Consolidate arc code, remove motion_control.*
This commit is contained in:
		| @@ -266,8 +266,8 @@ VPATH += $(ARDUINO_INSTALL_DIR)/hardware/teensy/cores/teensy | ||||
| endif | ||||
| CXXSRC = WMath.cpp WString.cpp Print.cpp Marlin_main.cpp	\ | ||||
| 	MarlinSerial.cpp Sd2Card.cpp SdBaseFile.cpp SdFatUtil.cpp	\ | ||||
| 	SdFile.cpp SdVolume.cpp motion_control.cpp planner.cpp		\ | ||||
| 	stepper.cpp temperature.cpp cardreader.cpp configuration_store.cpp \ | ||||
| 	SdFile.cpp SdVolume.cpp planner.cpp stepper.cpp \ | ||||
| 	temperature.cpp cardreader.cpp configuration_store.cpp \ | ||||
| 	watchdog.cpp SPI.cpp servo.cpp Tone.cpp ultralcd.cpp digipot_mcp4451.cpp \ | ||||
| 	vector_3.cpp qr_solve.cpp | ||||
| ifeq ($(LIQUID_TWI2), 0) | ||||
|   | ||||
| @@ -207,7 +207,6 @@ void disable_all_steppers(); | ||||
| void FlushSerialRequestResend(); | ||||
| void ok_to_send(); | ||||
|  | ||||
| void get_coordinates(); | ||||
| #ifdef DELTA | ||||
|   void calculate_delta(float cartesian[3]); | ||||
|   #ifdef ENABLE_AUTO_BED_LEVELING | ||||
|   | ||||
| @@ -47,7 +47,6 @@ | ||||
| #include "planner.h" | ||||
| #include "stepper.h" | ||||
| #include "temperature.h" | ||||
| #include "motion_control.h" | ||||
| #include "cardreader.h" | ||||
| #include "watchdog.h" | ||||
| #include "configuration_store.h" | ||||
| @@ -226,7 +225,7 @@ bool Running = true; | ||||
|  | ||||
| uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS; | ||||
|  | ||||
| static float feedrate = 1500.0, next_feedrate, saved_feedrate; | ||||
| static float feedrate = 1500.0, saved_feedrate; | ||||
| float current_position[NUM_AXIS] = { 0.0 }; | ||||
| static float destination[NUM_AXIS] = { 0.0 }; | ||||
| bool axis_known_position[3] = { false }; | ||||
| @@ -258,7 +257,7 @@ const char errormagic[] PROGMEM = "Error:"; | ||||
| const char echomagic[] PROGMEM = "echo:"; | ||||
| const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; | ||||
|  | ||||
| static float offset[3] = { 0 }; | ||||
| static float arc_offset[3] = { 0 }; | ||||
| static bool relative_mode = false;  //Determines Absolute or Relative Coordinates | ||||
| static char serial_char; | ||||
| static int serial_count = 0; | ||||
| @@ -401,7 +400,6 @@ bool target_direction; | ||||
| //================================ Functions ================================ | ||||
| //=========================================================================== | ||||
|  | ||||
| void get_arc_coordinates(); | ||||
| bool setTargetedHotend(int code); | ||||
|  | ||||
| void serial_echopair_P(const char *s_P, float v)         { serialprintPGM(s_P); SERIAL_ECHO(v); } | ||||
| @@ -1770,12 +1768,32 @@ static void homeaxis(AxisEnum axis) { | ||||
|  * | ||||
|  */ | ||||
|  | ||||
| /** | ||||
|  * Set XYZE destination and feedrate from the current GCode command | ||||
|  * | ||||
|  *  - Set destination from included axis codes | ||||
|  *  - Set to current for missing axis codes | ||||
|  *  - Set the feedrate, if included | ||||
|  */ | ||||
| void gcode_get_destination() { | ||||
|   for (int i = 0; i < NUM_AXIS; i++) { | ||||
|     if (code_seen(axis_codes[i])) | ||||
|       destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0); | ||||
|     else | ||||
|       destination[i] = current_position[i]; | ||||
|   } | ||||
|   if (code_seen('F')) { | ||||
|     float next_feedrate = code_value(); | ||||
|     if (next_feedrate > 0.0) feedrate = next_feedrate; | ||||
|   } | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * G0, G1: Coordinated movement of X Y Z E axes | ||||
|  */ | ||||
| inline void gcode_G0_G1() { | ||||
|   if (IsRunning()) { | ||||
|     get_coordinates(); // For X Y Z E F | ||||
|     gcode_get_destination(); // For X Y Z E F | ||||
|  | ||||
|     #ifdef FWRETRACT | ||||
|  | ||||
| @@ -1797,14 +1815,155 @@ inline void gcode_G0_G1() { | ||||
|   } | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * Plan an arc in 2 dimensions | ||||
|  * | ||||
|  * The arc is approximated by generating many small linear segments. | ||||
|  * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm) | ||||
|  * Arcs should only be made relatively large (over 5mm). Your slicer should have | ||||
|  * options for G2/G3 arc generation. | ||||
|  */ | ||||
| void plan_arc( | ||||
|   float *target,    // Destination position | ||||
|   float *offset,    // Center of rotation relative to current_position | ||||
|   uint8_t clockwise // Clockwise? | ||||
| ) { | ||||
|  | ||||
|   float radius = hypot(offset[X_AXIS], offset[Y_AXIS]), | ||||
|         center_axis0 = current_position[X_AXIS] + offset[X_AXIS], | ||||
|         center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS], | ||||
|         linear_travel = target[Z_AXIS] - current_position[Z_AXIS], | ||||
|         extruder_travel = target[E_AXIS] - current_position[E_AXIS], | ||||
|         r_axis0 = -offset[X_AXIS],  // Radius vector from center to current location | ||||
|         r_axis1 = -offset[Y_AXIS], | ||||
|         rt_axis0 = target[X_AXIS] - center_axis0, | ||||
|         rt_axis1 = target[Y_AXIS] - center_axis1; | ||||
|    | ||||
|   // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required. | ||||
|   float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); | ||||
|   if (angular_travel < 0) { angular_travel += RADIANS(360); } | ||||
|   if (clockwise) { angular_travel -= RADIANS(360); } | ||||
|    | ||||
|   // Make a circle if the angular rotation is 0 | ||||
|   if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0) | ||||
|     angular_travel += RADIANS(360); | ||||
|    | ||||
|   float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); | ||||
|   if (mm_of_travel < 0.001) { return; } | ||||
|   uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT); | ||||
|   if (segments == 0) segments = 1; | ||||
|    | ||||
|   float theta_per_segment = angular_travel/segments; | ||||
|   float linear_per_segment = linear_travel/segments; | ||||
|   float extruder_per_segment = extruder_travel/segments; | ||||
|    | ||||
|   /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, | ||||
|      and phi is the angle of rotation. Based on the solution approach by Jens Geisler. | ||||
|          r_T = [cos(phi) -sin(phi); | ||||
|                 sin(phi)  cos(phi] * r ; | ||||
|       | ||||
|      For arc generation, the center of the circle is the axis of rotation and the radius vector is  | ||||
|      defined from the circle center to the initial position. Each line segment is formed by successive | ||||
|      vector rotations. This requires only two cos() and sin() computations to form the rotation | ||||
|      matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since | ||||
|      all double numbers are single precision on the Arduino. (True double precision will not have | ||||
|      round off issues for CNC applications.) Single precision error can accumulate to be greater than | ||||
|      tool precision in some cases. Therefore, arc path correction is implemented.  | ||||
|  | ||||
|      Small angle approximation may be used to reduce computation overhead further. This approximation | ||||
|      holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words, | ||||
|      theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large | ||||
|      to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for  | ||||
|      numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an | ||||
|      issue for CNC machines with the single precision Arduino calculations. | ||||
|       | ||||
|      This approximation also allows plan_arc to immediately insert a line segment into the planner  | ||||
|      without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied | ||||
|      a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.  | ||||
|      This is important when there are successive arc motions.  | ||||
|   */ | ||||
|   // Vector rotation matrix values | ||||
|   float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation | ||||
|   float sin_T = theta_per_segment; | ||||
|    | ||||
|   float arc_target[4]; | ||||
|   float sin_Ti; | ||||
|   float cos_Ti; | ||||
|   float r_axisi; | ||||
|   uint16_t i; | ||||
|   int8_t count = 0; | ||||
|  | ||||
|   // Initialize the linear axis | ||||
|   arc_target[Z_AXIS] = current_position[Z_AXIS]; | ||||
|    | ||||
|   // Initialize the extruder axis | ||||
|   arc_target[E_AXIS] = current_position[E_AXIS]; | ||||
|  | ||||
|   float feed_rate = feedrate*feedrate_multiplier/60/100.0; | ||||
|  | ||||
|   for (i = 1; i < segments; i++) { // Increment (segments-1) | ||||
|  | ||||
|     if (count < N_ARC_CORRECTION) { | ||||
|       // Apply vector rotation matrix to previous r_axis0 / 1 | ||||
|       r_axisi = r_axis0*sin_T + r_axis1*cos_T; | ||||
|       r_axis0 = r_axis0*cos_T - r_axis1*sin_T; | ||||
|       r_axis1 = r_axisi; | ||||
|       count++; | ||||
|     } | ||||
|     else { | ||||
|       // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. | ||||
|       // Compute exact location by applying transformation matrix from initial radius vector(=-offset). | ||||
|       cos_Ti = cos(i*theta_per_segment); | ||||
|       sin_Ti = sin(i*theta_per_segment); | ||||
|       r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti; | ||||
|       r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti; | ||||
|       count = 0; | ||||
|     } | ||||
|  | ||||
|     // Update arc_target location | ||||
|     arc_target[X_AXIS] = center_axis0 + r_axis0; | ||||
|     arc_target[Y_AXIS] = center_axis1 + r_axis1; | ||||
|     arc_target[Z_AXIS] += linear_per_segment; | ||||
|     arc_target[E_AXIS] += extruder_per_segment; | ||||
|  | ||||
|     clamp_to_software_endstops(arc_target); | ||||
|     plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); | ||||
|   } | ||||
|   // Ensure last segment arrives at target location. | ||||
|   plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); | ||||
|  | ||||
|   // As far as the parser is concerned, the position is now == target. In reality the | ||||
|   // motion control system might still be processing the action and the real tool position | ||||
|   // in any intermediate location. | ||||
|   set_current_to_destination(); | ||||
| } | ||||
|  | ||||
| /** | ||||
|  * G2: Clockwise Arc | ||||
|  * G3: Counterclockwise Arc | ||||
|  */ | ||||
| inline void gcode_G2_G3(bool clockwise) { | ||||
|   if (IsRunning()) { | ||||
|     get_arc_coordinates(); | ||||
|     prepare_arc_move(clockwise); | ||||
|  | ||||
|     #ifdef SF_ARC_FIX | ||||
|       bool relative_mode_backup = relative_mode; | ||||
|       relative_mode = true; | ||||
|     #endif | ||||
|  | ||||
|     gcode_get_destination(); | ||||
|  | ||||
|     #ifdef SF_ARC_FIX | ||||
|       relative_mode = relative_mode_backup; | ||||
|     #endif | ||||
|  | ||||
|     // Center of arc as offset from current_position | ||||
|     arc_offset[0] = code_seen('I') ? code_value() : 0; | ||||
|     arc_offset[1] = code_seen('J') ? code_value() : 0; | ||||
|  | ||||
|     // Send an arc to the planner | ||||
|     plan_arc(destination, arc_offset, clockwise); | ||||
|  | ||||
|     refresh_cmd_timeout(); | ||||
|   } | ||||
| } | ||||
|  | ||||
| @@ -4308,7 +4467,7 @@ inline void gcode_M303() { | ||||
|     //SoftEndsEnabled = false;              // Ignore soft endstops during calibration | ||||
|     //SERIAL_ECHOLN(" Soft endstops disabled "); | ||||
|     if (IsRunning()) { | ||||
|       //get_coordinates(); // For X Y Z E F | ||||
|       //gcode_get_destination(); // For X Y Z E F | ||||
|       delta[X_AXIS] = delta_x; | ||||
|       delta[Y_AXIS] = delta_y; | ||||
|       calculate_SCARA_forward_Transform(delta); | ||||
| @@ -4932,7 +5091,7 @@ inline void gcode_T() { | ||||
|         make_move = true; | ||||
|       #endif | ||||
|  | ||||
|       next_feedrate = code_value(); | ||||
|       float next_feedrate = code_value(); | ||||
|       if (next_feedrate > 0.0) feedrate = next_feedrate; | ||||
|     } | ||||
|     #if EXTRUDERS > 1 | ||||
| @@ -5562,33 +5721,6 @@ void ok_to_send() { | ||||
|   SERIAL_EOL;   | ||||
| } | ||||
|  | ||||
| void get_coordinates() { | ||||
|   for (int i = 0; i < NUM_AXIS; i++) { | ||||
|     if (code_seen(axis_codes[i])) | ||||
|       destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0); | ||||
|     else | ||||
|       destination[i] = current_position[i]; | ||||
|   } | ||||
|   if (code_seen('F')) { | ||||
|     next_feedrate = code_value(); | ||||
|     if (next_feedrate > 0.0) feedrate = next_feedrate; | ||||
|   } | ||||
| } | ||||
|  | ||||
| void get_arc_coordinates() { | ||||
|   #ifdef SF_ARC_FIX | ||||
|     bool relative_mode_backup = relative_mode; | ||||
|     relative_mode = true; | ||||
|   #endif | ||||
|     get_coordinates(); | ||||
|   #ifdef SF_ARC_FIX | ||||
|     relative_mode = relative_mode_backup; | ||||
|   #endif | ||||
|  | ||||
|   offset[0] = code_seen('I') ? code_value() : 0; | ||||
|   offset[1] = code_seen('J') ? code_value() : 0; | ||||
| } | ||||
|  | ||||
| void clamp_to_software_endstops(float target[3]) { | ||||
|   if (min_software_endstops) { | ||||
|     NOLESS(target[X_AXIS], min_pos[X_AXIS]); | ||||
| @@ -5912,19 +6044,6 @@ void prepare_move() { | ||||
|   set_current_to_destination(); | ||||
| } | ||||
|  | ||||
| void prepare_arc_move(char isclockwise) { | ||||
|   float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc | ||||
|  | ||||
|   // Trace the arc | ||||
|   mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder); | ||||
|  | ||||
|   // As far as the parser is concerned, the position is now == target. In reality the | ||||
|   // motion control system might still be processing the action and the real tool position | ||||
|   // in any intermediate location. | ||||
|   set_current_to_destination(); | ||||
|   refresh_cmd_timeout(); | ||||
| } | ||||
|  | ||||
| #if HAS_CONTROLLERFAN | ||||
|  | ||||
|   void controllerFan() { | ||||
|   | ||||
| @@ -1,145 +0,0 @@ | ||||
| /* | ||||
|   motion_control.c - high level interface for issuing motion commands | ||||
|   Part of Grbl | ||||
|  | ||||
|   Copyright (c) 2009-2011 Simen Svale Skogsrud | ||||
|   Copyright (c) 2011 Sungeun K. Jeon | ||||
|    | ||||
|   Grbl is free software: you can redistribute it and/or modify | ||||
|   it under the terms of the GNU General Public License as published by | ||||
|   the Free Software Foundation, either version 3 of the License, or | ||||
|   (at your option) any later version. | ||||
|  | ||||
|   Grbl is distributed in the hope that it will be useful, | ||||
|   but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|   GNU General Public License for more details. | ||||
|  | ||||
|   You should have received a copy of the GNU General Public License | ||||
|   along with Grbl.  If not, see <http://www.gnu.org/licenses/>. | ||||
| */ | ||||
|  | ||||
| #include "Marlin.h" | ||||
| #include "stepper.h" | ||||
| #include "planner.h" | ||||
|  | ||||
| // The arc is approximated by generating a huge number of tiny, linear segments. The length of each  | ||||
| // segment is configured in settings.mm_per_arc_segment.   | ||||
| void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,  | ||||
|   uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder) | ||||
| {       | ||||
|   //   int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled(); | ||||
|   //   plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc | ||||
|   float center_axis0 = position[axis_0] + offset[axis_0]; | ||||
|   float center_axis1 = position[axis_1] + offset[axis_1]; | ||||
|   float linear_travel = target[axis_linear] - position[axis_linear]; | ||||
|   float extruder_travel = target[E_AXIS] - position[E_AXIS]; | ||||
|   float r_axis0 = -offset[axis_0];  // Radius vector from center to current location | ||||
|   float r_axis1 = -offset[axis_1]; | ||||
|   float rt_axis0 = target[axis_0] - center_axis0; | ||||
|   float rt_axis1 = target[axis_1] - center_axis1; | ||||
|    | ||||
|   // CCW angle between position and target from circle center. Only one atan2() trig computation required. | ||||
|   float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); | ||||
|   if (angular_travel < 0) { angular_travel += 2*M_PI; } | ||||
|   if (isclockwise) { angular_travel -= 2*M_PI; } | ||||
|    | ||||
|   //20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving | ||||
|   //to compensate when start pos = target pos && angle is zero -> angle = 2Pi | ||||
|   if (position[axis_0] == target[axis_0] && position[axis_1] == target[axis_1] && angular_travel == 0) | ||||
|   { | ||||
| 	  angular_travel += 2*M_PI; | ||||
|   } | ||||
|   //end fix G03 | ||||
|    | ||||
|   float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); | ||||
|   if (millimeters_of_travel < 0.001) { return; } | ||||
|   uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT); | ||||
|   if(segments == 0) segments = 1; | ||||
|    | ||||
|   /*   | ||||
|     // Multiply inverse feed_rate to compensate for the fact that this movement is approximated | ||||
|     // by a number of discrete segments. The inverse feed_rate should be correct for the sum of  | ||||
|     // all segments. | ||||
|     if (invert_feed_rate) { feed_rate *= segments; } | ||||
|   */ | ||||
|   float theta_per_segment = angular_travel/segments; | ||||
|   float linear_per_segment = linear_travel/segments; | ||||
|   float extruder_per_segment = extruder_travel/segments; | ||||
|    | ||||
|   /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, | ||||
|      and phi is the angle of rotation. Based on the solution approach by Jens Geisler. | ||||
|          r_T = [cos(phi) -sin(phi); | ||||
|                 sin(phi)  cos(phi] * r ; | ||||
|       | ||||
|      For arc generation, the center of the circle is the axis of rotation and the radius vector is  | ||||
|      defined from the circle center to the initial position. Each line segment is formed by successive | ||||
|      vector rotations. This requires only two cos() and sin() computations to form the rotation | ||||
|      matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since | ||||
|      all double numbers are single precision on the Arduino. (True double precision will not have | ||||
|      round off issues for CNC applications.) Single precision error can accumulate to be greater than | ||||
|      tool precision in some cases. Therefore, arc path correction is implemented.  | ||||
|  | ||||
|      Small angle approximation may be used to reduce computation overhead further. This approximation | ||||
|      holds for everything, but very small circles and large mm_per_arc_segment values. In other words, | ||||
|      theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large | ||||
|      to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for  | ||||
|      numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an | ||||
|      issue for CNC machines with the single precision Arduino calculations. | ||||
|       | ||||
|      This approximation also allows mc_arc to immediately insert a line segment into the planner  | ||||
|      without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied | ||||
|      a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.  | ||||
|      This is important when there are successive arc motions.  | ||||
|   */ | ||||
|   // Vector rotation matrix values | ||||
|   float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation | ||||
|   float sin_T = theta_per_segment; | ||||
|    | ||||
|   float arc_target[4]; | ||||
|   float sin_Ti; | ||||
|   float cos_Ti; | ||||
|   float r_axisi; | ||||
|   uint16_t i; | ||||
|   int8_t count = 0; | ||||
|  | ||||
|   // Initialize the linear axis | ||||
|   arc_target[axis_linear] = position[axis_linear]; | ||||
|    | ||||
|   // Initialize the extruder axis | ||||
|   arc_target[E_AXIS] = position[E_AXIS]; | ||||
|  | ||||
|   for (i = 1; i<segments; i++) { // Increment (segments-1) | ||||
|      | ||||
|     if (count < N_ARC_CORRECTION) { | ||||
|       // Apply vector rotation matrix  | ||||
|       r_axisi = r_axis0*sin_T + r_axis1*cos_T; | ||||
|       r_axis0 = r_axis0*cos_T - r_axis1*sin_T; | ||||
|       r_axis1 = r_axisi; | ||||
|       count++; | ||||
|     } else { | ||||
|       // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. | ||||
|       // Compute exact location by applying transformation matrix from initial radius vector(=-offset). | ||||
|       cos_Ti = cos(i*theta_per_segment); | ||||
|       sin_Ti = sin(i*theta_per_segment); | ||||
|       r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti; | ||||
|       r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti; | ||||
|       count = 0; | ||||
|     } | ||||
|  | ||||
|     // Update arc_target location | ||||
|     arc_target[axis_0] = center_axis0 + r_axis0; | ||||
|     arc_target[axis_1] = center_axis1 + r_axis1; | ||||
|     arc_target[axis_linear] += linear_per_segment; | ||||
|     arc_target[E_AXIS] += extruder_per_segment; | ||||
|  | ||||
|     clamp_to_software_endstops(arc_target); | ||||
|     plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, extruder); | ||||
|      | ||||
|   } | ||||
|   // Ensure last segment arrives at target location. | ||||
|   plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder); | ||||
|  | ||||
|   //   plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled); | ||||
| } | ||||
|  | ||||
| @@ -1,32 +0,0 @@ | ||||
| /* | ||||
|   motion_control.h - high level interface for issuing motion commands | ||||
|   Part of Grbl | ||||
|  | ||||
|   Copyright (c) 2009-2011 Simen Svale Skogsrud | ||||
|   Copyright (c) 2011 Sungeun K. Jeon | ||||
|    | ||||
|   Grbl is free software: you can redistribute it and/or modify | ||||
|   it under the terms of the GNU General Public License as published by | ||||
|   the Free Software Foundation, either version 3 of the License, or | ||||
|   (at your option) any later version. | ||||
|  | ||||
|   Grbl is distributed in the hope that it will be useful, | ||||
|   but WITHOUT ANY WARRANTY; without even the implied warranty of | ||||
|   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||||
|   GNU General Public License for more details. | ||||
|  | ||||
|   You should have received a copy of the GNU General Public License | ||||
|   along with Grbl.  If not, see <http://www.gnu.org/licenses/>. | ||||
| */ | ||||
|  | ||||
| #ifndef motion_control_h | ||||
| #define motion_control_h | ||||
|  | ||||
| // Execute an arc in offset mode format. position == current xyz, target == target xyz,  | ||||
| // offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is | ||||
| // the direction of helical travel, radius == circle radius, isclockwise boolean. Used | ||||
| // for vector transformation direction. | ||||
| void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1, | ||||
|   unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise, uint8_t extruder); | ||||
|    | ||||
| #endif | ||||
		Reference in New Issue
	
	Block a user