the E position (mm) of the planner (and the E stepper)
|
||||||
*/
|
*/
|
||||||
|
@ -357,316 +357,314 @@ void Stepper::isr() {
|
|||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
OCR1A = 2000; // 1kHz.
|
OCR1A = 2000; // 1kHz.
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (current_block) {
|
// Update endstops state, if enabled
|
||||||
|
if (endstops.enabled
|
||||||
|
#if HAS_BED_PROBE
|
||||||
|
|| endstops.z_probe_enabled
|
||||||
|
#endif
|
||||||
|
) endstops.update();
|
||||||
|
|
||||||
// Update endstops state, if enabled
|
// Take multiple steps per interrupt (For high speed moves)
|
||||||
if (endstops.enabled
|
bool all_steps_done = false;
|
||||||
#if HAS_BED_PROBE
|
for (int8_t i = 0; i < step_loops; i++) {
|
||||||
|| endstops.z_probe_enabled
|
#ifndef USBCON
|
||||||
#endif
|
customizedSerial.checkRx(); // Check for serial chars.
|
||||||
) endstops.update();
|
|
||||||
|
|
||||||
// Take multiple steps per interrupt (For high speed moves)
|
|
||||||
bool all_steps_done = false;
|
|
||||||
for (int8_t i = 0; i < step_loops; i++) {
|
|
||||||
#ifndef USBCON
|
|
||||||
customizedSerial.checkRx(); // Check for serial chars.
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if ENABLED(LIN_ADVANCE)
|
|
||||||
|
|
||||||
counter_E += current_block->steps[E_AXIS];
|
|
||||||
if (counter_E > 0) {
|
|
||||||
counter_E -= current_block->step_event_count;
|
|
||||||
#if DISABLED(MIXING_EXTRUDER)
|
|
||||||
// Don't step E here for mixing extruder
|
|
||||||
count_position[E_AXIS] += count_direction[E_AXIS];
|
|
||||||
motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
#if ENABLED(MIXING_EXTRUDER)
|
|
||||||
// Step mixing steppers proportionally
|
|
||||||
bool dir = motor_direction(E_AXIS);
|
|
||||||
MIXING_STEPPERS_LOOP(j) {
|
|
||||||
counter_m[j] += current_block->steps[E_AXIS];
|
|
||||||
if (counter_m[j] > 0) {
|
|
||||||
counter_m[j] -= current_block->mix_event_count[j];
|
|
||||||
dir ? --e_steps[j] : ++e_steps[j];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
if (current_block->use_advance_lead) {
|
|
||||||
int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
|
|
||||||
#if ENABLED(MIXING_EXTRUDER)
|
|
||||||
// Mixing extruders apply advance lead proportionally
|
|
||||||
MIXING_STEPPERS_LOOP(j) {
|
|
||||||
int steps = delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
|
|
||||||
e_steps[j] += steps;
|
|
||||||
current_adv_steps[j] += steps;
|
|
||||||
}
|
|
||||||
#else
|
|
||||||
// For most extruders, advance the single E stepper
|
|
||||||
e_steps[TOOL_E_INDEX] += delta_adv_steps;
|
|
||||||
current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
#elif ENABLED(ADVANCE)
|
|
||||||
|
|
||||||
// Always count the unified E axis
|
|
||||||
counter_E += current_block->steps[E_AXIS];
|
|
||||||
if (counter_E > 0) {
|
|
||||||
counter_E -= current_block->step_event_count;
|
|
||||||
#if DISABLED(MIXING_EXTRUDER)
|
|
||||||
// Don't step E here for mixing extruder
|
|
||||||
motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
#if ENABLED(MIXING_EXTRUDER)
|
|
||||||
|
|
||||||
// Step mixing steppers proportionally
|
|
||||||
bool dir = motor_direction(E_AXIS);
|
|
||||||
MIXING_STEPPERS_LOOP(j) {
|
|
||||||
counter_m[j] += current_block->steps[E_AXIS];
|
|
||||||
if (counter_m[j] > 0) {
|
|
||||||
counter_m[j] -= current_block->mix_event_count[j];
|
|
||||||
dir ? --e_steps[j] : ++e_steps[j];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif // MIXING_EXTRUDER
|
|
||||||
|
|
||||||
#endif // ADVANCE or LIN_ADVANCE
|
|
||||||
|
|
||||||
#define _COUNTER(AXIS) counter_## AXIS
|
|
||||||
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
|
|
||||||
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
|
|
||||||
|
|
||||||
// Advance the Bresenham counter; start a pulse if the axis needs a step
|
|
||||||
#define PULSE_START(AXIS) \
|
|
||||||
_COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
|
|
||||||
if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
|
|
||||||
|
|
||||||
// Stop an active pulse, reset the Bresenham counter, update the position
|
|
||||||
#define PULSE_STOP(AXIS) \
|
|
||||||
if (_COUNTER(AXIS) > 0) { \
|
|
||||||
_COUNTER(AXIS) -= current_block->step_event_count; \
|
|
||||||
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
|
|
||||||
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
|
|
||||||
}
|
|
||||||
|
|
||||||
// If a minimum pulse time was specified get the CPU clock
|
|
||||||
#if MINIMUM_STEPPER_PULSE > 0
|
|
||||||
static uint32_t pulse_start;
|
|
||||||
pulse_start = TCNT0;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if HAS_X_STEP
|
|
||||||
PULSE_START(X);
|
|
||||||
#endif
|
|
||||||
#if HAS_Y_STEP
|
|
||||||
PULSE_START(Y);
|
|
||||||
#endif
|
|
||||||
#if HAS_Z_STEP
|
|
||||||
PULSE_START(Z);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// For non-advance use linear interpolation for E also
|
|
||||||
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
|
|
||||||
#if ENABLED(MIXING_EXTRUDER)
|
|
||||||
// Keep updating the single E axis
|
|
||||||
counter_E += current_block->steps[E_AXIS];
|
|
||||||
// Tick the counters used for this mix
|
|
||||||
MIXING_STEPPERS_LOOP(j) {
|
|
||||||
// Step mixing steppers (proportionally)
|
|
||||||
counter_m[j] += current_block->steps[E_AXIS];
|
|
||||||
// Step when the counter goes over zero
|
|
||||||
if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
|
|
||||||
}
|
|
||||||
#else // !MIXING_EXTRUDER
|
|
||||||
PULSE_START(E);
|
|
||||||
#endif
|
|
||||||
#endif // !ADVANCE && !LIN_ADVANCE
|
|
||||||
|
|
||||||
// For a minimum pulse time wait before stopping pulses
|
|
||||||
#if MINIMUM_STEPPER_PULSE > 0
|
|
||||||
#define CYCLES_EATEN_BY_CODE 10
|
|
||||||
while ((uint32_t)(TCNT0 - pulse_start) < (MINIMUM_STEPPER_PULSE * (F_CPU / 1000000UL)) - CYCLES_EATEN_BY_CODE) { /* nada */ }
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if HAS_X_STEP
|
|
||||||
PULSE_STOP(X);
|
|
||||||
#endif
|
|
||||||
#if HAS_Y_STEP
|
|
||||||
PULSE_STOP(Y);
|
|
||||||
#endif
|
|
||||||
#if HAS_Z_STEP
|
|
||||||
PULSE_STOP(Z);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
|
|
||||||
#if ENABLED(MIXING_EXTRUDER)
|
|
||||||
// Always step the single E axis
|
|
||||||
if (counter_E > 0) {
|
|
||||||
counter_E -= current_block->step_event_count;
|
|
||||||
count_position[E_AXIS] += count_direction[E_AXIS];
|
|
||||||
}
|
|
||||||
MIXING_STEPPERS_LOOP(j) {
|
|
||||||
if (counter_m[j] > 0) {
|
|
||||||
counter_m[j] -= current_block->mix_event_count[j];
|
|
||||||
En_STEP_WRITE(j, INVERT_E_STEP_PIN);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#else // !MIXING_EXTRUDER
|
|
||||||
PULSE_STOP(E);
|
|
||||||
#endif
|
|
||||||
#endif // !ADVANCE && !LIN_ADVANCE
|
|
||||||
|
|
||||||
if (++step_events_completed >= current_block->step_event_count) {
|
|
||||||
all_steps_done = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
|
||||||
// If we have esteps to execute, fire the next advance_isr "now"
|
|
||||||
if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Calculate new timer value
|
#if ENABLED(LIN_ADVANCE)
|
||||||
uint16_t timer, step_rate;
|
|
||||||
if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
|
|
||||||
|
|
||||||
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
counter_E += current_block->steps[E_AXIS];
|
||||||
acc_step_rate += current_block->initial_rate;
|
if (counter_E > 0) {
|
||||||
|
counter_E -= current_block->step_event_count;
|
||||||
// upper limit
|
#if DISABLED(MIXING_EXTRUDER)
|
||||||
NOMORE(acc_step_rate, current_block->nominal_rate);
|
// Don't step E here for mixing extruder
|
||||||
|
count_position[E_AXIS] += count_direction[E_AXIS];
|
||||||
// step_rate to timer interval
|
motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
|
||||||
timer = calc_timer(acc_step_rate);
|
|
||||||
OCR1A = timer;
|
|
||||||
acceleration_time += timer;
|
|
||||||
|
|
||||||
#if ENABLED(LIN_ADVANCE)
|
|
||||||
|
|
||||||
if (current_block->use_advance_lead)
|
|
||||||
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
|
|
||||||
|
|
||||||
if (current_block->use_advance_lead) {
|
|
||||||
#if ENABLED(MIXING_EXTRUDER)
|
|
||||||
MIXING_STEPPERS_LOOP(j)
|
|
||||||
current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
|
|
||||||
#else
|
|
||||||
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
#elif ENABLED(ADVANCE)
|
|
||||||
|
|
||||||
advance += advance_rate * step_loops;
|
|
||||||
//NOLESS(advance, current_block->advance);
|
|
||||||
|
|
||||||
long advance_whole = advance >> 8,
|
|
||||||
advance_factor = advance_whole - old_advance;
|
|
||||||
|
|
||||||
// Do E steps + advance steps
|
|
||||||
#if ENABLED(MIXING_EXTRUDER)
|
|
||||||
// ...for mixing steppers proportionally
|
|
||||||
MIXING_STEPPERS_LOOP(j)
|
|
||||||
e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
|
|
||||||
#else
|
|
||||||
// ...for the active extruder
|
|
||||||
e_steps[TOOL_E_INDEX] += advance_factor;
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
old_advance = advance_whole;
|
|
||||||
|
|
||||||
#endif // ADVANCE or LIN_ADVANCE
|
|
||||||
|
|
||||||
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
|
||||||
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
|
|
||||||
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
|
||||||
|
|
||||||
if (step_rate < acc_step_rate) { // Still decelerating?
|
|
||||||
step_rate = acc_step_rate - step_rate;
|
|
||||||
NOLESS(step_rate, current_block->final_rate);
|
|
||||||
}
|
}
|
||||||
else
|
|
||||||
step_rate = current_block->final_rate;
|
|
||||||
|
|
||||||
// step_rate to timer interval
|
#if ENABLED(MIXING_EXTRUDER)
|
||||||
timer = calc_timer(step_rate);
|
// Step mixing steppers proportionally
|
||||||
OCR1A = timer;
|
bool dir = motor_direction(E_AXIS);
|
||||||
deceleration_time += timer;
|
MIXING_STEPPERS_LOOP(j) {
|
||||||
|
counter_m[j] += current_block->steps[E_AXIS];
|
||||||
|
if (counter_m[j] > 0) {
|
||||||
|
counter_m[j] -= current_block->mix_event_count[j];
|
||||||
|
dir ? --e_steps[j] : ++e_steps[j];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
#if ENABLED(LIN_ADVANCE)
|
if (current_block->use_advance_lead) {
|
||||||
|
int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
|
||||||
|
#if ENABLED(MIXING_EXTRUDER)
|
||||||
|
// Mixing extruders apply advance lead proportionally
|
||||||
|
MIXING_STEPPERS_LOOP(j) {
|
||||||
|
int steps = delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
|
||||||
|
e_steps[j] += steps;
|
||||||
|
current_adv_steps[j] += steps;
|
||||||
|
}
|
||||||
|
#else
|
||||||
|
// For most extruders, advance the single E stepper
|
||||||
|
e_steps[TOOL_E_INDEX] += delta_adv_steps;
|
||||||
|
current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
if (current_block->use_advance_lead) {
|
#elif ENABLED(ADVANCE)
|
||||||
#if ENABLED(MIXING_EXTRUDER)
|
|
||||||
MIXING_STEPPERS_LOOP(j)
|
// Always count the unified E axis
|
||||||
current_estep_rate[j] = ((uint32_t)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
|
counter_E += current_block->steps[E_AXIS];
|
||||||
#else
|
if (counter_E > 0) {
|
||||||
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->e_speed_multiplier8) >> 8;
|
counter_E -= current_block->step_event_count;
|
||||||
#endif
|
#if DISABLED(MIXING_EXTRUDER)
|
||||||
|
// Don't step E here for mixing extruder
|
||||||
|
motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
#if ENABLED(MIXING_EXTRUDER)
|
||||||
|
|
||||||
|
// Step mixing steppers proportionally
|
||||||
|
bool dir = motor_direction(E_AXIS);
|
||||||
|
MIXING_STEPPERS_LOOP(j) {
|
||||||
|
counter_m[j] += current_block->steps[E_AXIS];
|
||||||
|
if (counter_m[j] > 0) {
|
||||||
|
counter_m[j] -= current_block->mix_event_count[j];
|
||||||
|
dir ? --e_steps[j] : ++e_steps[j];
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#elif ENABLED(ADVANCE)
|
#endif // MIXING_EXTRUDER
|
||||||
|
|
||||||
advance -= advance_rate * step_loops;
|
#endif // ADVANCE or LIN_ADVANCE
|
||||||
NOLESS(advance, final_advance);
|
|
||||||
|
|
||||||
// Do E steps + advance steps
|
#define _COUNTER(AXIS) counter_## AXIS
|
||||||
long advance_whole = advance >> 8,
|
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
|
||||||
advance_factor = advance_whole - old_advance;
|
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
|
||||||
|
|
||||||
|
// Advance the Bresenham counter; start a pulse if the axis needs a step
|
||||||
|
#define PULSE_START(AXIS) \
|
||||||
|
_COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
|
||||||
|
if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
|
||||||
|
|
||||||
|
// Stop an active pulse, reset the Bresenham counter, update the position
|
||||||
|
#define PULSE_STOP(AXIS) \
|
||||||
|
if (_COUNTER(AXIS) > 0) { \
|
||||||
|
_COUNTER(AXIS) -= current_block->step_event_count; \
|
||||||
|
count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
|
||||||
|
_APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
|
||||||
|
}
|
||||||
|
|
||||||
|
// If a minimum pulse time was specified get the CPU clock
|
||||||
|
#if MINIMUM_STEPPER_PULSE > 0
|
||||||
|
static uint32_t pulse_start;
|
||||||
|
pulse_start = TCNT0;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if HAS_X_STEP
|
||||||
|
PULSE_START(X);
|
||||||
|
#endif
|
||||||
|
#if HAS_Y_STEP
|
||||||
|
PULSE_START(Y);
|
||||||
|
#endif
|
||||||
|
#if HAS_Z_STEP
|
||||||
|
PULSE_START(Z);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// For non-advance use linear interpolation for E also
|
||||||
|
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
|
||||||
|
#if ENABLED(MIXING_EXTRUDER)
|
||||||
|
// Keep updating the single E axis
|
||||||
|
counter_E += current_block->steps[E_AXIS];
|
||||||
|
// Tick the counters used for this mix
|
||||||
|
MIXING_STEPPERS_LOOP(j) {
|
||||||
|
// Step mixing steppers (proportionally)
|
||||||
|
counter_m[j] += current_block->steps[E_AXIS];
|
||||||
|
// Step when the counter goes over zero
|
||||||
|
if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
|
||||||
|
}
|
||||||
|
#else // !MIXING_EXTRUDER
|
||||||
|
PULSE_START(E);
|
||||||
|
#endif
|
||||||
|
#endif // !ADVANCE && !LIN_ADVANCE
|
||||||
|
|
||||||
|
// For a minimum pulse time wait before stopping pulses
|
||||||
|
#if MINIMUM_STEPPER_PULSE > 0
|
||||||
|
#define CYCLES_EATEN_BY_CODE 10
|
||||||
|
while ((uint32_t)(TCNT0 - pulse_start) < (MINIMUM_STEPPER_PULSE * (F_CPU / 1000000UL)) - CYCLES_EATEN_BY_CODE) { /* nada */ }
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if HAS_X_STEP
|
||||||
|
PULSE_STOP(X);
|
||||||
|
#endif
|
||||||
|
#if HAS_Y_STEP
|
||||||
|
PULSE_STOP(Y);
|
||||||
|
#endif
|
||||||
|
#if HAS_Z_STEP
|
||||||
|
PULSE_STOP(Z);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
|
||||||
|
#if ENABLED(MIXING_EXTRUDER)
|
||||||
|
// Always step the single E axis
|
||||||
|
if (counter_E > 0) {
|
||||||
|
counter_E -= current_block->step_event_count;
|
||||||
|
count_position[E_AXIS] += count_direction[E_AXIS];
|
||||||
|
}
|
||||||
|
MIXING_STEPPERS_LOOP(j) {
|
||||||
|
if (counter_m[j] > 0) {
|
||||||
|
counter_m[j] -= current_block->mix_event_count[j];
|
||||||
|
En_STEP_WRITE(j, INVERT_E_STEP_PIN);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#else // !MIXING_EXTRUDER
|
||||||
|
PULSE_STOP(E);
|
||||||
|
#endif
|
||||||
|
#endif // !ADVANCE && !LIN_ADVANCE
|
||||||
|
|
||||||
|
if (++step_events_completed >= current_block->step_event_count) {
|
||||||
|
all_steps_done = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
||||||
|
// If we have esteps to execute, fire the next advance_isr "now"
|
||||||
|
if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Calculate new timer value
|
||||||
|
uint16_t timer, step_rate;
|
||||||
|
if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
|
||||||
|
|
||||||
|
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
|
||||||
|
acc_step_rate += current_block->initial_rate;
|
||||||
|
|
||||||
|
// upper limit
|
||||||
|
NOMORE(acc_step_rate, current_block->nominal_rate);
|
||||||
|
|
||||||
|
// step_rate to timer interval
|
||||||
|
timer = calc_timer(acc_step_rate);
|
||||||
|
OCR1A = timer;
|
||||||
|
acceleration_time += timer;
|
||||||
|
|
||||||
|
#if ENABLED(LIN_ADVANCE)
|
||||||
|
|
||||||
|
if (current_block->use_advance_lead)
|
||||||
|
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
|
||||||
|
|
||||||
|
if (current_block->use_advance_lead) {
|
||||||
#if ENABLED(MIXING_EXTRUDER)
|
#if ENABLED(MIXING_EXTRUDER)
|
||||||
MIXING_STEPPERS_LOOP(j)
|
MIXING_STEPPERS_LOOP(j)
|
||||||
e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
|
current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
|
||||||
#else
|
#else
|
||||||
e_steps[TOOL_E_INDEX] += advance_factor;
|
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
|
||||||
#endif
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
old_advance = advance_whole;
|
#elif ENABLED(ADVANCE)
|
||||||
|
|
||||||
#endif // ADVANCE or LIN_ADVANCE
|
advance += advance_rate * step_loops;
|
||||||
|
//NOLESS(advance, current_block->advance);
|
||||||
|
|
||||||
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
long advance_whole = advance >> 8,
|
||||||
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
|
advance_factor = advance_whole - old_advance;
|
||||||
#endif
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
|
|
||||||
#if ENABLED(LIN_ADVANCE)
|
|
||||||
|
|
||||||
if (current_block->use_advance_lead)
|
|
||||||
current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
|
|
||||||
|
|
||||||
eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
|
|
||||||
|
|
||||||
|
// Do E steps + advance steps
|
||||||
|
#if ENABLED(MIXING_EXTRUDER)
|
||||||
|
// ...for mixing steppers proportionally
|
||||||
|
MIXING_STEPPERS_LOOP(j)
|
||||||
|
e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
|
||||||
|
#else
|
||||||
|
// ...for the active extruder
|
||||||
|
e_steps[TOOL_E_INDEX] += advance_factor;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
OCR1A = OCR1A_nominal;
|
old_advance = advance_whole;
|
||||||
// ensure we're running at the correct step rate, even if we just came off an acceleration
|
|
||||||
step_loops = step_loops_nominal;
|
|
||||||
}
|
|
||||||
|
|
||||||
NOLESS(OCR1A, TCNT1 + 16);
|
#endif // ADVANCE or LIN_ADVANCE
|
||||||
|
|
||||||
// If current block is finished, reset pointer
|
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
||||||
if (all_steps_done) {
|
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
|
||||||
current_block = NULL;
|
#endif
|
||||||
planner.discard_current_block();
|
}
|
||||||
|
else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
|
||||||
|
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
||||||
|
|
||||||
|
if (step_rate < acc_step_rate) { // Still decelerating?
|
||||||
|
step_rate = acc_step_rate - step_rate;
|
||||||
|
NOLESS(step_rate, current_block->final_rate);
|
||||||
}
|
}
|
||||||
|
else
|
||||||
|
step_rate = current_block->final_rate;
|
||||||
|
|
||||||
|
// step_rate to timer interval
|
||||||
|
timer = calc_timer(step_rate);
|
||||||
|
OCR1A = timer;
|
||||||
|
deceleration_time += timer;
|
||||||
|
|
||||||
|
#if ENABLED(LIN_ADVANCE)
|
||||||
|
|
||||||
|
if (current_block->use_advance_lead) {
|
||||||
|
#if ENABLED(MIXING_EXTRUDER)
|
||||||
|
MIXING_STEPPERS_LOOP(j)
|
||||||
|
current_estep_rate[j] = ((uint32_t)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
|
||||||
|
#else
|
||||||
|
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->e_speed_multiplier8) >> 8;
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
|
||||||
|
#elif ENABLED(ADVANCE)
|
||||||
|
|
||||||
|
advance -= advance_rate * step_loops;
|
||||||
|
NOLESS(advance, final_advance);
|
||||||
|
|
||||||
|
// Do E steps + advance steps
|
||||||
|
long advance_whole = advance >> 8,
|
||||||
|
advance_factor = advance_whole - old_advance;
|
||||||
|
|
||||||
|
#if ENABLED(MIXING_EXTRUDER)
|
||||||
|
MIXING_STEPPERS_LOOP(j)
|
||||||
|
e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
|
||||||
|
#else
|
||||||
|
e_steps[TOOL_E_INDEX] += advance_factor;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
old_advance = advance_whole;
|
||||||
|
|
||||||
|
#endif // ADVANCE or LIN_ADVANCE
|
||||||
|
|
||||||
|
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
||||||
|
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
else {
|
||||||
|
|
||||||
|
#if ENABLED(LIN_ADVANCE)
|
||||||
|
|
||||||
|
if (current_block->use_advance_lead)
|
||||||
|
current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
|
||||||
|
|
||||||
|
eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
|
OCR1A = OCR1A_nominal;
|
||||||
|
// ensure we're running at the correct step rate, even if we just came off an acceleration
|
||||||
|
step_loops = step_loops_nominal;
|
||||||
|
}
|
||||||
|
|
||||||
|
NOLESS(OCR1A, TCNT1 + 16);
|
||||||
|
|
||||||
|
// If current block is finished, reset pointer
|
||||||
|
if (all_steps_done) {
|
||||||
|
current_block = NULL;
|
||||||
|
planner.discard_current_block();
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -936,6 +934,9 @@ void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
|
|||||||
* derive the current XYZ position later on.
|
* derive the current XYZ position later on.
|
||||||
*/
|
*/
|
||||||
void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
|
void Stepper::set_position(const long& x, const long& y, const long& z, const long& e) {
|
||||||
|
|
||||||
|
synchronize(); // Bad to set stepper counts in the middle of a move
|
||||||
|
|
||||||
CRITICAL_SECTION_START;
|
CRITICAL_SECTION_START;
|
||||||
|
|
||||||
#if ENABLED(COREXY)
|
#if ENABLED(COREXY)
|
||||||
|
Loading…
Reference in New Issue
Block a user