Adjust spacing in Marlin_main.cpp and stepper.*
This commit is contained in:
		@@ -561,9 +561,9 @@ void servo_init() {
 | 
			
		||||
 | 
			
		||||
  // Set position of Servo Endstops that are defined
 | 
			
		||||
  #ifdef SERVO_ENDSTOPS
 | 
			
		||||
  for (int i = 0; i < 3; i++)
 | 
			
		||||
    if (servo_endstops[i] >= 0)
 | 
			
		||||
      servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
 | 
			
		||||
    for (int i = 0; i < 3; i++)
 | 
			
		||||
      if (servo_endstops[i] >= 0)
 | 
			
		||||
        servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
  #if SERVO_LEVELING
 | 
			
		||||
@@ -1317,21 +1317,21 @@ static void setup_for_endstop_move() {
 | 
			
		||||
      
 | 
			
		||||
      st_synchronize();
 | 
			
		||||
 | 
			
		||||
    #ifdef Z_PROBE_ENDSTOP
 | 
			
		||||
      bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
 | 
			
		||||
      if (z_probe_endstop)
 | 
			
		||||
    #else
 | 
			
		||||
      bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 | 
			
		||||
      if (z_min_endstop)
 | 
			
		||||
    #endif
 | 
			
		||||
      {
 | 
			
		||||
        if (IsRunning()) {
 | 
			
		||||
          SERIAL_ERROR_START;
 | 
			
		||||
          SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
 | 
			
		||||
          LCD_ALERTMESSAGEPGM("Err: ZPROBE");
 | 
			
		||||
      #ifdef Z_PROBE_ENDSTOP
 | 
			
		||||
        bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
 | 
			
		||||
        if (z_probe_endstop)
 | 
			
		||||
      #else
 | 
			
		||||
        bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 | 
			
		||||
        if (z_min_endstop)
 | 
			
		||||
      #endif
 | 
			
		||||
        {
 | 
			
		||||
          if (IsRunning()) {
 | 
			
		||||
            SERIAL_ERROR_START;
 | 
			
		||||
            SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
 | 
			
		||||
            LCD_ALERTMESSAGEPGM("Err: ZPROBE");
 | 
			
		||||
          }
 | 
			
		||||
          Stop();
 | 
			
		||||
        }
 | 
			
		||||
        Stop();
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    #endif // Z_PROBE_ALLEN_KEY
 | 
			
		||||
 | 
			
		||||
@@ -1394,21 +1394,21 @@ static void setup_for_endstop_move() {
 | 
			
		||||
      
 | 
			
		||||
      st_synchronize();
 | 
			
		||||
 | 
			
		||||
    #ifdef Z_PROBE_ENDSTOP
 | 
			
		||||
      bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
 | 
			
		||||
      if (!z_probe_endstop)
 | 
			
		||||
    #else
 | 
			
		||||
      bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 | 
			
		||||
      if (!z_min_endstop)
 | 
			
		||||
    #endif
 | 
			
		||||
      {
 | 
			
		||||
        if (IsRunning()) {
 | 
			
		||||
          SERIAL_ERROR_START;
 | 
			
		||||
          SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
 | 
			
		||||
          LCD_ALERTMESSAGEPGM("Err: ZPROBE");
 | 
			
		||||
      #ifdef Z_PROBE_ENDSTOP
 | 
			
		||||
        bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
 | 
			
		||||
        if (!z_probe_endstop)
 | 
			
		||||
      #else
 | 
			
		||||
        bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
 | 
			
		||||
        if (!z_min_endstop)
 | 
			
		||||
      #endif
 | 
			
		||||
        {
 | 
			
		||||
          if (IsRunning()) {
 | 
			
		||||
            SERIAL_ERROR_START;
 | 
			
		||||
            SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
 | 
			
		||||
            LCD_ALERTMESSAGEPGM("Err: ZPROBE");
 | 
			
		||||
          }
 | 
			
		||||
          Stop();
 | 
			
		||||
        }
 | 
			
		||||
        Stop();
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
@@ -6093,82 +6093,83 @@ void prepare_move() {
 | 
			
		||||
#endif // HAS_CONTROLLERFAN
 | 
			
		||||
 | 
			
		||||
#ifdef SCARA
 | 
			
		||||
void calculate_SCARA_forward_Transform(float f_scara[3])
 | 
			
		||||
{
 | 
			
		||||
  // Perform forward kinematics, and place results in delta[3]
 | 
			
		||||
  // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
 | 
			
		||||
  
 | 
			
		||||
  float x_sin, x_cos, y_sin, y_cos;
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
  void calculate_SCARA_forward_Transform(float f_scara[3]) {
 | 
			
		||||
    // Perform forward kinematics, and place results in delta[3]
 | 
			
		||||
    // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
 | 
			
		||||
 | 
			
		||||
    float x_sin, x_cos, y_sin, y_cos;
 | 
			
		||||
 | 
			
		||||
    //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
 | 
			
		||||
    //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
    x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
 | 
			
		||||
    x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
 | 
			
		||||
    y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
 | 
			
		||||
    y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
 | 
			
		||||
   
 | 
			
		||||
  //  SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
 | 
			
		||||
  //  SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
 | 
			
		||||
  //  SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
 | 
			
		||||
  //  SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
 | 
			
		||||
  
 | 
			
		||||
 | 
			
		||||
    //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
 | 
			
		||||
    //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
 | 
			
		||||
    //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
 | 
			
		||||
    //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
 | 
			
		||||
 | 
			
		||||
    delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x;  //theta
 | 
			
		||||
    delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y;  //theta+phi
 | 
			
		||||
 | 
			
		||||
    //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
 | 
			
		||||
    //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | 
			
		||||
}  
 | 
			
		||||
  }  
 | 
			
		||||
 | 
			
		||||
void calculate_delta(float cartesian[3]){
 | 
			
		||||
  //reverse kinematics.
 | 
			
		||||
  // Perform reversed kinematics, and place results in delta[3]
 | 
			
		||||
  // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
 | 
			
		||||
  
 | 
			
		||||
  float SCARA_pos[2];
 | 
			
		||||
  static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; 
 | 
			
		||||
  
 | 
			
		||||
  SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x;  //Translate SCARA to standard X Y
 | 
			
		||||
  SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y;  // With scaling factor.
 | 
			
		||||
  
 | 
			
		||||
  #if (Linkage_1 == Linkage_2)
 | 
			
		||||
    SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
 | 
			
		||||
  #else
 | 
			
		||||
    SCARA_C2 =   ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000; 
 | 
			
		||||
  #endif
 | 
			
		||||
  
 | 
			
		||||
  SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
 | 
			
		||||
  
 | 
			
		||||
  SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
 | 
			
		||||
  SCARA_K2 = Linkage_2 * SCARA_S2;
 | 
			
		||||
  
 | 
			
		||||
  SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
 | 
			
		||||
  SCARA_psi   =   atan2(SCARA_S2,SCARA_C2);
 | 
			
		||||
  
 | 
			
		||||
  delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG;  // Multiply by 180/Pi  -  theta is support arm angle
 | 
			
		||||
  delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG;  //       -  equal to sub arm angle (inverted motor)
 | 
			
		||||
  delta[Z_AXIS] = cartesian[Z_AXIS];
 | 
			
		||||
  
 | 
			
		||||
  /*
 | 
			
		||||
  SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
 | 
			
		||||
  SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
 | 
			
		||||
  SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
 | 
			
		||||
  
 | 
			
		||||
  SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
 | 
			
		||||
  SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
 | 
			
		||||
  
 | 
			
		||||
  SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
 | 
			
		||||
  SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
 | 
			
		||||
  SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
 | 
			
		||||
  
 | 
			
		||||
  SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
 | 
			
		||||
  SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
 | 
			
		||||
  SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
 | 
			
		||||
  SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
 | 
			
		||||
  SERIAL_ECHOLN(" ");*/
 | 
			
		||||
}
 | 
			
		||||
  void calculate_delta(float cartesian[3]){
 | 
			
		||||
    //reverse kinematics.
 | 
			
		||||
    // Perform reversed kinematics, and place results in delta[3]
 | 
			
		||||
    // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
 | 
			
		||||
    
 | 
			
		||||
    float SCARA_pos[2];
 | 
			
		||||
    static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; 
 | 
			
		||||
    
 | 
			
		||||
    SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x;  //Translate SCARA to standard X Y
 | 
			
		||||
    SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y;  // With scaling factor.
 | 
			
		||||
    
 | 
			
		||||
    #if (Linkage_1 == Linkage_2)
 | 
			
		||||
      SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
 | 
			
		||||
    #else
 | 
			
		||||
      SCARA_C2 =   ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000; 
 | 
			
		||||
    #endif
 | 
			
		||||
    
 | 
			
		||||
    SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
 | 
			
		||||
    
 | 
			
		||||
    SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
 | 
			
		||||
    SCARA_K2 = Linkage_2 * SCARA_S2;
 | 
			
		||||
    
 | 
			
		||||
    SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
 | 
			
		||||
    SCARA_psi   =   atan2(SCARA_S2,SCARA_C2);
 | 
			
		||||
    
 | 
			
		||||
    delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG;  // Multiply by 180/Pi  -  theta is support arm angle
 | 
			
		||||
    delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG;  //       -  equal to sub arm angle (inverted motor)
 | 
			
		||||
    delta[Z_AXIS] = cartesian[Z_AXIS];
 | 
			
		||||
    
 | 
			
		||||
    /*
 | 
			
		||||
    SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
 | 
			
		||||
    SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
 | 
			
		||||
    SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
 | 
			
		||||
    
 | 
			
		||||
    SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
 | 
			
		||||
    SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
 | 
			
		||||
    
 | 
			
		||||
    SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
 | 
			
		||||
    SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
 | 
			
		||||
    SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
 | 
			
		||||
    
 | 
			
		||||
    SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
 | 
			
		||||
    SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
 | 
			
		||||
    SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
 | 
			
		||||
    SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
 | 
			
		||||
    SERIAL_EOL;
 | 
			
		||||
    */
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
#endif // SCARA
 | 
			
		||||
 | 
			
		||||
#ifdef TEMP_STAT_LEDS
 | 
			
		||||
 | 
			
		||||
@@ -6399,7 +6400,78 @@ void kill()
 | 
			
		||||
      st_synchronize();
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
#endif // FILAMENT_RUNOUT_SENSOR
 | 
			
		||||
 | 
			
		||||
#ifdef FAST_PWM_FAN
 | 
			
		||||
 | 
			
		||||
  void setPwmFrequency(uint8_t pin, int val) {
 | 
			
		||||
    val &= 0x07;
 | 
			
		||||
    switch (digitalPinToTimer(pin)) {
 | 
			
		||||
 | 
			
		||||
      #if defined(TCCR0A)
 | 
			
		||||
        case TIMER0A:
 | 
			
		||||
        case TIMER0B:
 | 
			
		||||
             // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
 | 
			
		||||
             // TCCR0B |= val;
 | 
			
		||||
             break;
 | 
			
		||||
      #endif
 | 
			
		||||
 | 
			
		||||
      #if defined(TCCR1A)
 | 
			
		||||
        case TIMER1A:
 | 
			
		||||
        case TIMER1B:
 | 
			
		||||
             // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
 | 
			
		||||
             // TCCR1B |= val;
 | 
			
		||||
             break;
 | 
			
		||||
      #endif
 | 
			
		||||
 | 
			
		||||
      #if defined(TCCR2)
 | 
			
		||||
        case TIMER2:
 | 
			
		||||
        case TIMER2:
 | 
			
		||||
             TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
 | 
			
		||||
             TCCR2 |= val;
 | 
			
		||||
             break;
 | 
			
		||||
      #endif
 | 
			
		||||
 | 
			
		||||
      #if defined(TCCR2A)
 | 
			
		||||
        case TIMER2A:
 | 
			
		||||
        case TIMER2B:
 | 
			
		||||
             TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
 | 
			
		||||
             TCCR2B |= val;
 | 
			
		||||
             break;
 | 
			
		||||
      #endif
 | 
			
		||||
 | 
			
		||||
      #if defined(TCCR3A)
 | 
			
		||||
        case TIMER3A:
 | 
			
		||||
        case TIMER3B:
 | 
			
		||||
        case TIMER3C:
 | 
			
		||||
             TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
 | 
			
		||||
             TCCR3B |= val;
 | 
			
		||||
             break;
 | 
			
		||||
      #endif
 | 
			
		||||
 | 
			
		||||
      #if defined(TCCR4A)
 | 
			
		||||
        case TIMER4A:
 | 
			
		||||
        case TIMER4B:
 | 
			
		||||
        case TIMER4C:
 | 
			
		||||
             TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
 | 
			
		||||
             TCCR4B |= val;
 | 
			
		||||
             break;
 | 
			
		||||
      #endif
 | 
			
		||||
 | 
			
		||||
      #if defined(TCCR5A)
 | 
			
		||||
        case TIMER5A:
 | 
			
		||||
        case TIMER5B:
 | 
			
		||||
        case TIMER5C:
 | 
			
		||||
             TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
 | 
			
		||||
             TCCR5B |= val;
 | 
			
		||||
             break;
 | 
			
		||||
      #endif
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#endif // FAST_PWM_FAN
 | 
			
		||||
 | 
			
		||||
void Stop() {
 | 
			
		||||
  disable_all_heaters();
 | 
			
		||||
@@ -6412,76 +6484,6 @@ void Stop() {
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
#ifdef FAST_PWM_FAN
 | 
			
		||||
void setPwmFrequency(uint8_t pin, int val)
 | 
			
		||||
{
 | 
			
		||||
  val &= 0x07;
 | 
			
		||||
  switch(digitalPinToTimer(pin))
 | 
			
		||||
  {
 | 
			
		||||
 | 
			
		||||
    #if defined(TCCR0A)
 | 
			
		||||
    case TIMER0A:
 | 
			
		||||
    case TIMER0B:
 | 
			
		||||
//         TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
 | 
			
		||||
//         TCCR0B |= val;
 | 
			
		||||
         break;
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
    #if defined(TCCR1A)
 | 
			
		||||
    case TIMER1A:
 | 
			
		||||
    case TIMER1B:
 | 
			
		||||
//         TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
 | 
			
		||||
//         TCCR1B |= val;
 | 
			
		||||
         break;
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
    #if defined(TCCR2)
 | 
			
		||||
    case TIMER2:
 | 
			
		||||
    case TIMER2:
 | 
			
		||||
         TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
 | 
			
		||||
         TCCR2 |= val;
 | 
			
		||||
         break;
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
    #if defined(TCCR2A)
 | 
			
		||||
    case TIMER2A:
 | 
			
		||||
    case TIMER2B:
 | 
			
		||||
         TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
 | 
			
		||||
         TCCR2B |= val;
 | 
			
		||||
         break;
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
    #if defined(TCCR3A)
 | 
			
		||||
    case TIMER3A:
 | 
			
		||||
    case TIMER3B:
 | 
			
		||||
    case TIMER3C:
 | 
			
		||||
         TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
 | 
			
		||||
         TCCR3B |= val;
 | 
			
		||||
         break;
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
    #if defined(TCCR4A)
 | 
			
		||||
    case TIMER4A:
 | 
			
		||||
    case TIMER4B:
 | 
			
		||||
    case TIMER4C:
 | 
			
		||||
         TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
 | 
			
		||||
         TCCR4B |= val;
 | 
			
		||||
         break;
 | 
			
		||||
   #endif
 | 
			
		||||
 | 
			
		||||
    #if defined(TCCR5A)
 | 
			
		||||
    case TIMER5A:
 | 
			
		||||
    case TIMER5B:
 | 
			
		||||
    case TIMER5C:
 | 
			
		||||
         TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
 | 
			
		||||
         TCCR5B |= val;
 | 
			
		||||
         break;
 | 
			
		||||
   #endif
 | 
			
		||||
 | 
			
		||||
  }
 | 
			
		||||
}
 | 
			
		||||
#endif //FAST_PWM_FAN
 | 
			
		||||
 | 
			
		||||
bool setTargetedHotend(int code){
 | 
			
		||||
  target_extruder = active_extruder;
 | 
			
		||||
  if (code_seen('T')) {
 | 
			
		||||
 
 | 
			
		||||
@@ -1110,9 +1110,8 @@ long st_get_position(uint8_t axis) {
 | 
			
		||||
 | 
			
		||||
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
			
		||||
 | 
			
		||||
  float st_get_position_mm(uint8_t axis) {
 | 
			
		||||
    float steper_position_in_steps = st_get_position(axis);
 | 
			
		||||
    return steper_position_in_steps / axis_steps_per_unit[axis];
 | 
			
		||||
  float st_get_position_mm(AxisEnum axis) {
 | 
			
		||||
    return st_get_position(axis) / axis_steps_per_unit[axis];
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
#endif  // ENABLE_AUTO_BED_LEVELING
 | 
			
		||||
 
 | 
			
		||||
@@ -67,9 +67,9 @@ void st_set_e_position(const long &e);
 | 
			
		||||
long st_get_position(uint8_t axis);
 | 
			
		||||
 | 
			
		||||
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
			
		||||
// Get current position in mm
 | 
			
		||||
float st_get_position_mm(uint8_t axis);
 | 
			
		||||
#endif  //ENABLE_AUTO_BED_LEVELING
 | 
			
		||||
  // Get current position in mm
 | 
			
		||||
  float st_get_position_mm(AxisEnum axis);
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
 | 
			
		||||
// to notify the subsystem that it is time to go to work.
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user