Ubl delta fixes and improvements (#6941)
* Change all direct changes of ubl.state.active to set_bed_leveling_enabled() which handles apply/unapply leveling to maintain current_position consistency. Fix invalidation of UBL mesh to invalid unreachable mesh points as well (delta corners). Fix UBL_DELTA unapply_leveling logic and when it gets applied, including fade_height changes. Add optional M114 D for detailed position information, disabled from compilation by default (M114_DETAIL). * UBL_DELTA raw and inline kinematics * UBL planner fall through fix * consistent variable names * Cleanup orphaned code and whitespace changes. Use _O2. * compile warnings cleanup * Remove redundant #ifdef condition
This commit is contained in:
@ -32,7 +32,25 @@
|
||||
|
||||
extern float destination[XYZE];
|
||||
extern void set_current_to_destination();
|
||||
extern float delta_segments_per_second;
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
|
||||
extern float delta[ABC],
|
||||
endstop_adj[ABC];
|
||||
|
||||
extern float delta_radius,
|
||||
delta_tower_angle_trim[2],
|
||||
delta_tower[ABC][2],
|
||||
delta_diagonal_rod,
|
||||
delta_calibration_radius,
|
||||
delta_diagonal_rod_2_tower[ABC],
|
||||
delta_segments_per_second,
|
||||
delta_clip_start_height;
|
||||
|
||||
extern float delta_safe_distance_from_top();
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
static void debug_echo_axis(const AxisEnum axis) {
|
||||
if (current_position[axis] == destination[axis])
|
||||
@ -470,51 +488,76 @@
|
||||
#endif
|
||||
|
||||
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
||||
// so we call _buffer_line directly here. Per-segmented leveling performed first.
|
||||
// so we call _buffer_line directly here. Per-segmented leveling and kinematics performed first.
|
||||
|
||||
static inline void ubl_buffer_line_segment(const float ltarget[XYZE], const float &fr_mm_s, const uint8_t extruder) {
|
||||
inline void _O2 ubl_buffer_segment_raw( float rx, float ry, float rz, float le, float fr ) {
|
||||
|
||||
#if IS_KINEMATIC
|
||||
#if ENABLED(DELTA) // apply delta inverse_kinematics
|
||||
|
||||
inverse_kinematics(ltarget); // this writes delta[ABC] from ltarget[XYZ] but does not modify ltarget
|
||||
float feedrate = fr_mm_s;
|
||||
const float delta_A = rz + sqrt( delta_diagonal_rod_2_tower[A_AXIS]
|
||||
- HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx,
|
||||
delta_tower[A_AXIS][Y_AXIS] - ry ));
|
||||
|
||||
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
||||
float adiff = abs(delta[A_AXIS] - scara_oldA),
|
||||
bdiff = abs(delta[B_AXIS] - scara_oldB);
|
||||
scara_oldA = delta[A_AXIS];
|
||||
scara_oldB = delta[B_AXIS];
|
||||
feedrate = max(adiff, bdiff) * scara_feed_factor;
|
||||
#endif
|
||||
const float delta_B = rz + sqrt( delta_diagonal_rod_2_tower[B_AXIS]
|
||||
- HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx,
|
||||
delta_tower[B_AXIS][Y_AXIS] - ry ));
|
||||
|
||||
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], feedrate, extruder);
|
||||
const float delta_C = rz + sqrt( delta_diagonal_rod_2_tower[C_AXIS]
|
||||
- HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx,
|
||||
delta_tower[C_AXIS][Y_AXIS] - ry ));
|
||||
|
||||
#else // cartesian
|
||||
planner._buffer_line(delta_A, delta_B, delta_C, le, fr, active_extruder);
|
||||
|
||||
planner._buffer_line(ltarget[X_AXIS], ltarget[Y_AXIS], ltarget[Z_AXIS], ltarget[E_AXIS], fr_mm_s, extruder);
|
||||
#elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
|
||||
|
||||
const float lseg[XYZ] = { LOGICAL_X_POSITION(rx),
|
||||
LOGICAL_Y_POSITION(ry),
|
||||
LOGICAL_Z_POSITION(rz)
|
||||
};
|
||||
|
||||
inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ]
|
||||
// should move the feedrate scaling to scara inverse_kinematics
|
||||
|
||||
float adiff = abs(delta[A_AXIS] - scara_oldA),
|
||||
bdiff = abs(delta[B_AXIS] - scara_oldB);
|
||||
scara_oldA = delta[A_AXIS];
|
||||
scara_oldB = delta[B_AXIS];
|
||||
float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
|
||||
|
||||
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], le, s_feedrate, active_extruder);
|
||||
|
||||
#else // CARTESIAN
|
||||
|
||||
// Cartesian _buffer_line seems to take LOGICAL, not RAW coordinates
|
||||
|
||||
const float lx = LOGICAL_X_POSITION(rx),
|
||||
ly = LOGICAL_Y_POSITION(ry),
|
||||
lz = LOGICAL_Z_POSITION(rz);
|
||||
|
||||
planner._buffer_line(lx, ly, lz, le, fr, active_extruder);
|
||||
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
* Prepare a linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
|
||||
* Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
|
||||
* This calls planner._buffer_line multiple times for small incremental moves.
|
||||
* Returns true if the caller did NOT update current_position, otherwise false.
|
||||
* Returns true if did NOT move, false if moved (requires current_position update).
|
||||
*/
|
||||
|
||||
static bool unified_bed_leveling::prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate) {
|
||||
bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float ltarget[XYZE], const float &feedrate) {
|
||||
|
||||
if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) // fail if moving outside reachable boundary
|
||||
return true; // did not move, so current_position still accurate
|
||||
|
||||
const float difference[XYZE] = { // cartesian distances moved in XYZE
|
||||
ltarget[X_AXIS] - current_position[X_AXIS],
|
||||
ltarget[Y_AXIS] - current_position[Y_AXIS],
|
||||
ltarget[Z_AXIS] - current_position[Z_AXIS],
|
||||
ltarget[E_AXIS] - current_position[E_AXIS]
|
||||
};
|
||||
const float tot_dx = ltarget[X_AXIS] - current_position[X_AXIS],
|
||||
tot_dy = ltarget[Y_AXIS] - current_position[Y_AXIS],
|
||||
tot_dz = ltarget[Z_AXIS] - current_position[Z_AXIS],
|
||||
tot_de = ltarget[E_AXIS] - current_position[E_AXIS];
|
||||
|
||||
const float cartesian_xy_mm = HYPOT(difference[X_AXIS], difference[Y_AXIS]); // total horizontal xy distance
|
||||
const float cartesian_xy_mm = HYPOT(tot_dx, tot_dy); // total horizontal xy distance
|
||||
|
||||
#if IS_KINEMATIC
|
||||
const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
|
||||
@ -534,16 +577,19 @@
|
||||
scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
|
||||
#endif
|
||||
|
||||
const float segment_distance[XYZE] = { // length for each segment
|
||||
difference[X_AXIS] * inv_segments,
|
||||
difference[Y_AXIS] * inv_segments,
|
||||
difference[Z_AXIS] * inv_segments,
|
||||
difference[E_AXIS] * inv_segments
|
||||
};
|
||||
const float seg_dx = tot_dx * inv_segments,
|
||||
seg_dy = tot_dy * inv_segments,
|
||||
seg_dz = tot_dz * inv_segments,
|
||||
seg_de = tot_de * inv_segments;
|
||||
|
||||
// Note that E segment distance could vary slightly as z mesh height
|
||||
// changes for each segment, but small enough to ignore.
|
||||
|
||||
float seg_rx = RAW_X_POSITION(current_position[X_AXIS]),
|
||||
seg_ry = RAW_Y_POSITION(current_position[Y_AXIS]),
|
||||
seg_rz = RAW_Z_POSITION(current_position[Z_AXIS]),
|
||||
seg_le = current_position[E_AXIS];
|
||||
|
||||
const bool above_fade_height = (
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
planner.z_fade_height != 0 && planner.z_fade_height < RAW_Z_POSITION(ltarget[Z_AXIS])
|
||||
@ -558,21 +604,24 @@
|
||||
|
||||
const float z_offset = state.active ? state.z_offset : 0.0;
|
||||
|
||||
float seg_dest[XYZE]; // per-segment destination,
|
||||
COPY_XYZE(seg_dest, current_position); // starting from current position
|
||||
do {
|
||||
|
||||
while (--segments) {
|
||||
LOOP_XYZE(i) seg_dest[i] += segment_distance[i];
|
||||
float ztemp = seg_dest[Z_AXIS];
|
||||
seg_dest[Z_AXIS] += z_offset;
|
||||
ubl_buffer_line_segment(seg_dest, feedrate, active_extruder);
|
||||
seg_dest[Z_AXIS] = ztemp;
|
||||
}
|
||||
if (--segments) { // not the last segment
|
||||
seg_rx += seg_dx;
|
||||
seg_ry += seg_dy;
|
||||
seg_rz += seg_dz;
|
||||
seg_le += seg_de;
|
||||
} else { // last segment, use exact destination
|
||||
seg_rx = RAW_X_POSITION(ltarget[X_AXIS]);
|
||||
seg_ry = RAW_Y_POSITION(ltarget[Y_AXIS]);
|
||||
seg_rz = RAW_Z_POSITION(ltarget[Z_AXIS]);
|
||||
seg_le = ltarget[E_AXIS];
|
||||
}
|
||||
|
||||
ubl_buffer_segment_raw( seg_rx, seg_ry, seg_rz + z_offset, seg_le, feedrate );
|
||||
|
||||
} while (segments);
|
||||
|
||||
// Since repeated adding segment_distance accumulates small errors, final move to exact destination.
|
||||
COPY_XYZE(seg_dest, ltarget);
|
||||
seg_dest[Z_AXIS] += z_offset;
|
||||
ubl_buffer_line_segment(seg_dest, feedrate, active_extruder);
|
||||
return false; // moved but did not set_current_to_destination();
|
||||
}
|
||||
|
||||
@ -582,14 +631,11 @@
|
||||
const float fade_scaling_factor = fade_scaling_factor_for_z(ltarget[Z_AXIS]);
|
||||
#endif
|
||||
|
||||
float seg_dest[XYZE]; // per-segment destination, initialize to first segment
|
||||
LOOP_XYZE(i) seg_dest[i] = current_position[i] + segment_distance[i];
|
||||
|
||||
const float &dx_seg = segment_distance[X_AXIS]; // alias for clarity
|
||||
const float &dy_seg = segment_distance[Y_AXIS];
|
||||
|
||||
float rx = RAW_X_POSITION(seg_dest[X_AXIS]), // assume raw vs logical coordinates shifted but not scaled.
|
||||
ry = RAW_Y_POSITION(seg_dest[Y_AXIS]);
|
||||
// increment to first segment destination
|
||||
seg_rx += seg_dx;
|
||||
seg_ry += seg_dy;
|
||||
seg_rz += seg_dz;
|
||||
seg_le += seg_de;
|
||||
|
||||
for(;;) { // for each mesh cell encountered during the move
|
||||
|
||||
@ -600,20 +646,16 @@
|
||||
// in top of loop and again re-find same adjacent cell and use it, just less efficient
|
||||
// for mesh inset area.
|
||||
|
||||
int8_t cell_xi = (rx - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
|
||||
cell_yi = (ry - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
|
||||
int8_t cell_xi = (seg_rx - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
|
||||
cell_yi = (seg_ry - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
|
||||
|
||||
cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
|
||||
cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
|
||||
|
||||
const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
|
||||
y0 = mesh_index_to_ypos(cell_yi), // 64 byte table lookup avoids mul+add
|
||||
x1 = mesh_index_to_xpos(cell_xi + 1), // 64 byte table lookup avoids mul+add
|
||||
y1 = mesh_index_to_ypos(cell_yi + 1); // 64 byte table lookup avoids mul+add
|
||||
const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
|
||||
y0 = mesh_index_to_ypos(cell_yi);
|
||||
|
||||
float cx = rx - x0, // cell-relative x
|
||||
cy = ry - y0, // cell-relative y
|
||||
z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
|
||||
float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
|
||||
z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
|
||||
z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
|
||||
z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
|
||||
@ -623,15 +665,18 @@
|
||||
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
|
||||
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
|
||||
|
||||
float cx = seg_rx - x0, // cell-relative x and y
|
||||
cy = seg_ry - y0;
|
||||
|
||||
const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
|
||||
z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
|
||||
|
||||
float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx
|
||||
float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
|
||||
|
||||
const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
|
||||
z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
|
||||
|
||||
float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1
|
||||
float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
|
||||
|
||||
// float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
|
||||
|
||||
@ -639,8 +684,8 @@
|
||||
// and the z_cxym slope will change, both as a function of cx within the cell, and
|
||||
// each change by a constant for fixed segment lengths.
|
||||
|
||||
const float z_sxy0 = z_xmy0 * dx_seg, // per-segment adjustment to z_cxy0
|
||||
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * dx_seg; // per-segment adjustment to z_cxym
|
||||
const float z_sxy0 = z_xmy0 * seg_dx, // per-segment adjustment to z_cxy0
|
||||
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * seg_dx; // per-segment adjustment to z_cxym
|
||||
|
||||
for(;;) { // for all segments within this mesh cell
|
||||
|
||||
@ -650,28 +695,29 @@
|
||||
z_cxcy *= fade_scaling_factor; // apply fade factor to interpolated mesh height
|
||||
#endif
|
||||
|
||||
z_cxcy += state.z_offset; // add fixed mesh offset from G29 Z
|
||||
z_cxcy += state.z_offset; // add fixed mesh offset from G29 Z
|
||||
|
||||
if (--segments == 0) { // if this is last segment, use ltarget for exact
|
||||
COPY_XYZE(seg_dest, ltarget);
|
||||
seg_dest[Z_AXIS] += z_cxcy;
|
||||
ubl_buffer_line_segment(seg_dest, feedrate, active_extruder);
|
||||
return false; // did not set_current_to_destination()
|
||||
seg_rx = RAW_X_POSITION(ltarget[X_AXIS]);
|
||||
seg_ry = RAW_Y_POSITION(ltarget[Y_AXIS]);
|
||||
seg_rz = RAW_Z_POSITION(ltarget[Z_AXIS]);
|
||||
seg_le = ltarget[E_AXIS];
|
||||
}
|
||||
|
||||
const float z_orig = seg_dest[Z_AXIS]; // remember the pre-leveled segment z value
|
||||
seg_dest[Z_AXIS] = z_orig + z_cxcy; // adjust segment z height per mesh leveling
|
||||
ubl_buffer_line_segment(seg_dest, feedrate, active_extruder);
|
||||
seg_dest[Z_AXIS] = z_orig; // restore pre-leveled z before incrementing
|
||||
ubl_buffer_segment_raw( seg_rx, seg_ry, seg_rz + z_cxcy, seg_le, feedrate );
|
||||
|
||||
LOOP_XYZE(i) seg_dest[i] += segment_distance[i]; // adjust seg_dest for next segment
|
||||
if (segments == 0 ) // done with last segment
|
||||
return false; // did not set_current_to_destination()
|
||||
|
||||
cx += dx_seg;
|
||||
cy += dy_seg;
|
||||
seg_rx += seg_dx;
|
||||
seg_ry += seg_dy;
|
||||
seg_rz += seg_dz;
|
||||
seg_le += seg_de;
|
||||
|
||||
cx += seg_dx;
|
||||
cy += seg_dy;
|
||||
|
||||
if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) { // done within this cell, break to next
|
||||
rx = RAW_X_POSITION(seg_dest[X_AXIS]);
|
||||
ry = RAW_Y_POSITION(seg_dest[Y_AXIS]);
|
||||
break;
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user