|
|
|
@ -43,11 +43,17 @@ struct IF<true, L, R> { typedef L type; };
|
|
|
|
|
#define LINEAR_AXIS_CODE(V...) CODE_N(LINEAR_AXES, V)
|
|
|
|
|
#define LINEAR_AXIS_LIST(V...) LIST_N(LINEAR_AXES, V)
|
|
|
|
|
#define LINEAR_AXIS_ARRAY(V...) { LINEAR_AXIS_LIST(V) }
|
|
|
|
|
#define LINEAR_AXIS_ARGS(T...) LINEAR_AXIS_LIST(T x, T y, T z, T i, T j, T k)
|
|
|
|
|
#define LINEAR_AXIS_ELEM(O) LINEAR_AXIS_LIST(O.x, O.y, O.z, O.i, O.j, O.k)
|
|
|
|
|
#define LINEAR_AXIS_DEFS(T,V) LINEAR_AXIS_LIST(T x=V, T y=V, T z=V, T i=V, T j=V, T k=V)
|
|
|
|
|
|
|
|
|
|
#define LOGICAL_AXIS_GANG(E,V...) LINEAR_AXIS_GANG(V) GANG_ITEM_E(E)
|
|
|
|
|
#define LOGICAL_AXIS_CODE(E,V...) LINEAR_AXIS_CODE(V) CODE_ITEM_E(E)
|
|
|
|
|
#define LOGICAL_AXIS_LIST(E,V...) LINEAR_AXIS_LIST(V) LIST_ITEM_E(E)
|
|
|
|
|
#define LOGICAL_AXIS_ARRAY(E,V...) { LOGICAL_AXIS_LIST(E,V) }
|
|
|
|
|
#define LOGICAL_AXIS_ARGS(T...) LOGICAL_AXIS_LIST(T e, T x, T y, T z, T i, T j, T k)
|
|
|
|
|
#define LOGICAL_AXIS_ELEM(O) LOGICAL_AXIS_LIST(O.e, O.x, O.y, O.z, O.i, O.j, O.k)
|
|
|
|
|
#define LOGICAL_AXIS_DECL(T,V) LOGICAL_AXIS_LIST(T e=V, T x=V, T y=V, T z=V, T i=V, T j=V, T k=V)
|
|
|
|
|
|
|
|
|
|
#if HAS_EXTRUDERS
|
|
|
|
|
#define LIST_ITEM_E(N) , N
|
|
|
|
@ -69,37 +75,37 @@ struct IF<true, L, R> { typedef L type; };
|
|
|
|
|
enum AxisEnum : uint8_t {
|
|
|
|
|
|
|
|
|
|
// Linear axes may be controlled directly or indirectly
|
|
|
|
|
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS),
|
|
|
|
|
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS)
|
|
|
|
|
|
|
|
|
|
// Extruder axes may be considered distinctly
|
|
|
|
|
#define _EN_ITEM(N) E##N##_AXIS,
|
|
|
|
|
#define _EN_ITEM(N) , E##N##_AXIS
|
|
|
|
|
REPEAT(EXTRUDERS, _EN_ITEM)
|
|
|
|
|
#undef _EN_ITEM
|
|
|
|
|
|
|
|
|
|
// Core also keeps toolhead directions
|
|
|
|
|
#if IS_CORE
|
|
|
|
|
X_HEAD, Y_HEAD, Z_HEAD,
|
|
|
|
|
, X_HEAD, Y_HEAD, Z_HEAD
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Distinct axes, including all E and Core
|
|
|
|
|
NUM_AXIS_ENUMS,
|
|
|
|
|
, NUM_AXIS_ENUMS
|
|
|
|
|
|
|
|
|
|
// Most of the time we refer only to the single E_AXIS
|
|
|
|
|
#if HAS_EXTRUDERS
|
|
|
|
|
E_AXIS = E0_AXIS,
|
|
|
|
|
, E_AXIS = E0_AXIS
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// A, B, and C are for DELTA, SCARA, etc.
|
|
|
|
|
A_AXIS = X_AXIS,
|
|
|
|
|
, A_AXIS = X_AXIS
|
|
|
|
|
#if LINEAR_AXES >= 2
|
|
|
|
|
B_AXIS = Y_AXIS,
|
|
|
|
|
, B_AXIS = Y_AXIS
|
|
|
|
|
#endif
|
|
|
|
|
#if LINEAR_AXES >= 3
|
|
|
|
|
C_AXIS = Z_AXIS,
|
|
|
|
|
, C_AXIS = Z_AXIS
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// To refer to all or none
|
|
|
|
|
ALL_AXES_ENUM = 0xFE, NO_AXIS_ENUM = 0xFF
|
|
|
|
|
, ALL_AXES_ENUM = 0xFE, NO_AXIS_ENUM = 0xFF
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
typedef IF<(NUM_AXIS_ENUMS > 8), uint16_t, uint8_t>::type axis_bits_t;
|
|
|
|
@ -241,9 +247,16 @@ struct XYval {
|
|
|
|
|
struct { T a, b; };
|
|
|
|
|
T pos[2];
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Set all to 0
|
|
|
|
|
FI void reset() { x = y = 0; }
|
|
|
|
|
|
|
|
|
|
// Setters taking struct types and arrays
|
|
|
|
|
FI void set(const T px) { x = px; }
|
|
|
|
|
FI void set(const T px, const T py) { x = px; y = py; }
|
|
|
|
|
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
|
|
|
|
|
#if HAS_Y_AXIS
|
|
|
|
|
FI void set(const T px, const T py) { x = px; y = py; }
|
|
|
|
|
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
|
|
|
|
|
#endif
|
|
|
|
|
#if LINEAR_AXES > XY
|
|
|
|
|
FI void set(const T (&arr)[LINEAR_AXES]) { x = arr[0]; y = arr[1]; }
|
|
|
|
|
#endif
|
|
|
|
@ -253,10 +266,15 @@ struct XYval {
|
|
|
|
|
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; }
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
FI void reset() { x = y = 0; }
|
|
|
|
|
|
|
|
|
|
// Length reduced to one dimension
|
|
|
|
|
FI T magnitude() const { return (T)sqrtf(x*x + y*y); }
|
|
|
|
|
// Pointer to the data as a simple array
|
|
|
|
|
FI operator T* () { return pos; }
|
|
|
|
|
// If any element is true then it's true
|
|
|
|
|
FI operator bool() { return x || y; }
|
|
|
|
|
|
|
|
|
|
// Explicit copy and copies with conversion
|
|
|
|
|
FI XYval<T> copy() const { return *this; }
|
|
|
|
|
FI XYval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)) }; }
|
|
|
|
|
FI XYval<int16_t> asInt() { return { int16_t(x), int16_t(y) }; }
|
|
|
|
@ -268,17 +286,27 @@ struct XYval {
|
|
|
|
|
FI XYval<float> asFloat() { return { static_cast<float>(x), static_cast<float>(y) }; }
|
|
|
|
|
FI XYval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y) }; }
|
|
|
|
|
FI XYval<float> reciprocal() const { return { _RECIP(x), _RECIP(y) }; }
|
|
|
|
|
|
|
|
|
|
// Marlin workspace shifting is done with G92 and M206
|
|
|
|
|
FI XYval<float> asLogical() const { XYval<float> o = asFloat(); toLogical(o); return o; }
|
|
|
|
|
FI XYval<float> asNative() const { XYval<float> o = asFloat(); toNative(o); return o; }
|
|
|
|
|
|
|
|
|
|
// Cast to a type with more fields by making a new object
|
|
|
|
|
FI operator XYZval<T>() { return { x, y }; }
|
|
|
|
|
FI operator XYZval<T>() const { return { x, y }; }
|
|
|
|
|
FI operator XYZEval<T>() { return { x, y }; }
|
|
|
|
|
FI operator XYZEval<T>() const { return { x, y }; }
|
|
|
|
|
|
|
|
|
|
// Accessor via an AxisEnum (or any integer) [index]
|
|
|
|
|
FI T& operator[](const int n) { return pos[n]; }
|
|
|
|
|
FI const T& operator[](const int n) const { return pos[n]; }
|
|
|
|
|
|
|
|
|
|
// Assignment operator overrides do the expected thing
|
|
|
|
|
FI XYval<T>& operator= (const T v) { set(v, v ); return *this; }
|
|
|
|
|
FI XYval<T>& operator= (const XYZval<T> &rs) { set(rs.x, rs.y); return *this; }
|
|
|
|
|
FI XYval<T>& operator= (const XYZEval<T> &rs) { set(rs.x, rs.y); return *this; }
|
|
|
|
|
|
|
|
|
|
// Override other operators to get intuitive behaviors
|
|
|
|
|
FI XYval<T> operator+ (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
|
|
|
|
FI XYval<T> operator+ (const XYval<T> &rs) { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
|
|
|
|
FI XYval<T> operator- (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
|
|
|
@ -315,6 +343,10 @@ struct XYval {
|
|
|
|
|
FI XYval<T> operator>>(const int &v) { XYval<T> ls = *this; _RS(ls.x); _RS(ls.y); return ls; }
|
|
|
|
|
FI XYval<T> operator<<(const int &v) const { XYval<T> ls = *this; _LS(ls.x); _LS(ls.y); return ls; }
|
|
|
|
|
FI XYval<T> operator<<(const int &v) { XYval<T> ls = *this; _LS(ls.x); _LS(ls.y); return ls; }
|
|
|
|
|
FI const XYval<T> operator-() const { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
|
|
|
|
|
FI XYval<T> operator-() { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
|
|
|
|
|
|
|
|
|
|
// Modifier operators
|
|
|
|
|
FI XYval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
|
|
|
|
|
FI XYval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
|
|
|
|
|
FI XYval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
|
|
|
|
@ -328,6 +360,8 @@ struct XYval {
|
|
|
|
|
FI XYval<T>& operator*=(const int &v) { x *= v; y *= v; return *this; }
|
|
|
|
|
FI XYval<T>& operator>>=(const int &v) { _RS(x); _RS(y); return *this; }
|
|
|
|
|
FI XYval<T>& operator<<=(const int &v) { _LS(x); _LS(y); return *this; }
|
|
|
|
|
|
|
|
|
|
// Exact comparisons. For floats a "NEAR" operation may be better.
|
|
|
|
|
FI bool operator==(const XYval<T> &rs) { return x == rs.x && y == rs.y; }
|
|
|
|
|
FI bool operator==(const XYZval<T> &rs) { return x == rs.x && y == rs.y; }
|
|
|
|
|
FI bool operator==(const XYZEval<T> &rs) { return x == rs.x && y == rs.y; }
|
|
|
|
@ -340,8 +374,6 @@ struct XYval {
|
|
|
|
|
FI bool operator!=(const XYval<T> &rs) const { return !operator==(rs); }
|
|
|
|
|
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
|
|
|
|
|
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
|
|
|
|
|
FI XYval<T> operator-() { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
|
|
|
|
|
FI const XYval<T> operator-() const { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
@ -350,111 +382,144 @@ struct XYval {
|
|
|
|
|
template<typename T>
|
|
|
|
|
struct XYZval {
|
|
|
|
|
union {
|
|
|
|
|
struct { T LINEAR_AXIS_LIST(x, y, z); };
|
|
|
|
|
struct { T LINEAR_AXIS_LIST(a, b, c); };
|
|
|
|
|
struct { T LINEAR_AXIS_ARGS(); };
|
|
|
|
|
struct { T LINEAR_AXIS_LIST(a, b, c, u, v, w); };
|
|
|
|
|
T pos[LINEAR_AXES];
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
// Set all to 0
|
|
|
|
|
FI void reset() { LINEAR_AXIS_GANG(x =, y =, z =, i =, j =, k =) 0; }
|
|
|
|
|
|
|
|
|
|
// Setters taking struct types and arrays
|
|
|
|
|
FI void set(const T px) { x = px; }
|
|
|
|
|
FI void set(const T px, const T py) { x = px; y = py; }
|
|
|
|
|
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
|
|
|
|
|
FI void set(const XYval<T> pxy, const T pz) { x = pxy.x; y = pxy.y; z = pz; }
|
|
|
|
|
FI void set(const XYval<T> pxy, const T pz) { LINEAR_AXIS_CODE(x = pxy.x, y = pxy.y, z = pz, NOOP, NOOP, NOOP); }
|
|
|
|
|
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
|
|
|
|
|
FI void set(const T (&arr)[LINEAR_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2]); }
|
|
|
|
|
#if HAS_Z_AXIS
|
|
|
|
|
FI void set(LINEAR_AXIS_LIST(const T px, const T py, const T pz))
|
|
|
|
|
{ LINEAR_AXIS_CODE(x = px, y = py, z = pz); }
|
|
|
|
|
FI void set(const T (&arr)[LINEAR_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
|
|
|
|
|
FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); }
|
|
|
|
|
#endif
|
|
|
|
|
#if LOGICAL_AXES > LINEAR_AXES
|
|
|
|
|
FI void set(const T (&arr)[LOGICAL_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2]); }
|
|
|
|
|
FI void set(LOGICAL_AXIS_LIST(const T, const T px, const T py, const T pz))
|
|
|
|
|
{ LINEAR_AXIS_CODE(x = px, y = py, z = pz); }
|
|
|
|
|
FI void set(const T (&arr)[LOGICAL_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
|
|
|
|
|
FI void set(LOGICAL_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); }
|
|
|
|
|
#if DISTINCT_AXES > LOGICAL_AXES
|
|
|
|
|
FI void set(const T (&arr)[DISTINCT_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2]); }
|
|
|
|
|
FI void set(const T (&arr)[DISTINCT_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
|
|
|
|
|
#endif
|
|
|
|
|
#endif
|
|
|
|
|
FI void reset() { LINEAR_AXIS_GANG(x =, y =, z =) 0; }
|
|
|
|
|
FI T magnitude() const { return (T)sqrtf(LINEAR_AXIS_GANG(x*x, + y*y, + z*z)); }
|
|
|
|
|
#if LINEAR_AXES >= 4
|
|
|
|
|
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
|
|
|
|
|
#endif
|
|
|
|
|
#if LINEAR_AXES >= 5
|
|
|
|
|
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
|
|
|
|
|
#endif
|
|
|
|
|
#if LINEAR_AXES >= 6
|
|
|
|
|
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; }
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Length reduced to one dimension
|
|
|
|
|
FI T magnitude() const { return (T)sqrtf(LINEAR_AXIS_GANG(x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); }
|
|
|
|
|
// Pointer to the data as a simple array
|
|
|
|
|
FI operator T* () { return pos; }
|
|
|
|
|
FI operator bool() { return LINEAR_AXIS_GANG(z, || x, || y); }
|
|
|
|
|
// If any element is true then it's true
|
|
|
|
|
FI operator bool() { return LINEAR_AXIS_GANG(x, || y, || z, || i, || j, || k); }
|
|
|
|
|
|
|
|
|
|
// Explicit copy and copies with conversion
|
|
|
|
|
FI XYZval<T> copy() const { XYZval<T> o = *this; return o; }
|
|
|
|
|
FI XYZval<T> ABS() const { return LINEAR_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z))); }
|
|
|
|
|
FI XYZval<int16_t> asInt() { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z)); }
|
|
|
|
|
FI XYZval<int16_t> asInt() const { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z)); }
|
|
|
|
|
FI XYZval<int32_t> asLong() { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z)); }
|
|
|
|
|
FI XYZval<int32_t> asLong() const { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z)); }
|
|
|
|
|
FI XYZval<int32_t> ROUNDL() { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z))); }
|
|
|
|
|
FI XYZval<int32_t> ROUNDL() const { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z))); }
|
|
|
|
|
FI XYZval<float> asFloat() { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z)); }
|
|
|
|
|
FI XYZval<float> asFloat() const { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z)); }
|
|
|
|
|
FI XYZval<float> reciprocal() const { return LINEAR_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z)); }
|
|
|
|
|
FI XYZval<T> ABS() const { return LINEAR_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); }
|
|
|
|
|
FI XYZval<int16_t> asInt() { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
|
|
|
|
|
FI XYZval<int16_t> asInt() const { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
|
|
|
|
|
FI XYZval<int32_t> asLong() { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
|
|
|
|
|
FI XYZval<int32_t> asLong() const { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
|
|
|
|
|
FI XYZval<int32_t> ROUNDL() { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
|
|
|
|
|
FI XYZval<int32_t> ROUNDL() const { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
|
|
|
|
|
FI XYZval<float> asFloat() { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
|
|
|
|
|
FI XYZval<float> asFloat() const { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
|
|
|
|
|
FI XYZval<float> reciprocal() const { return LINEAR_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); }
|
|
|
|
|
|
|
|
|
|
// Marlin workspace shifting is done with G92 and M206
|
|
|
|
|
FI XYZval<float> asLogical() const { XYZval<float> o = asFloat(); toLogical(o); return o; }
|
|
|
|
|
FI XYZval<float> asNative() const { XYZval<float> o = asFloat(); toNative(o); return o; }
|
|
|
|
|
|
|
|
|
|
// In-place cast to types having fewer fields
|
|
|
|
|
FI operator XYval<T>&() { return *(XYval<T>*)this; }
|
|
|
|
|
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
|
|
|
|
|
FI operator XYZEval<T>() const { return LINEAR_AXIS_ARRAY(x, y, z); }
|
|
|
|
|
|
|
|
|
|
// Cast to a type with more fields by making a new object
|
|
|
|
|
FI operator XYZEval<T>() const { return LINEAR_AXIS_ARRAY(x, y, z, i, j, k); }
|
|
|
|
|
|
|
|
|
|
// Accessor via an AxisEnum (or any integer) [index]
|
|
|
|
|
FI T& operator[](const int n) { return pos[n]; }
|
|
|
|
|
FI const T& operator[](const int n) const { return pos[n]; }
|
|
|
|
|
|
|
|
|
|
// Assignment operator overrides do the expected thing
|
|
|
|
|
FI XYZval<T>& operator= (const T v) { set(ARRAY_N_1(LINEAR_AXES, v)); return *this; }
|
|
|
|
|
FI XYZval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(LINEAR_AXIS_LIST(rs.x, rs.y, rs.z)); return *this; }
|
|
|
|
|
FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z) ); return ls; }
|
|
|
|
|
FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z) ); return ls; }
|
|
|
|
|
FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z) ); return ls; }
|
|
|
|
|
FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z) ); return ls; }
|
|
|
|
|
FI XYZval<T>& operator+=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, NOOP ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator-=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, NOOP ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator*=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, NOOP ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator/=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, NOOP ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator+=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator-=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator*=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator/=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator*=(const float &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator*=(const int &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator>>=(const int &v) { LINEAR_AXIS_CODE(_RS(x), _RS(y), _RS(z) ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator<<=(const int &v) { LINEAR_AXIS_CODE(_LS(x), _LS(y), _LS(z) ); return *this; }
|
|
|
|
|
FI bool operator==(const XYZEval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z); }
|
|
|
|
|
FI bool operator==(const XYZEval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z); }
|
|
|
|
|
FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; }
|
|
|
|
|
|
|
|
|
|
// Override other operators to get intuitive behaviors
|
|
|
|
|
FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
|
|
|
|
|
FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
|
|
|
|
FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
|
|
|
|
|
FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
|
|
|
|
|
FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
|
|
|
|
|
FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
|
|
|
|
|
FI const XYZval<T> operator-() const { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; }
|
|
|
|
|
FI XYZval<T> operator-() { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; }
|
|
|
|
|
|
|
|
|
|
// Modifier operators
|
|
|
|
|
FI XYZval<T>& operator+=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator-=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator*=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator/=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
|
|
|
|
|
FI XYZval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
|
|
|
|
|
FI XYZval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
|
|
|
|
|
FI XYZval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
|
|
|
|
|
FI XYZval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
|
|
|
|
|
FI XYZval<T>& operator+=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
|
|
|
|
|
FI XYZval<T>& operator-=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
|
|
|
|
|
FI XYZval<T>& operator*=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
|
|
|
|
|
FI XYZval<T>& operator/=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
|
|
|
|
|
FI XYZval<T>& operator*=(const float &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
|
|
|
|
|
FI XYZval<T>& operator*=(const int &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
|
|
|
|
|
FI XYZval<T>& operator>>=(const int &v) { LINEAR_AXIS_CODE(_RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; }
|
|
|
|
|
FI XYZval<T>& operator<<=(const int &v) { LINEAR_AXIS_CODE(_LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; }
|
|
|
|
|
|
|
|
|
|
// Exact comparisons. For floats a "NEAR" operation may be better.
|
|
|
|
|
FI bool operator==(const XYZEval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
|
|
|
|
|
FI bool operator==(const XYZEval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
|
|
|
|
|
FI bool operator!=(const XYZEval<T> &rs) { return !operator==(rs); }
|
|
|
|
|
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
|
|
|
|
|
FI XYZval<T> operator-() { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z); return o; }
|
|
|
|
|
FI const XYZval<T> operator-() const { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z); return o; }
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
//
|
|
|
|
@ -463,109 +528,137 @@ struct XYZval {
|
|
|
|
|
template<typename T>
|
|
|
|
|
struct XYZEval {
|
|
|
|
|
union {
|
|
|
|
|
struct{ T LOGICAL_AXIS_LIST(e, x, y, z); };
|
|
|
|
|
struct{ T LINEAR_AXIS_LIST(a, b, c); };
|
|
|
|
|
struct { T LOGICAL_AXIS_ARGS(); };
|
|
|
|
|
struct { T LOGICAL_AXIS_LIST(_e, a, b, c, u, v, w); };
|
|
|
|
|
T pos[LOGICAL_AXES];
|
|
|
|
|
};
|
|
|
|
|
FI void reset() { LOGICAL_AXIS_GANG(e =, x =, y =, z =) 0; }
|
|
|
|
|
FI T magnitude() const { return (T)sqrtf(LOGICAL_AXIS_GANG(+ e*e, + x*x, + y*y, + z*z)); }
|
|
|
|
|
FI operator T* () { return pos; }
|
|
|
|
|
FI operator bool() { return false LOGICAL_AXIS_GANG(|| e, || x, || y, || z); }
|
|
|
|
|
FI void set(const T px) { x = px; }
|
|
|
|
|
FI void set(const T px, const T py) { x = px; y = py; }
|
|
|
|
|
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
|
|
|
|
|
FI void set(const XYZval<T> pxyz) { set(LINEAR_AXIS_LIST(pxyz.x, pxyz.y, pxyz.z)); }
|
|
|
|
|
// Reset all to 0
|
|
|
|
|
FI void reset() { LOGICAL_AXIS_GANG(e =, x =, y =, z =, i =, j =, k =) 0; }
|
|
|
|
|
|
|
|
|
|
// Setters taking struct types and arrays
|
|
|
|
|
FI void set(const T px) { x = px; }
|
|
|
|
|
FI void set(const T px, const T py) { x = px; y = py; }
|
|
|
|
|
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
|
|
|
|
|
FI void set(const XYZval<T> pxyz) { set(LINEAR_AXIS_ELEM(pxyz)); }
|
|
|
|
|
#if HAS_Z_AXIS
|
|
|
|
|
FI void set(LINEAR_AXIS_LIST(const T px, const T py, const T pz)) {
|
|
|
|
|
LINEAR_AXIS_CODE(x = px, y = py, z = pz);
|
|
|
|
|
}
|
|
|
|
|
FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k); }
|
|
|
|
|
#endif
|
|
|
|
|
#if LOGICAL_AXES > LINEAR_AXES
|
|
|
|
|
FI void set(LOGICAL_AXIS_LIST(const T pe, const T px, const T py, const T pz)) {
|
|
|
|
|
LOGICAL_AXIS_CODE(e = pe, x = px, y = py, z = pz);
|
|
|
|
|
}
|
|
|
|
|
FI void set(const XYval<T> pxy, const T pe) { set(pxy); e = pe; }
|
|
|
|
|
FI void set(const XYZval<T> pxyz, const T pe) { set(pxyz); e = pe; }
|
|
|
|
|
FI void set(const XYval<T> pxy, const T pe) { set(pxy); e = pe; }
|
|
|
|
|
FI void set(const XYZval<T> pxyz, const T pe) { set(pxyz); e = pe; }
|
|
|
|
|
FI void set(LOGICAL_AXIS_ARGS(const T)) { LOGICAL_AXIS_CODE(_e = e, a = x, b = y, c = z, u = i, v = j, w = k); }
|
|
|
|
|
#endif
|
|
|
|
|
FI XYZEval<T> copy() const { XYZEval<T> o = *this; return o; }
|
|
|
|
|
FI XYZEval<T> ABS() const { return LOGICAL_AXIS_ARRAY(T(_ABS(e)), T(_ABS(x)), T(_ABS(y)), T(_ABS(z))); }
|
|
|
|
|
FI XYZEval<int16_t> asInt() { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z)); }
|
|
|
|
|
FI XYZEval<int16_t> asInt() const { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z)); }
|
|
|
|
|
FI XYZEval<int32_t> asLong() { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z)); }
|
|
|
|
|
FI XYZEval<int32_t> asLong() const { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z)); }
|
|
|
|
|
FI XYZEval<int32_t> ROUNDL() { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z))); }
|
|
|
|
|
FI XYZEval<int32_t> ROUNDL() const { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z))); }
|
|
|
|
|
FI XYZEval<float> asFloat() { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z)); }
|
|
|
|
|
FI XYZEval<float> asFloat() const { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z)); }
|
|
|
|
|
FI XYZEval<float> reciprocal() const { return LOGICAL_AXIS_ARRAY(_RECIP(e), _RECIP(x), _RECIP(y), _RECIP(z)); }
|
|
|
|
|
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; }
|
|
|
|
|
FI XYZEval<float> asNative() const { XYZEval<float> o = asFloat(); toNative(o); return o; }
|
|
|
|
|
FI operator XYval<T>&() { return *(XYval<T>*)this; }
|
|
|
|
|
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
|
|
|
|
|
FI operator XYZval<T>&() { return *(XYZval<T>*)this; }
|
|
|
|
|
FI operator const XYZval<T>&() const { return *(const XYZval<T>*)this; }
|
|
|
|
|
FI T& operator[](const int n) { return pos[n]; }
|
|
|
|
|
FI const T& operator[](const int n) const { return pos[n]; }
|
|
|
|
|
FI XYZEval<T>& operator= (const T v) { set(LIST_N_1(LINEAR_AXES, v)); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(LINEAR_AXIS_LIST(rs.x, rs.y, rs.z)); return *this; }
|
|
|
|
|
FI XYZEval<T> operator+ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator+ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator- (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator- (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z); return ls; }
|
|
|
|
|
FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z); return ls; }
|
|
|
|
|
FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z); return ls; }
|
|
|
|
|
FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z); return ls; }
|
|
|
|
|
FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z) ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z) ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z) ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z) ); return ls; }
|
|
|
|
|
FI XYZEval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
|
|
|
|
|
FI XYZEval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
|
|
|
|
|
FI XYZEval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
|
|
|
|
|
FI XYZEval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; }
|
|
|
|
|
FI XYZEval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e += rs.e, x += rs.x, y += rs.y, z += rs.z); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e -= rs.e, x -= rs.x, y -= rs.y, z -= rs.z); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e *= rs.e, x *= rs.x, y *= rs.y, z *= rs.z); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e /= rs.e, x /= rs.x, y /= rs.y, z /= rs.z); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator*=(const T &v) { LOGICAL_AXIS_CODE(e *= v, x *= v, y *= v, z *= v); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator>>=(const int &v) { LOGICAL_AXIS_CODE(_RS(e), _RS(x), _RS(y), _RS(z)); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator<<=(const int &v) { LOGICAL_AXIS_CODE(_LS(e), _LS(x), _LS(y), _LS(z)); return *this; }
|
|
|
|
|
FI bool operator==(const XYZval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z); }
|
|
|
|
|
FI bool operator==(const XYZval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z); }
|
|
|
|
|
FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); }
|
|
|
|
|
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
|
|
|
|
|
FI XYZEval<T> operator-() { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z); }
|
|
|
|
|
FI const XYZEval<T> operator-() const { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z); }
|
|
|
|
|
#if LINEAR_AXES >= 4
|
|
|
|
|
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
|
|
|
|
|
#endif
|
|
|
|
|
#if LINEAR_AXES >= 5
|
|
|
|
|
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
|
|
|
|
|
#endif
|
|
|
|
|
#if LINEAR_AXES >= 6
|
|
|
|
|
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; }
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Length reduced to one dimension
|
|
|
|
|
FI T magnitude() const { return (T)sqrtf(LOGICAL_AXIS_GANG(+ e*e, + x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); }
|
|
|
|
|
// Pointer to the data as a simple array
|
|
|
|
|
FI operator T* () { return pos; }
|
|
|
|
|
// If any element is true then it's true
|
|
|
|
|
FI operator bool() { return 0 LOGICAL_AXIS_GANG(|| e, || x, || y, || z, || i, || j, || k); }
|
|
|
|
|
|
|
|
|
|
// Explicit copy and copies with conversion
|
|
|
|
|
FI XYZEval<T> copy() const { XYZEval<T> o = *this; return o; }
|
|
|
|
|
FI XYZEval<T> ABS() const { return LOGICAL_AXIS_ARRAY(T(_ABS(e)), T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); }
|
|
|
|
|
FI XYZEval<int16_t> asInt() { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
|
|
|
|
|
FI XYZEval<int16_t> asInt() const { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
|
|
|
|
|
FI XYZEval<int32_t> asLong() { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
|
|
|
|
|
FI XYZEval<int32_t> asLong() const { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
|
|
|
|
|
FI XYZEval<int32_t> ROUNDL() { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
|
|
|
|
|
FI XYZEval<int32_t> ROUNDL() const { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
|
|
|
|
|
FI XYZEval<float> asFloat() { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
|
|
|
|
|
FI XYZEval<float> asFloat() const { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
|
|
|
|
|
FI XYZEval<float> reciprocal() const { return LOGICAL_AXIS_ARRAY(_RECIP(e), _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); }
|
|
|
|
|
|
|
|
|
|
// Marlin workspace shifting is done with G92 and M206
|
|
|
|
|
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; }
|
|
|
|
|
FI XYZEval<float> asNative() const { XYZEval<float> o = asFloat(); toNative(o); return o; }
|
|
|
|
|
|
|
|
|
|
// In-place cast to types having fewer fields
|
|
|
|
|
FI operator XYval<T>&() { return *(XYval<T>*)this; }
|
|
|
|
|
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
|
|
|
|
|
FI operator XYZval<T>&() { return *(XYZval<T>*)this; }
|
|
|
|
|
FI operator const XYZval<T>&() const { return *(const XYZval<T>*)this; }
|
|
|
|
|
|
|
|
|
|
// Accessor via an AxisEnum (or any integer) [index]
|
|
|
|
|
FI T& operator[](const int n) { return pos[n]; }
|
|
|
|
|
FI const T& operator[](const int n) const { return pos[n]; }
|
|
|
|
|
|
|
|
|
|
// Assignment operator overrides do the expected thing
|
|
|
|
|
FI XYZEval<T>& operator= (const T v) { set(LIST_N_1(LINEAR_AXES, v)); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; }
|
|
|
|
|
|
|
|
|
|
// Override other operators to get intuitive behaviors
|
|
|
|
|
FI XYZEval<T> operator+ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator+ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator- (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator- (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
|
|
|
|
|
FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
|
|
|
|
|
FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
|
|
|
|
|
FI const XYZEval<T> operator-() const { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k); }
|
|
|
|
|
FI XYZEval<T> operator-() { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k); }
|
|
|
|
|
|
|
|
|
|
// Modifier operators
|
|
|
|
|
FI XYZEval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
|
|
|
|
|
FI XYZEval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
|
|
|
|
|
FI XYZEval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
|
|
|
|
|
FI XYZEval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; }
|
|
|
|
|
FI XYZEval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e += rs.e, x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e -= rs.e, x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e *= rs.e, x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e /= rs.e, x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator*=(const T &v) { LOGICAL_AXIS_CODE(e *= v, x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator>>=(const int &v) { LOGICAL_AXIS_CODE(_RS(e), _RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; }
|
|
|
|
|
FI XYZEval<T>& operator<<=(const int &v) { LOGICAL_AXIS_CODE(_LS(e), _LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; }
|
|
|
|
|
|
|
|
|
|
// Exact comparisons. For floats a "NEAR" operation may be better.
|
|
|
|
|
FI bool operator==(const XYZval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
|
|
|
|
|
FI bool operator==(const XYZval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
|
|
|
|
|
FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); }
|
|
|
|
|
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
|
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
#undef _RECIP
|
|
|
|
|