Encapsulate probe as singleton class (#16751)

This commit is contained in:
Scott Lahteine
2020-02-01 04:21:36 -06:00
committed by GitHub
parent 43d3463d5d
commit 90b6324563
33 changed files with 341 additions and 303 deletions

View File

@ -22,132 +22,150 @@
#pragma once
/**
* probe.h - Move, deploy, enable, etc.
* module/probe.h - Move, deploy, enable, etc.
*/
#include "../inc/MarlinConfig.h"
#if HAS_BED_PROBE
extern xyz_pos_t probe_offset;
#if HAS_PROBE_XY_OFFSET
extern xyz_pos_t &probe_offset_xy;
#else
constexpr xy_pos_t probe_offset_xy{0};
#endif
bool set_probe_deployed(const bool deploy);
#ifdef Z_AFTER_PROBING
void move_z_after_probing();
#endif
enum ProbePtRaise : unsigned char {
PROBE_PT_NONE, // No raise or stow after run_z_probe
PROBE_PT_STOW, // Do a complete stow after run_z_probe
PROBE_PT_RAISE, // Raise to "between" clearance after run_z_probe
enum ProbePtRaise : uint8_t {
PROBE_PT_NONE, // No raise or stow after run_z_probe
PROBE_PT_STOW, // Do a complete stow after run_z_probe
PROBE_PT_RAISE, // Raise to "between" clearance after run_z_probe
PROBE_PT_BIG_RAISE // Raise to big clearance after run_z_probe
};
float probe_at_point(const float &rx, const float &ry, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true);
inline float probe_at_point(const xy_pos_t &pos, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true) {
return probe_at_point(pos.x, pos.y, raise_after, verbose_level, probe_relative);
}
#define DEPLOY_PROBE() set_probe_deployed(true)
#define STOW_PROBE() set_probe_deployed(false)
#if HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)
extern const char msg_wait_for_bed_heating[25];
#endif
#else
constexpr xyz_pos_t probe_offset{0};
constexpr xy_pos_t probe_offset_xy{0};
#define DEPLOY_PROBE()
#define STOW_PROBE()
#endif
#if HAS_BED_PROBE || HAS_LEVELING
#if IS_KINEMATIC
constexpr float printable_radius = (
#if ENABLED(DELTA)
DELTA_PRINTABLE_RADIUS
#elif IS_SCARA
SCARA_PRINTABLE_RADIUS
#endif
);
class Probe {
public:
inline float probe_radius() {
return printable_radius - _MAX(MIN_PROBE_EDGE, HYPOT(probe_offset_xy.x, probe_offset_xy.y));
#if HAS_BED_PROBE
static xyz_pos_t offset;
// Use offset_xy for read only access
// More optimal the XY offset is known to always be zero.
#if HAS_PROBE_XY_OFFSET
static const xyz_pos_t &offset_xy;
#else
static constexpr xy_pos_t offset_xy{0};
#endif
static bool set_deployed(const bool deploy);
#ifdef Z_AFTER_PROBING
static void move_z_after_probing();
#endif
static float probe_at_point(const float &rx, const float &ry, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true);
static inline float probe_at_point(const xy_pos_t &pos, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true) {
return probe_at_point(pos.x, pos.y, raise_after, verbose_level, probe_relative);
}
#if HAS_HEATED_BED && ENABLED(WAIT_FOR_BED_HEATER)
static PGM_P msg_wait_for_bed_heating[25];
#endif
#else
static constexpr xyz_pos_t offset{0};
static constexpr xy_pos_t offset_xy{0};
static bool set_deployed(const bool) { return false; }
#endif
inline float probe_min_x() {
return (
#if IS_KINEMATIC
(X_CENTER) - probe_radius()
#else
_MAX((X_MIN_BED) + (MIN_PROBE_EDGE_LEFT), (X_MIN_POS) + probe_offset_xy.x)
#endif
);
}
inline float probe_max_x() {
return (
#if IS_KINEMATIC
(X_CENTER) + probe_radius()
#else
_MIN((X_MAX_BED) - (MIN_PROBE_EDGE_RIGHT), (X_MAX_POS) + probe_offset_xy.x)
#endif
);
}
inline float probe_min_y() {
return (
#if IS_KINEMATIC
(Y_CENTER) - probe_radius()
#else
_MAX((Y_MIN_BED) + (MIN_PROBE_EDGE_FRONT), (Y_MIN_POS) + probe_offset_xy.y)
#endif
);
}
inline float probe_max_y() {
return (
#if IS_KINEMATIC
(Y_CENTER) + probe_radius()
#else
_MIN((Y_MAX_BED) - (MIN_PROBE_EDGE_BACK), (Y_MAX_POS) + probe_offset_xy.y)
#endif
);
}
static inline bool deploy() { return set_deployed(true); }
static inline bool stow() { return set_deployed(false); }
#if NEEDS_THREE_PROBE_POINTS
// Retrieve three points to probe the bed. Any type exposing set(X,Y) may be used.
template <typename T>
inline void get_three_probe_points(T points[3]) {
#if ENABLED(HAS_FIXED_3POINT)
points[0].set(PROBE_PT_1_X, PROBE_PT_1_Y);
points[1].set(PROBE_PT_2_X, PROBE_PT_2_Y);
points[2].set(PROBE_PT_3_X, PROBE_PT_3_Y);
#else
#if IS_KINEMATIC
constexpr float SIN0 = 0.0, SIN120 = 0.866025, SIN240 = -0.866025,
COS0 = 1.0, COS120 = -0.5 , COS240 = -0.5;
points[0].set((X_CENTER) + probe_radius() * COS0, (Y_CENTER) + probe_radius() * SIN0);
points[1].set((X_CENTER) + probe_radius() * COS120, (Y_CENTER) + probe_radius() * SIN120);
points[2].set((X_CENTER) + probe_radius() * COS240, (Y_CENTER) + probe_radius() * SIN240);
#else
points[0].set(probe_min_x(), probe_min_y());
points[1].set(probe_max_x(), probe_min_y());
points[2].set((probe_max_x() - probe_min_x()) / 2, probe_max_y());
#if HAS_BED_PROBE || HAS_LEVELING
#if IS_KINEMATIC
static constexpr float printable_radius = (
#if ENABLED(DELTA)
DELTA_PRINTABLE_RADIUS
#elif IS_SCARA
SCARA_PRINTABLE_RADIUS
#endif
#endif
);
static inline float probe_radius() {
return printable_radius - _MAX(MIN_PROBE_EDGE, HYPOT(offset_xy.x, offset_xy.y));
}
#endif
static inline float min_x() {
return (
#if IS_KINEMATIC
(X_CENTER) - probe_radius()
#else
_MAX((X_MIN_BED) + (MIN_PROBE_EDGE_LEFT), (X_MIN_POS) + offset_xy.x)
#endif
);
}
static inline float max_x() {
return (
#if IS_KINEMATIC
(X_CENTER) + probe_radius()
#else
_MIN((X_MAX_BED) - (MIN_PROBE_EDGE_RIGHT), (X_MAX_POS) + offset_xy.x)
#endif
);
}
static inline float min_y() {
return (
#if IS_KINEMATIC
(Y_CENTER) - probe_radius()
#else
_MAX((Y_MIN_BED) + (MIN_PROBE_EDGE_FRONT), (Y_MIN_POS) + offset_xy.y)
#endif
);
}
static inline float max_y() {
return (
#if IS_KINEMATIC
(Y_CENTER) + probe_radius()
#else
_MIN((Y_MAX_BED) - (MIN_PROBE_EDGE_BACK), (Y_MAX_POS) + offset_xy.y)
#endif
);
}
#if NEEDS_THREE_PROBE_POINTS
// Retrieve three points to probe the bed. Any type exposing set(X,Y) may be used.
template <typename T>
static inline void get_three_points(T points[3]) {
#if ENABLED(HAS_FIXED_3POINT)
points[0].set(PROBE_PT_1_X, PROBE_PT_1_Y);
points[1].set(PROBE_PT_2_X, PROBE_PT_2_Y);
points[2].set(PROBE_PT_3_X, PROBE_PT_3_Y);
#else
#if IS_KINEMATIC
constexpr float SIN0 = 0.0, SIN120 = 0.866025, SIN240 = -0.866025,
COS0 = 1.0, COS120 = -0.5 , COS240 = -0.5;
points[0].set((X_CENTER) + probe_radius() * COS0, (Y_CENTER) + probe_radius() * SIN0);
points[1].set((X_CENTER) + probe_radius() * COS120, (Y_CENTER) + probe_radius() * SIN120);
points[2].set((X_CENTER) + probe_radius() * COS240, (Y_CENTER) + probe_radius() * SIN240);
#else
points[0].set(min_x(), min_y());
points[1].set(max_x(), min_y());
points[2].set((max_x() - min_x()) / 2, max_y());
#endif
#endif
}
#endif
#endif // HAS_BED_PROBE
#if HAS_Z_SERVO_PROBE
static void servo_probe_init();
#endif
#endif
#if HAS_Z_SERVO_PROBE
void servo_probe_init();
#endif
#if QUIET_PROBING
static void set_probing_paused(const bool p);
#endif
#if QUIET_PROBING
void probing_pause(const bool p);
#endif
private:
static bool move_to_z(const float z, const feedRate_t fr_mm_s);
static void do_z_raise(const float z_raise);
static float run_z_probe();
};
extern Probe probe;