🏗️ Support for up to 6 linear axes (#19112)

Co-authored-by: Scott Lahteine <github@thinkyhead.com>
This commit is contained in:
DerAndere
2021-06-05 09:18:47 +02:00
committed by Scott Lahteine
parent d3c56a76e7
commit c1fca91103
98 changed files with 5040 additions and 2256 deletions

View File

@ -60,6 +60,9 @@
#define AXIS_DRIVER_TYPE_X(T) _AXIS_DRIVER_TYPE(X,T)
#define AXIS_DRIVER_TYPE_Y(T) _AXIS_DRIVER_TYPE(Y,T)
#define AXIS_DRIVER_TYPE_Z(T) _AXIS_DRIVER_TYPE(Z,T)
#define AXIS_DRIVER_TYPE_I(T) _AXIS_DRIVER_TYPE(I,T)
#define AXIS_DRIVER_TYPE_J(T) _AXIS_DRIVER_TYPE(J,T)
#define AXIS_DRIVER_TYPE_K(T) _AXIS_DRIVER_TYPE(K,T)
#define AXIS_DRIVER_TYPE_X2(T) (EITHER(X_DUAL_STEPPER_DRIVERS, DUAL_X_CARRIAGE) && _AXIS_DRIVER_TYPE(X2,T))
#define AXIS_DRIVER_TYPE_Y2(T) (ENABLED(Y_DUAL_STEPPER_DRIVERS) && _AXIS_DRIVER_TYPE(Y2,T))
@ -83,6 +86,7 @@
#define HAS_E_DRIVER(T) (0 RREPEAT2(E_STEPPERS, _OR_ADTE, T))
#define HAS_DRIVER(T) ( AXIS_DRIVER_TYPE_X(T) || AXIS_DRIVER_TYPE_Y(T) || AXIS_DRIVER_TYPE_Z(T) \
|| AXIS_DRIVER_TYPE_I(T) || AXIS_DRIVER_TYPE_J(T) || AXIS_DRIVER_TYPE_K(T) \
|| AXIS_DRIVER_TYPE_X2(T) || AXIS_DRIVER_TYPE_Y2(T) || AXIS_DRIVER_TYPE_Z2(T) \
|| AXIS_DRIVER_TYPE_Z3(T) || AXIS_DRIVER_TYPE_Z4(T) || HAS_E_DRIVER(T) )
@ -153,9 +157,11 @@
#define _OR_EAH(N,T) || AXIS_HAS_##T(E##N)
#define E_AXIS_HAS(T) (0 _OR_EAH(0,T) _OR_EAH(1,T) _OR_EAH(2,T) _OR_EAH(3,T) _OR_EAH(4,T) _OR_EAH(5,T) _OR_EAH(6,T) _OR_EAH(7,T))
#define ANY_AXIS_HAS(T) ( AXIS_HAS_##T(X) || AXIS_HAS_##T(Y) || AXIS_HAS_##T(Z) \
|| AXIS_HAS_##T(X2) || AXIS_HAS_##T(Y2) || AXIS_HAS_##T(Z2) \
|| AXIS_HAS_##T(Z3) || AXIS_HAS_##T(Z4) || E_AXIS_HAS(T) )
#define ANY_AXIS_HAS(T) ( AXIS_HAS_##T(X) || AXIS_HAS_##T(X2) \
|| AXIS_HAS_##T(Y) || AXIS_HAS_##T(Y2) \
|| AXIS_HAS_##T(Z) || AXIS_HAS_##T(Z2) || AXIS_HAS_##T(Z3) || AXIS_HAS_##T(Z4) \
|| AXIS_HAS_##T(I) || AXIS_HAS_##T(J) || AXIS_HAS_##T(K) \
|| E_AXIS_HAS(T) )
#if ANY_AXIS_HAS(STEALTHCHOP)
#define HAS_STEALTHCHOP 1

View File

@ -266,18 +266,25 @@
#define STR_X_MAX "x_max"
#define STR_X2_MIN "x2_min"
#define STR_X2_MAX "x2_max"
#define STR_Y_MIN "y_min"
#define STR_Y_MAX "y_max"
#define STR_Y2_MIN "y2_min"
#define STR_Y2_MAX "y2_max"
#define STR_Z_MIN "z_min"
#define STR_Z_MAX "z_max"
#define STR_Z2_MIN "z2_min"
#define STR_Z2_MAX "z2_max"
#define STR_Z3_MIN "z3_min"
#define STR_Z3_MAX "z3_max"
#define STR_Z4_MIN "z4_min"
#define STR_Z4_MAX "z4_max"
#if HAS_Y_AXIS
#define STR_Y_MIN "y_min"
#define STR_Y_MAX "y_max"
#define STR_Y2_MIN "y2_min"
#define STR_Y2_MAX "y2_max"
#endif
#if HAS_Z_AXIS
#define STR_Z_MIN "z_min"
#define STR_Z_MAX "z_max"
#define STR_Z2_MIN "z2_min"
#define STR_Z2_MAX "z2_max"
#define STR_Z3_MIN "z3_min"
#define STR_Z3_MAX "z3_max"
#define STR_Z4_MIN "z4_min"
#define STR_Z4_MAX "z4_max"
#endif
#define STR_Z_PROBE "z_probe"
#define STR_PROBE_EN "probe_en"
#define STR_FILAMENT_RUNOUT_SENSOR "filament"
@ -286,6 +293,9 @@
#define STR_X "X"
#define STR_Y "Y"
#define STR_Z "Z"
#define STR_I AXIS4_STR
#define STR_J AXIS5_STR
#define STR_K AXIS6_STR
#define STR_E "E"
#if IS_KINEMATIC
#define STR_A "A"
@ -305,8 +315,114 @@
#define LCD_STR_A STR_A
#define LCD_STR_B STR_B
#define LCD_STR_C STR_C
#define LCD_STR_I STR_I
#define LCD_STR_J STR_J
#define LCD_STR_K STR_K
#define LCD_STR_E STR_E
// Extra Axis and Endstop Names
#if LINEAR_AXES >= 4
#if AXIS4_NAME == 'A'
#define AXIS4_STR "A"
#define STR_I_MIN "a_min"
#define STR_I_MAX "a_max"
#elif AXIS4_NAME == 'B'
#define AXIS4_STR "B"
#define STR_I_MIN "b_min"
#define STR_I_MAX "b_max"
#elif AXIS4_NAME == 'C'
#define AXIS4_STR "C"
#define STR_I_MIN "c_min"
#define STR_I_MAX "c_max"
#elif AXIS4_NAME == 'U'
#define AXIS4_STR "U"
#define STR_I_MIN "u_min"
#define STR_I_MAX "u_max"
#elif AXIS4_NAME == 'V'
#define AXIS4_STR "V"
#define STR_I_MIN "v_min"
#define STR_I_MAX "v_max"
#elif AXIS4_NAME == 'W'
#define AXIS4_STR "W"
#define STR_I_MIN "w_min"
#define STR_I_MAX "w_max"
#else
#define AXIS4_STR "A"
#define STR_I_MIN "a_min"
#define STR_I_MAX "a_max"
#endif
#else
#define AXIS4_STR ""
#endif
#if LINEAR_AXES >= 5
#if AXIS5_NAME == 'A'
#define AXIS5_STR "A"
#define STR_J_MIN "a_min"
#define STR_J_MAX "a_max"
#elif AXIS5_NAME == 'B'
#define AXIS5_STR "B"
#define STR_J_MIN "b_min"
#define STR_J_MAX "b_max"
#elif AXIS5_NAME == 'C'
#define AXIS5_STR "C"
#define STR_J_MIN "c_min"
#define STR_J_MAX "c_max"
#elif AXIS5_NAME == 'U'
#define AXIS5_STR "U"
#define STR_J_MIN "u_min"
#define STR_J_MAX "u_max"
#elif AXIS5_NAME == 'V'
#define AXIS5_STR "V"
#define STR_J_MIN "v_min"
#define STR_J_MAX "v_max"
#elif AXIS5_NAME == 'W'
#define AXIS5_STR "W"
#define STR_J_MIN "w_min"
#define STR_J_MAX "w_max"
#else
#define AXIS5_STR "B"
#define STR_J_MIN "b_min"
#define STR_J_MAX "b_max"
#endif
#else
#define AXIS5_STR ""
#endif
#if LINEAR_AXES >= 6
#if AXIS6_NAME == 'A'
#define AXIS6_STR "A"
#define STR_K_MIN "a_min"
#define STR_K_MAX "a_max"
#elif AXIS6_NAME == 'B'
#define AXIS6_STR "B"
#define STR_K_MIN "b_min"
#define STR_K_MAX "b_max"
#elif AXIS6_NAME == 'C'
#define AXIS6_STR "C"
#define STR_K_MIN "c_min"
#define STR_K_MAX "c_max"
#elif AXIS6_NAME == 'U'
#define AXIS6_STR "U"
#define STR_K_MIN "u_min"
#define STR_K_MAX "u_max"
#elif AXIS6_NAME == 'V'
#define AXIS6_STR "V"
#define STR_K_MIN "v_min"
#define STR_K_MAX "v_max"
#elif AXIS6_NAME == 'W'
#define AXIS6_STR "W"
#define STR_K_MIN "w_min"
#define STR_K_MAX "w_max"
#else
#define AXIS6_STR "C"
#define STR_K_MIN "c_min"
#define STR_K_MAX "c_max"
#endif
#else
#define AXIS6_STR ""
#endif
#if EITHER(HAS_MARLINUI_HD44780, IS_TFTGLCD_PANEL)
// Custom characters defined in the first 8 characters of the LCD

View File

@ -36,12 +36,21 @@
#define _XMIN_ 100
#define _YMIN_ 200
#define _ZMIN_ 300
#define _IMIN_ 400
#define _JMIN_ 500
#define _KMIN_ 600
#define _XMAX_ 101
#define _YMAX_ 201
#define _ZMAX_ 301
#define _IMAX_ 401
#define _JMAX_ 501
#define _KMAX_ 601
#define _XDIAG_ 102
#define _YDIAG_ 202
#define _ZDIAG_ 302
#define _IDIAG_ 502
#define _JDIAG_ 602
#define _KDIAG_ 702
#define _E0DIAG_ 400
#define _E1DIAG_ 401
#define _E2DIAG_ 402

View File

@ -36,6 +36,10 @@ PGMSTR(X_LBL, "X:"); PGMSTR(Y_LBL, "Y:"); PGMSTR(Z_LBL, "Z:"); PGMST
PGMSTR(SP_A_STR, " A"); PGMSTR(SP_B_STR, " B"); PGMSTR(SP_C_STR, " C");
PGMSTR(SP_X_STR, " X"); PGMSTR(SP_Y_STR, " Y"); PGMSTR(SP_Z_STR, " Z"); PGMSTR(SP_E_STR, " E");
PGMSTR(SP_X_LBL, " X:"); PGMSTR(SP_Y_LBL, " Y:"); PGMSTR(SP_Z_LBL, " Z:"); PGMSTR(SP_E_LBL, " E:");
PGMSTR(I_STR, AXIS4_STR); PGMSTR(J_STR, AXIS5_STR); PGMSTR(K_STR, AXIS6_STR);
PGMSTR(I_LBL, AXIS4_STR ":"); PGMSTR(J_LBL, AXIS5_STR ":"); PGMSTR(K_LBL, AXIS6_STR ":");
PGMSTR(SP_I_STR, " " AXIS4_STR); PGMSTR(SP_J_STR, " " AXIS5_STR); PGMSTR(SP_K_STR, " " AXIS6_STR);
PGMSTR(SP_I_LBL, " " AXIS4_STR ":"); PGMSTR(SP_J_LBL, " " AXIS5_STR ":"); PGMSTR(SP_K_LBL, " " AXIS6_STR ":");
// Hook Meatpack if it's enabled on the first leaf
#if ENABLED(MEATPACK_ON_SERIAL_PORT_1)
@ -101,11 +105,10 @@ void print_bin(uint16_t val) {
}
}
void print_pos(
LINEAR_AXIS_LIST(const_float_t x, const_float_t y, const_float_t z)
, PGM_P const prefix/*=nullptr*/, PGM_P const suffix/*=nullptr*/
) {
void print_pos(LINEAR_AXIS_ARGS(const_float_t), PGM_P const prefix/*=nullptr*/, PGM_P const suffix/*=nullptr*/) {
if (prefix) serialprintPGM(prefix);
SERIAL_ECHOPAIR_P(LIST_N(DOUBLE(LINEAR_AXES), SP_X_STR, x, SP_Y_STR, y, SP_Z_STR, z));
SERIAL_ECHOPAIR_P(
LIST_N(DOUBLE(LINEAR_AXES), SP_X_STR, x, SP_Y_STR, y, SP_Z_STR, z, SP_I_STR, i, SP_J_STR, j, SP_K_STR, k)
);
if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
}

View File

@ -29,12 +29,16 @@
#endif
// Commonly-used strings in serial output
extern const char NUL_STR[], SP_P_STR[], SP_T_STR[],
extern const char NUL_STR[],
SP_X_STR[], SP_Y_STR[], SP_Z_STR[],
SP_A_STR[], SP_B_STR[], SP_C_STR[], SP_E_STR[],
SP_X_LBL[], SP_Y_LBL[], SP_Z_LBL[], SP_E_LBL[],
SP_I_STR[], SP_J_STR[], SP_K_STR[],
SP_I_LBL[], SP_J_LBL[], SP_K_LBL[],
SP_P_STR[], SP_T_STR[],
X_STR[], Y_STR[], Z_STR[], E_STR[],
X_LBL[], Y_LBL[], Z_LBL[], E_LBL[],
SP_A_STR[], SP_B_STR[], SP_C_STR[],
SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[],
SP_X_LBL[], SP_Y_LBL[], SP_Z_LBL[], SP_E_LBL[];
I_LBL[], J_LBL[], K_LBL[];
//
// Debugging flags for use by M111
@ -310,13 +314,10 @@ void serialprint_truefalse(const bool tf);
void serial_spaces(uint8_t count);
void print_bin(const uint16_t val);
void print_pos(
LINEAR_AXIS_LIST(const_float_t x, const_float_t y, const_float_t z),
PGM_P const prefix=nullptr, PGM_P const suffix=nullptr
);
void print_pos(LINEAR_AXIS_ARGS(const_float_t), PGM_P const prefix=nullptr, PGM_P const suffix=nullptr);
inline void print_pos(const xyz_pos_t &xyz, PGM_P const prefix=nullptr, PGM_P const suffix=nullptr) {
print_pos(LINEAR_AXIS_LIST(xyz.x, xyz.y, xyz.z), prefix, suffix);
print_pos(LINEAR_AXIS_ELEM(xyz), prefix, suffix);
}
#define SERIAL_POS(SUFFIX,VAR) do { print_pos(VAR, PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n")); }while(0)

View File

@ -43,11 +43,17 @@ struct IF<true, L, R> { typedef L type; };
#define LINEAR_AXIS_CODE(V...) CODE_N(LINEAR_AXES, V)
#define LINEAR_AXIS_LIST(V...) LIST_N(LINEAR_AXES, V)
#define LINEAR_AXIS_ARRAY(V...) { LINEAR_AXIS_LIST(V) }
#define LINEAR_AXIS_ARGS(T...) LINEAR_AXIS_LIST(T x, T y, T z, T i, T j, T k)
#define LINEAR_AXIS_ELEM(O) LINEAR_AXIS_LIST(O.x, O.y, O.z, O.i, O.j, O.k)
#define LINEAR_AXIS_DEFS(T,V) LINEAR_AXIS_LIST(T x=V, T y=V, T z=V, T i=V, T j=V, T k=V)
#define LOGICAL_AXIS_GANG(E,V...) LINEAR_AXIS_GANG(V) GANG_ITEM_E(E)
#define LOGICAL_AXIS_CODE(E,V...) LINEAR_AXIS_CODE(V) CODE_ITEM_E(E)
#define LOGICAL_AXIS_LIST(E,V...) LINEAR_AXIS_LIST(V) LIST_ITEM_E(E)
#define LOGICAL_AXIS_ARRAY(E,V...) { LOGICAL_AXIS_LIST(E,V) }
#define LOGICAL_AXIS_ARGS(T...) LOGICAL_AXIS_LIST(T e, T x, T y, T z, T i, T j, T k)
#define LOGICAL_AXIS_ELEM(O) LOGICAL_AXIS_LIST(O.e, O.x, O.y, O.z, O.i, O.j, O.k)
#define LOGICAL_AXIS_DECL(T,V) LOGICAL_AXIS_LIST(T e=V, T x=V, T y=V, T z=V, T i=V, T j=V, T k=V)
#if HAS_EXTRUDERS
#define LIST_ITEM_E(N) , N
@ -69,37 +75,37 @@ struct IF<true, L, R> { typedef L type; };
enum AxisEnum : uint8_t {
// Linear axes may be controlled directly or indirectly
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS),
LINEAR_AXIS_LIST(X_AXIS, Y_AXIS, Z_AXIS, I_AXIS, J_AXIS, K_AXIS)
// Extruder axes may be considered distinctly
#define _EN_ITEM(N) E##N##_AXIS,
#define _EN_ITEM(N) , E##N##_AXIS
REPEAT(EXTRUDERS, _EN_ITEM)
#undef _EN_ITEM
// Core also keeps toolhead directions
#if IS_CORE
X_HEAD, Y_HEAD, Z_HEAD,
, X_HEAD, Y_HEAD, Z_HEAD
#endif
// Distinct axes, including all E and Core
NUM_AXIS_ENUMS,
, NUM_AXIS_ENUMS
// Most of the time we refer only to the single E_AXIS
#if HAS_EXTRUDERS
E_AXIS = E0_AXIS,
, E_AXIS = E0_AXIS
#endif
// A, B, and C are for DELTA, SCARA, etc.
A_AXIS = X_AXIS,
, A_AXIS = X_AXIS
#if LINEAR_AXES >= 2
B_AXIS = Y_AXIS,
, B_AXIS = Y_AXIS
#endif
#if LINEAR_AXES >= 3
C_AXIS = Z_AXIS,
, C_AXIS = Z_AXIS
#endif
// To refer to all or none
ALL_AXES_ENUM = 0xFE, NO_AXIS_ENUM = 0xFF
, ALL_AXES_ENUM = 0xFE, NO_AXIS_ENUM = 0xFF
};
typedef IF<(NUM_AXIS_ENUMS > 8), uint16_t, uint8_t>::type axis_bits_t;
@ -241,9 +247,16 @@ struct XYval {
struct { T a, b; };
T pos[2];
};
// Set all to 0
FI void reset() { x = y = 0; }
// Setters taking struct types and arrays
FI void set(const T px) { x = px; }
FI void set(const T px, const T py) { x = px; y = py; }
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
#if HAS_Y_AXIS
FI void set(const T px, const T py) { x = px; y = py; }
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
#endif
#if LINEAR_AXES > XY
FI void set(const T (&arr)[LINEAR_AXES]) { x = arr[0]; y = arr[1]; }
#endif
@ -253,10 +266,15 @@ struct XYval {
FI void set(const T (&arr)[DISTINCT_AXES]) { x = arr[0]; y = arr[1]; }
#endif
#endif
FI void reset() { x = y = 0; }
// Length reduced to one dimension
FI T magnitude() const { return (T)sqrtf(x*x + y*y); }
// Pointer to the data as a simple array
FI operator T* () { return pos; }
// If any element is true then it's true
FI operator bool() { return x || y; }
// Explicit copy and copies with conversion
FI XYval<T> copy() const { return *this; }
FI XYval<T> ABS() const { return { T(_ABS(x)), T(_ABS(y)) }; }
FI XYval<int16_t> asInt() { return { int16_t(x), int16_t(y) }; }
@ -268,17 +286,27 @@ struct XYval {
FI XYval<float> asFloat() { return { static_cast<float>(x), static_cast<float>(y) }; }
FI XYval<float> asFloat() const { return { static_cast<float>(x), static_cast<float>(y) }; }
FI XYval<float> reciprocal() const { return { _RECIP(x), _RECIP(y) }; }
// Marlin workspace shifting is done with G92 and M206
FI XYval<float> asLogical() const { XYval<float> o = asFloat(); toLogical(o); return o; }
FI XYval<float> asNative() const { XYval<float> o = asFloat(); toNative(o); return o; }
// Cast to a type with more fields by making a new object
FI operator XYZval<T>() { return { x, y }; }
FI operator XYZval<T>() const { return { x, y }; }
FI operator XYZEval<T>() { return { x, y }; }
FI operator XYZEval<T>() const { return { x, y }; }
// Accessor via an AxisEnum (or any integer) [index]
FI T& operator[](const int n) { return pos[n]; }
FI const T& operator[](const int n) const { return pos[n]; }
// Assignment operator overrides do the expected thing
FI XYval<T>& operator= (const T v) { set(v, v ); return *this; }
FI XYval<T>& operator= (const XYZval<T> &rs) { set(rs.x, rs.y); return *this; }
FI XYval<T>& operator= (const XYZEval<T> &rs) { set(rs.x, rs.y); return *this; }
// Override other operators to get intuitive behaviors
FI XYval<T> operator+ (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYval<T> operator+ (const XYval<T> &rs) { XYval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYval<T> operator- (const XYval<T> &rs) const { XYval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
@ -315,6 +343,10 @@ struct XYval {
FI XYval<T> operator>>(const int &v) { XYval<T> ls = *this; _RS(ls.x); _RS(ls.y); return ls; }
FI XYval<T> operator<<(const int &v) const { XYval<T> ls = *this; _LS(ls.x); _LS(ls.y); return ls; }
FI XYval<T> operator<<(const int &v) { XYval<T> ls = *this; _LS(ls.x); _LS(ls.y); return ls; }
FI const XYval<T> operator-() const { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
FI XYval<T> operator-() { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
// Modifier operators
FI XYval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
FI XYval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
FI XYval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
@ -328,6 +360,8 @@ struct XYval {
FI XYval<T>& operator*=(const int &v) { x *= v; y *= v; return *this; }
FI XYval<T>& operator>>=(const int &v) { _RS(x); _RS(y); return *this; }
FI XYval<T>& operator<<=(const int &v) { _LS(x); _LS(y); return *this; }
// Exact comparisons. For floats a "NEAR" operation may be better.
FI bool operator==(const XYval<T> &rs) { return x == rs.x && y == rs.y; }
FI bool operator==(const XYZval<T> &rs) { return x == rs.x && y == rs.y; }
FI bool operator==(const XYZEval<T> &rs) { return x == rs.x && y == rs.y; }
@ -340,8 +374,6 @@ struct XYval {
FI bool operator!=(const XYval<T> &rs) const { return !operator==(rs); }
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
FI XYval<T> operator-() { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
FI const XYval<T> operator-() const { XYval<T> o = *this; o.x = -x; o.y = -y; return o; }
};
//
@ -350,111 +382,144 @@ struct XYval {
template<typename T>
struct XYZval {
union {
struct { T LINEAR_AXIS_LIST(x, y, z); };
struct { T LINEAR_AXIS_LIST(a, b, c); };
struct { T LINEAR_AXIS_ARGS(); };
struct { T LINEAR_AXIS_LIST(a, b, c, u, v, w); };
T pos[LINEAR_AXES];
};
// Set all to 0
FI void reset() { LINEAR_AXIS_GANG(x =, y =, z =, i =, j =, k =) 0; }
// Setters taking struct types and arrays
FI void set(const T px) { x = px; }
FI void set(const T px, const T py) { x = px; y = py; }
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
FI void set(const XYval<T> pxy, const T pz) { x = pxy.x; y = pxy.y; z = pz; }
FI void set(const XYval<T> pxy, const T pz) { LINEAR_AXIS_CODE(x = pxy.x, y = pxy.y, z = pz, NOOP, NOOP, NOOP); }
FI void set(const T (&arr)[XY]) { x = arr[0]; y = arr[1]; }
FI void set(const T (&arr)[LINEAR_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2]); }
#if HAS_Z_AXIS
FI void set(LINEAR_AXIS_LIST(const T px, const T py, const T pz))
{ LINEAR_AXIS_CODE(x = px, y = py, z = pz); }
FI void set(const T (&arr)[LINEAR_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); }
#endif
#if LOGICAL_AXES > LINEAR_AXES
FI void set(const T (&arr)[LOGICAL_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2]); }
FI void set(LOGICAL_AXIS_LIST(const T, const T px, const T py, const T pz))
{ LINEAR_AXIS_CODE(x = px, y = py, z = pz); }
FI void set(const T (&arr)[LOGICAL_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
FI void set(LOGICAL_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k ); }
#if DISTINCT_AXES > LOGICAL_AXES
FI void set(const T (&arr)[DISTINCT_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2]); }
FI void set(const T (&arr)[DISTINCT_AXES]) { LINEAR_AXIS_CODE(x = arr[0], y = arr[1], z = arr[2], i = arr[3], j = arr[4], k = arr[5]); }
#endif
#endif
FI void reset() { LINEAR_AXIS_GANG(x =, y =, z =) 0; }
FI T magnitude() const { return (T)sqrtf(LINEAR_AXIS_GANG(x*x, + y*y, + z*z)); }
#if LINEAR_AXES >= 4
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
#endif
#if LINEAR_AXES >= 5
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
#endif
#if LINEAR_AXES >= 6
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; }
#endif
// Length reduced to one dimension
FI T magnitude() const { return (T)sqrtf(LINEAR_AXIS_GANG(x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); }
// Pointer to the data as a simple array
FI operator T* () { return pos; }
FI operator bool() { return LINEAR_AXIS_GANG(z, || x, || y); }
// If any element is true then it's true
FI operator bool() { return LINEAR_AXIS_GANG(x, || y, || z, || i, || j, || k); }
// Explicit copy and copies with conversion
FI XYZval<T> copy() const { XYZval<T> o = *this; return o; }
FI XYZval<T> ABS() const { return LINEAR_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z))); }
FI XYZval<int16_t> asInt() { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z)); }
FI XYZval<int16_t> asInt() const { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z)); }
FI XYZval<int32_t> asLong() { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z)); }
FI XYZval<int32_t> asLong() const { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z)); }
FI XYZval<int32_t> ROUNDL() { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z))); }
FI XYZval<int32_t> ROUNDL() const { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z))); }
FI XYZval<float> asFloat() { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z)); }
FI XYZval<float> asFloat() const { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z)); }
FI XYZval<float> reciprocal() const { return LINEAR_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z)); }
FI XYZval<T> ABS() const { return LINEAR_AXIS_ARRAY(T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); }
FI XYZval<int16_t> asInt() { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
FI XYZval<int16_t> asInt() const { return LINEAR_AXIS_ARRAY(int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
FI XYZval<int32_t> asLong() { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
FI XYZval<int32_t> asLong() const { return LINEAR_AXIS_ARRAY(int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
FI XYZval<int32_t> ROUNDL() { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
FI XYZval<int32_t> ROUNDL() const { return LINEAR_AXIS_ARRAY(int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
FI XYZval<float> asFloat() { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
FI XYZval<float> asFloat() const { return LINEAR_AXIS_ARRAY(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
FI XYZval<float> reciprocal() const { return LINEAR_AXIS_ARRAY(_RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); }
// Marlin workspace shifting is done with G92 and M206
FI XYZval<float> asLogical() const { XYZval<float> o = asFloat(); toLogical(o); return o; }
FI XYZval<float> asNative() const { XYZval<float> o = asFloat(); toNative(o); return o; }
// In-place cast to types having fewer fields
FI operator XYval<T>&() { return *(XYval<T>*)this; }
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
FI operator XYZEval<T>() const { return LINEAR_AXIS_ARRAY(x, y, z); }
// Cast to a type with more fields by making a new object
FI operator XYZEval<T>() const { return LINEAR_AXIS_ARRAY(x, y, z, i, j, k); }
// Accessor via an AxisEnum (or any integer) [index]
FI T& operator[](const int n) { return pos[n]; }
FI const T& operator[](const int n) const { return pos[n]; }
// Assignment operator overrides do the expected thing
FI XYZval<T>& operator= (const T v) { set(ARRAY_N_1(LINEAR_AXES, v)); return *this; }
FI XYZval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y ); return *this; }
FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(LINEAR_AXIS_LIST(rs.x, rs.y, rs.z)); return *this; }
FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP ); return ls; }
FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP ); return ls; }
FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP ); return ls; }
FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP ); return ls; }
FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP ); return ls; }
FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP ); return ls; }
FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP ); return ls; }
FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP ); return ls; }
FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z); return ls; }
FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z); return ls; }
FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z); return ls; }
FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z); return ls; }
FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z); return ls; }
FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z); return ls; }
FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z); return ls; }
FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z); return ls; }
FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z); return ls; }
FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z); return ls; }
FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z); return ls; }
FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z); return ls; }
FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z); return ls; }
FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z); return ls; }
FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z); return ls; }
FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z); return ls; }
FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z) ); return ls; }
FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z) ); return ls; }
FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z) ); return ls; }
FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z) ); return ls; }
FI XYZval<T>& operator+=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, NOOP ); return *this; }
FI XYZval<T>& operator-=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, NOOP ); return *this; }
FI XYZval<T>& operator*=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, NOOP ); return *this; }
FI XYZval<T>& operator/=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, NOOP ); return *this; }
FI XYZval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z ); return *this; }
FI XYZval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z ); return *this; }
FI XYZval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z ); return *this; }
FI XYZval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z ); return *this; }
FI XYZval<T>& operator+=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z ); return *this; }
FI XYZval<T>& operator-=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z ); return *this; }
FI XYZval<T>& operator*=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z ); return *this; }
FI XYZval<T>& operator/=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z ); return *this; }
FI XYZval<T>& operator*=(const float &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v ); return *this; }
FI XYZval<T>& operator*=(const int &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v ); return *this; }
FI XYZval<T>& operator>>=(const int &v) { LINEAR_AXIS_CODE(_RS(x), _RS(y), _RS(z) ); return *this; }
FI XYZval<T>& operator<<=(const int &v) { LINEAR_AXIS_CODE(_LS(x), _LS(y), _LS(z) ); return *this; }
FI bool operator==(const XYZEval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z); }
FI bool operator==(const XYZEval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z); }
FI XYZval<T>& operator= (const XYZEval<T> &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; }
// Override other operators to get intuitive behaviors
FI XYZval<T> operator+ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator+ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator- (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator- (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator* (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator* (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator/ (const XYval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator/ (const XYval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, NOOP , NOOP , NOOP , NOOP ); return ls; }
FI XYZval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZval<T> operator+ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZval<T> operator+ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZval<T> operator- (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZval<T> operator- (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZval<T> operator* (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZval<T> operator* (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZval<T> operator/ (const XYZEval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZval<T> operator/ (const XYZEval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZval<T> operator* (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZval<T> operator* (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZval<T> operator* (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZval<T> operator* (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZval<T> operator/ (const float &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZval<T> operator/ (const float &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZval<T> operator/ (const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZval<T> operator/ (const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZval<T> operator>>(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
FI XYZval<T> operator>>(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
FI XYZval<T> operator<<(const int &v) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
FI XYZval<T> operator<<(const int &v) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(_LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
FI const XYZval<T> operator-() const { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; }
FI XYZval<T> operator-() { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z, o.i = -i, o.j = -j, o.k = -k); return o; }
// Modifier operators
FI XYZval<T>& operator+=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator-=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator*=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator/=(const XYval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, NOOP, NOOP, NOOP, NOOP ); return *this; }
FI XYZval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
FI XYZval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
FI XYZval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
FI XYZval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
FI XYZval<T>& operator+=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
FI XYZval<T>& operator-=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
FI XYZval<T>& operator*=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
FI XYZval<T>& operator/=(const XYZEval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
FI XYZval<T>& operator*=(const float &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
FI XYZval<T>& operator*=(const int &v) { LINEAR_AXIS_CODE(x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
FI XYZval<T>& operator>>=(const int &v) { LINEAR_AXIS_CODE(_RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; }
FI XYZval<T>& operator<<=(const int &v) { LINEAR_AXIS_CODE(_LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; }
// Exact comparisons. For floats a "NEAR" operation may be better.
FI bool operator==(const XYZEval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
FI bool operator==(const XYZEval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
FI bool operator!=(const XYZEval<T> &rs) { return !operator==(rs); }
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
FI XYZval<T> operator-() { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z); return o; }
FI const XYZval<T> operator-() const { XYZval<T> o = *this; LINEAR_AXIS_CODE(o.x = -x, o.y = -y, o.z = -z); return o; }
};
//
@ -463,109 +528,137 @@ struct XYZval {
template<typename T>
struct XYZEval {
union {
struct{ T LOGICAL_AXIS_LIST(e, x, y, z); };
struct{ T LINEAR_AXIS_LIST(a, b, c); };
struct { T LOGICAL_AXIS_ARGS(); };
struct { T LOGICAL_AXIS_LIST(_e, a, b, c, u, v, w); };
T pos[LOGICAL_AXES];
};
FI void reset() { LOGICAL_AXIS_GANG(e =, x =, y =, z =) 0; }
FI T magnitude() const { return (T)sqrtf(LOGICAL_AXIS_GANG(+ e*e, + x*x, + y*y, + z*z)); }
FI operator T* () { return pos; }
FI operator bool() { return false LOGICAL_AXIS_GANG(|| e, || x, || y, || z); }
FI void set(const T px) { x = px; }
FI void set(const T px, const T py) { x = px; y = py; }
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
FI void set(const XYZval<T> pxyz) { set(LINEAR_AXIS_LIST(pxyz.x, pxyz.y, pxyz.z)); }
// Reset all to 0
FI void reset() { LOGICAL_AXIS_GANG(e =, x =, y =, z =, i =, j =, k =) 0; }
// Setters taking struct types and arrays
FI void set(const T px) { x = px; }
FI void set(const T px, const T py) { x = px; y = py; }
FI void set(const XYval<T> pxy) { x = pxy.x; y = pxy.y; }
FI void set(const XYZval<T> pxyz) { set(LINEAR_AXIS_ELEM(pxyz)); }
#if HAS_Z_AXIS
FI void set(LINEAR_AXIS_LIST(const T px, const T py, const T pz)) {
LINEAR_AXIS_CODE(x = px, y = py, z = pz);
}
FI void set(LINEAR_AXIS_ARGS(const T)) { LINEAR_AXIS_CODE(a = x, b = y, c = z, u = i, v = j, w = k); }
#endif
#if LOGICAL_AXES > LINEAR_AXES
FI void set(LOGICAL_AXIS_LIST(const T pe, const T px, const T py, const T pz)) {
LOGICAL_AXIS_CODE(e = pe, x = px, y = py, z = pz);
}
FI void set(const XYval<T> pxy, const T pe) { set(pxy); e = pe; }
FI void set(const XYZval<T> pxyz, const T pe) { set(pxyz); e = pe; }
FI void set(const XYval<T> pxy, const T pe) { set(pxy); e = pe; }
FI void set(const XYZval<T> pxyz, const T pe) { set(pxyz); e = pe; }
FI void set(LOGICAL_AXIS_ARGS(const T)) { LOGICAL_AXIS_CODE(_e = e, a = x, b = y, c = z, u = i, v = j, w = k); }
#endif
FI XYZEval<T> copy() const { XYZEval<T> o = *this; return o; }
FI XYZEval<T> ABS() const { return LOGICAL_AXIS_ARRAY(T(_ABS(e)), T(_ABS(x)), T(_ABS(y)), T(_ABS(z))); }
FI XYZEval<int16_t> asInt() { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z)); }
FI XYZEval<int16_t> asInt() const { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z)); }
FI XYZEval<int32_t> asLong() { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z)); }
FI XYZEval<int32_t> asLong() const { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z)); }
FI XYZEval<int32_t> ROUNDL() { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z))); }
FI XYZEval<int32_t> ROUNDL() const { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z))); }
FI XYZEval<float> asFloat() { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z)); }
FI XYZEval<float> asFloat() const { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z)); }
FI XYZEval<float> reciprocal() const { return LOGICAL_AXIS_ARRAY(_RECIP(e), _RECIP(x), _RECIP(y), _RECIP(z)); }
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; }
FI XYZEval<float> asNative() const { XYZEval<float> o = asFloat(); toNative(o); return o; }
FI operator XYval<T>&() { return *(XYval<T>*)this; }
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
FI operator XYZval<T>&() { return *(XYZval<T>*)this; }
FI operator const XYZval<T>&() const { return *(const XYZval<T>*)this; }
FI T& operator[](const int n) { return pos[n]; }
FI const T& operator[](const int n) const { return pos[n]; }
FI XYZEval<T>& operator= (const T v) { set(LIST_N_1(LINEAR_AXES, v)); return *this; }
FI XYZEval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y); return *this; }
FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(LINEAR_AXIS_LIST(rs.x, rs.y, rs.z)); return *this; }
FI XYZEval<T> operator+ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYZEval<T> operator+ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYZEval<T> operator- (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
FI XYZEval<T> operator- (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
FI XYZEval<T> operator* (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
FI XYZEval<T> operator* (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
FI XYZEval<T> operator/ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
FI XYZEval<T> operator/ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z); return ls; }
FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z); return ls; }
FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z); return ls; }
FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z); return ls; }
FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z); return ls; }
FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z); return ls; }
FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z); return ls; }
FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z); return ls; }
FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z ); return ls; }
FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z ); return ls; }
FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z ); return ls; }
FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z ); return ls; }
FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z ); return ls; }
FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z ); return ls; }
FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z ); return ls; }
FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z ); return ls; }
FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v ); return ls; }
FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v ); return ls; }
FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z) ); return ls; }
FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z) ); return ls; }
FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z) ); return ls; }
FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z) ); return ls; }
FI XYZEval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
FI XYZEval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
FI XYZEval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
FI XYZEval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; }
FI XYZEval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z); return *this; }
FI XYZEval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z); return *this; }
FI XYZEval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z); return *this; }
FI XYZEval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z); return *this; }
FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e += rs.e, x += rs.x, y += rs.y, z += rs.z); return *this; }
FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e -= rs.e, x -= rs.x, y -= rs.y, z -= rs.z); return *this; }
FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e *= rs.e, x *= rs.x, y *= rs.y, z *= rs.z); return *this; }
FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e /= rs.e, x /= rs.x, y /= rs.y, z /= rs.z); return *this; }
FI XYZEval<T>& operator*=(const T &v) { LOGICAL_AXIS_CODE(e *= v, x *= v, y *= v, z *= v); return *this; }
FI XYZEval<T>& operator>>=(const int &v) { LOGICAL_AXIS_CODE(_RS(e), _RS(x), _RS(y), _RS(z)); return *this; }
FI XYZEval<T>& operator<<=(const int &v) { LOGICAL_AXIS_CODE(_LS(e), _LS(x), _LS(y), _LS(z)); return *this; }
FI bool operator==(const XYZval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z); }
FI bool operator==(const XYZval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z); }
FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); }
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
FI XYZEval<T> operator-() { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z); }
FI const XYZEval<T> operator-() const { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z); }
#if LINEAR_AXES >= 4
FI void set(const T px, const T py, const T pz) { x = px; y = py; z = pz; }
#endif
#if LINEAR_AXES >= 5
FI void set(const T px, const T py, const T pz, const T pi) { x = px; y = py; z = pz; i = pi; }
#endif
#if LINEAR_AXES >= 6
FI void set(const T px, const T py, const T pz, const T pi, const T pj) { x = px; y = py; z = pz; i = pi; j = pj; }
#endif
// Length reduced to one dimension
FI T magnitude() const { return (T)sqrtf(LOGICAL_AXIS_GANG(+ e*e, + x*x, + y*y, + z*z, + i*i, + j*j, + k*k)); }
// Pointer to the data as a simple array
FI operator T* () { return pos; }
// If any element is true then it's true
FI operator bool() { return 0 LOGICAL_AXIS_GANG(|| e, || x, || y, || z, || i, || j, || k); }
// Explicit copy and copies with conversion
FI XYZEval<T> copy() const { XYZEval<T> o = *this; return o; }
FI XYZEval<T> ABS() const { return LOGICAL_AXIS_ARRAY(T(_ABS(e)), T(_ABS(x)), T(_ABS(y)), T(_ABS(z)), T(_ABS(i)), T(_ABS(j)), T(_ABS(k))); }
FI XYZEval<int16_t> asInt() { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
FI XYZEval<int16_t> asInt() const { return LOGICAL_AXIS_ARRAY(int16_t(e), int16_t(x), int16_t(y), int16_t(z), int16_t(i), int16_t(j), int16_t(k)); }
FI XYZEval<int32_t> asLong() { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
FI XYZEval<int32_t> asLong() const { return LOGICAL_AXIS_ARRAY(int32_t(e), int32_t(x), int32_t(y), int32_t(z), int32_t(i), int32_t(j), int32_t(k)); }
FI XYZEval<int32_t> ROUNDL() { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
FI XYZEval<int32_t> ROUNDL() const { return LOGICAL_AXIS_ARRAY(int32_t(LROUND(e)), int32_t(LROUND(x)), int32_t(LROUND(y)), int32_t(LROUND(z)), int32_t(LROUND(i)), int32_t(LROUND(j)), int32_t(LROUND(k))); }
FI XYZEval<float> asFloat() { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
FI XYZEval<float> asFloat() const { return LOGICAL_AXIS_ARRAY(static_cast<float>(e), static_cast<float>(x), static_cast<float>(y), static_cast<float>(z), static_cast<float>(i), static_cast<float>(j), static_cast<float>(k)); }
FI XYZEval<float> reciprocal() const { return LOGICAL_AXIS_ARRAY(_RECIP(e), _RECIP(x), _RECIP(y), _RECIP(z), _RECIP(i), _RECIP(j), _RECIP(k)); }
// Marlin workspace shifting is done with G92 and M206
FI XYZEval<float> asLogical() const { XYZEval<float> o = asFloat(); toLogical(o); return o; }
FI XYZEval<float> asNative() const { XYZEval<float> o = asFloat(); toNative(o); return o; }
// In-place cast to types having fewer fields
FI operator XYval<T>&() { return *(XYval<T>*)this; }
FI operator const XYval<T>&() const { return *(const XYval<T>*)this; }
FI operator XYZval<T>&() { return *(XYZval<T>*)this; }
FI operator const XYZval<T>&() const { return *(const XYZval<T>*)this; }
// Accessor via an AxisEnum (or any integer) [index]
FI T& operator[](const int n) { return pos[n]; }
FI const T& operator[](const int n) const { return pos[n]; }
// Assignment operator overrides do the expected thing
FI XYZEval<T>& operator= (const T v) { set(LIST_N_1(LINEAR_AXES, v)); return *this; }
FI XYZEval<T>& operator= (const XYval<T> &rs) { set(rs.x, rs.y); return *this; }
FI XYZEval<T>& operator= (const XYZval<T> &rs) { set(LINEAR_AXIS_ELEM(rs)); return *this; }
// Override other operators to get intuitive behaviors
FI XYZEval<T> operator+ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYZEval<T> operator+ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x += rs.x; ls.y += rs.y; return ls; }
FI XYZEval<T> operator- (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
FI XYZEval<T> operator- (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x -= rs.x; ls.y -= rs.y; return ls; }
FI XYZEval<T> operator* (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
FI XYZEval<T> operator* (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x *= rs.x; ls.y *= rs.y; return ls; }
FI XYZEval<T> operator/ (const XYval<T> &rs) const { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
FI XYZEval<T> operator/ (const XYval<T> &rs) { XYZEval<T> ls = *this; ls.x /= rs.x; ls.y /= rs.y; return ls; }
FI XYZEval<T> operator+ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZEval<T> operator+ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZEval<T> operator- (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZEval<T> operator- (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZEval<T> operator* (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZEval<T> operator* (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZEval<T> operator/ (const XYZval<T> &rs) const { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZEval<T> operator/ (const XYZval<T> &rs) { XYZval<T> ls = *this; LINEAR_AXIS_CODE(ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZEval<T> operator+ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZEval<T> operator+ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e += rs.e, ls.x += rs.x, ls.y += rs.y, ls.z += rs.z, ls.i += rs.i, ls.j += rs.j, ls.k += rs.k); return ls; }
FI XYZEval<T> operator- (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZEval<T> operator- (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e -= rs.e, ls.x -= rs.x, ls.y -= rs.y, ls.z -= rs.z, ls.i -= rs.i, ls.j -= rs.j, ls.k -= rs.k); return ls; }
FI XYZEval<T> operator* (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZEval<T> operator* (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= rs.e, ls.x *= rs.x, ls.y *= rs.y, ls.z *= rs.z, ls.i *= rs.i, ls.j *= rs.j, ls.k *= rs.k); return ls; }
FI XYZEval<T> operator/ (const XYZEval<T> &rs) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZEval<T> operator/ (const XYZEval<T> &rs) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= rs.e, ls.x /= rs.x, ls.y /= rs.y, ls.z /= rs.z, ls.i /= rs.i, ls.j /= rs.j, ls.k /= rs.k); return ls; }
FI XYZEval<T> operator* (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZEval<T> operator* (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZEval<T> operator* (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZEval<T> operator* (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e *= v, ls.x *= v, ls.y *= v, ls.z *= v, ls.i *= v, ls.j *= v, ls.k *= v ); return ls; }
FI XYZEval<T> operator/ (const float &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZEval<T> operator/ (const float &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZEval<T> operator/ (const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZEval<T> operator/ (const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(ls.e /= v, ls.x /= v, ls.y /= v, ls.z /= v, ls.i /= v, ls.j /= v, ls.k /= v ); return ls; }
FI XYZEval<T> operator>>(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
FI XYZEval<T> operator>>(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_RS(ls.e), _RS(ls.x), _RS(ls.y), _RS(ls.z), _RS(ls.i), _RS(ls.j), _RS(ls.k) ); return ls; }
FI XYZEval<T> operator<<(const int &v) const { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
FI XYZEval<T> operator<<(const int &v) { XYZEval<T> ls = *this; LOGICAL_AXIS_CODE(_LS(ls.e), _LS(ls.x), _LS(ls.y), _LS(ls.z), _LS(ls.i), _LS(ls.j), _LS(ls.k) ); return ls; }
FI const XYZEval<T> operator-() const { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k); }
FI XYZEval<T> operator-() { return LOGICAL_AXIS_ARRAY(-e, -x, -y, -z, -i, -j, -k); }
// Modifier operators
FI XYZEval<T>& operator+=(const XYval<T> &rs) { x += rs.x; y += rs.y; return *this; }
FI XYZEval<T>& operator-=(const XYval<T> &rs) { x -= rs.x; y -= rs.y; return *this; }
FI XYZEval<T>& operator*=(const XYval<T> &rs) { x *= rs.x; y *= rs.y; return *this; }
FI XYZEval<T>& operator/=(const XYval<T> &rs) { x /= rs.x; y /= rs.y; return *this; }
FI XYZEval<T>& operator+=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
FI XYZEval<T>& operator-=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
FI XYZEval<T>& operator*=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
FI XYZEval<T>& operator/=(const XYZval<T> &rs) { LINEAR_AXIS_CODE(x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
FI XYZEval<T>& operator+=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e += rs.e, x += rs.x, y += rs.y, z += rs.z, i += rs.i, j += rs.j, k += rs.k); return *this; }
FI XYZEval<T>& operator-=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e -= rs.e, x -= rs.x, y -= rs.y, z -= rs.z, i -= rs.i, j -= rs.j, k -= rs.k); return *this; }
FI XYZEval<T>& operator*=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e *= rs.e, x *= rs.x, y *= rs.y, z *= rs.z, i *= rs.i, j *= rs.j, k *= rs.k); return *this; }
FI XYZEval<T>& operator/=(const XYZEval<T> &rs) { LOGICAL_AXIS_CODE(e /= rs.e, x /= rs.x, y /= rs.y, z /= rs.z, i /= rs.i, j /= rs.j, k /= rs.k); return *this; }
FI XYZEval<T>& operator*=(const T &v) { LOGICAL_AXIS_CODE(e *= v, x *= v, y *= v, z *= v, i *= v, j *= v, k *= v); return *this; }
FI XYZEval<T>& operator>>=(const int &v) { LOGICAL_AXIS_CODE(_RS(e), _RS(x), _RS(y), _RS(z), _RS(i), _RS(j), _RS(k)); return *this; }
FI XYZEval<T>& operator<<=(const int &v) { LOGICAL_AXIS_CODE(_LS(e), _LS(x), _LS(y), _LS(z), _LS(i), _LS(j), _LS(k)); return *this; }
// Exact comparisons. For floats a "NEAR" operation may be better.
FI bool operator==(const XYZval<T> &rs) { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
FI bool operator==(const XYZval<T> &rs) const { return true LINEAR_AXIS_GANG(&& x == rs.x, && y == rs.y, && z == rs.z, && i == rs.i, && j == rs.j, && k == rs.k); }
FI bool operator!=(const XYZval<T> &rs) { return !operator==(rs); }
FI bool operator!=(const XYZval<T> &rs) const { return !operator==(rs); }
};
#undef _RECIP

View File

@ -122,7 +122,7 @@ void safe_delay(millis_t ms) {
SERIAL_ECHOLNPAIR("Z Fade: ", planner.z_fade_height);
#endif
#if ABL_PLANAR
SERIAL_ECHOPGM("ABL Adjustment X");
SERIAL_ECHOPGM("ABL Adjustment");
LOOP_LINEAR_AXES(a) {
const float v = planner.get_axis_position_mm(AxisEnum(a)) - current_position[a];
SERIAL_CHAR(' ', AXIS_CHAR(a));

View File

@ -77,7 +77,7 @@ public:
// in the range 0-100 while avoiding rounding artifacts
constexpr uint8_t ui8_to_percent(const uint8_t i) { return (int(i) * 100 + 127) / 255; }
const xyze_char_t axis_codes LOGICAL_AXIS_ARRAY('E', 'X', 'Y', 'Z');
const xyze_char_t axis_codes LOGICAL_AXIS_ARRAY('E', 'X', 'Y', 'Z', AXIS4_NAME, AXIS5_NAME, AXIS6_NAME);
#if LINEAR_AXES <= XYZ
#define AXIS_CHAR(A) ((char)('X' + A))