Consolidate arc code, remove motion_control.*
This commit is contained in:
		| @@ -266,8 +266,8 @@ VPATH += $(ARDUINO_INSTALL_DIR)/hardware/teensy/cores/teensy | |||||||
| endif | endif | ||||||
| CXXSRC = WMath.cpp WString.cpp Print.cpp Marlin_main.cpp	\ | CXXSRC = WMath.cpp WString.cpp Print.cpp Marlin_main.cpp	\ | ||||||
| 	MarlinSerial.cpp Sd2Card.cpp SdBaseFile.cpp SdFatUtil.cpp	\ | 	MarlinSerial.cpp Sd2Card.cpp SdBaseFile.cpp SdFatUtil.cpp	\ | ||||||
| 	SdFile.cpp SdVolume.cpp motion_control.cpp planner.cpp		\ | 	SdFile.cpp SdVolume.cpp planner.cpp stepper.cpp \ | ||||||
| 	stepper.cpp temperature.cpp cardreader.cpp configuration_store.cpp \ | 	temperature.cpp cardreader.cpp configuration_store.cpp \ | ||||||
| 	watchdog.cpp SPI.cpp servo.cpp Tone.cpp ultralcd.cpp digipot_mcp4451.cpp \ | 	watchdog.cpp SPI.cpp servo.cpp Tone.cpp ultralcd.cpp digipot_mcp4451.cpp \ | ||||||
| 	vector_3.cpp qr_solve.cpp | 	vector_3.cpp qr_solve.cpp | ||||||
| ifeq ($(LIQUID_TWI2), 0) | ifeq ($(LIQUID_TWI2), 0) | ||||||
|   | |||||||
| @@ -207,7 +207,6 @@ void disable_all_steppers(); | |||||||
| void FlushSerialRequestResend(); | void FlushSerialRequestResend(); | ||||||
| void ok_to_send(); | void ok_to_send(); | ||||||
|  |  | ||||||
| void get_coordinates(); |  | ||||||
| #ifdef DELTA | #ifdef DELTA | ||||||
|   void calculate_delta(float cartesian[3]); |   void calculate_delta(float cartesian[3]); | ||||||
|   #ifdef ENABLE_AUTO_BED_LEVELING |   #ifdef ENABLE_AUTO_BED_LEVELING | ||||||
|   | |||||||
| @@ -47,7 +47,6 @@ | |||||||
| #include "planner.h" | #include "planner.h" | ||||||
| #include "stepper.h" | #include "stepper.h" | ||||||
| #include "temperature.h" | #include "temperature.h" | ||||||
| #include "motion_control.h" |  | ||||||
| #include "cardreader.h" | #include "cardreader.h" | ||||||
| #include "watchdog.h" | #include "watchdog.h" | ||||||
| #include "configuration_store.h" | #include "configuration_store.h" | ||||||
| @@ -226,7 +225,7 @@ bool Running = true; | |||||||
|  |  | ||||||
| uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS; | uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS; | ||||||
|  |  | ||||||
| static float feedrate = 1500.0, next_feedrate, saved_feedrate; | static float feedrate = 1500.0, saved_feedrate; | ||||||
| float current_position[NUM_AXIS] = { 0.0 }; | float current_position[NUM_AXIS] = { 0.0 }; | ||||||
| static float destination[NUM_AXIS] = { 0.0 }; | static float destination[NUM_AXIS] = { 0.0 }; | ||||||
| bool axis_known_position[3] = { false }; | bool axis_known_position[3] = { false }; | ||||||
| @@ -258,7 +257,7 @@ const char errormagic[] PROGMEM = "Error:"; | |||||||
| const char echomagic[] PROGMEM = "echo:"; | const char echomagic[] PROGMEM = "echo:"; | ||||||
| const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; | const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; | ||||||
|  |  | ||||||
| static float offset[3] = { 0 }; | static float arc_offset[3] = { 0 }; | ||||||
| static bool relative_mode = false;  //Determines Absolute or Relative Coordinates | static bool relative_mode = false;  //Determines Absolute or Relative Coordinates | ||||||
| static char serial_char; | static char serial_char; | ||||||
| static int serial_count = 0; | static int serial_count = 0; | ||||||
| @@ -401,7 +400,6 @@ bool target_direction; | |||||||
| //================================ Functions ================================ | //================================ Functions ================================ | ||||||
| //=========================================================================== | //=========================================================================== | ||||||
|  |  | ||||||
| void get_arc_coordinates(); |  | ||||||
| bool setTargetedHotend(int code); | bool setTargetedHotend(int code); | ||||||
|  |  | ||||||
| void serial_echopair_P(const char *s_P, float v)         { serialprintPGM(s_P); SERIAL_ECHO(v); } | void serial_echopair_P(const char *s_P, float v)         { serialprintPGM(s_P); SERIAL_ECHO(v); } | ||||||
| @@ -1770,12 +1768,32 @@ static void homeaxis(AxisEnum axis) { | |||||||
|  * |  * | ||||||
|  */ |  */ | ||||||
|  |  | ||||||
|  | /** | ||||||
|  |  * Set XYZE destination and feedrate from the current GCode command | ||||||
|  |  * | ||||||
|  |  *  - Set destination from included axis codes | ||||||
|  |  *  - Set to current for missing axis codes | ||||||
|  |  *  - Set the feedrate, if included | ||||||
|  |  */ | ||||||
|  | void gcode_get_destination() { | ||||||
|  |   for (int i = 0; i < NUM_AXIS; i++) { | ||||||
|  |     if (code_seen(axis_codes[i])) | ||||||
|  |       destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0); | ||||||
|  |     else | ||||||
|  |       destination[i] = current_position[i]; | ||||||
|  |   } | ||||||
|  |   if (code_seen('F')) { | ||||||
|  |     float next_feedrate = code_value(); | ||||||
|  |     if (next_feedrate > 0.0) feedrate = next_feedrate; | ||||||
|  |   } | ||||||
|  | } | ||||||
|  |  | ||||||
| /** | /** | ||||||
|  * G0, G1: Coordinated movement of X Y Z E axes |  * G0, G1: Coordinated movement of X Y Z E axes | ||||||
|  */ |  */ | ||||||
| inline void gcode_G0_G1() { | inline void gcode_G0_G1() { | ||||||
|   if (IsRunning()) { |   if (IsRunning()) { | ||||||
|     get_coordinates(); // For X Y Z E F |     gcode_get_destination(); // For X Y Z E F | ||||||
|  |  | ||||||
|     #ifdef FWRETRACT |     #ifdef FWRETRACT | ||||||
|  |  | ||||||
| @@ -1797,14 +1815,155 @@ inline void gcode_G0_G1() { | |||||||
|   } |   } | ||||||
| } | } | ||||||
|  |  | ||||||
|  | /** | ||||||
|  |  * Plan an arc in 2 dimensions | ||||||
|  |  * | ||||||
|  |  * The arc is approximated by generating many small linear segments. | ||||||
|  |  * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm) | ||||||
|  |  * Arcs should only be made relatively large (over 5mm). Your slicer should have | ||||||
|  |  * options for G2/G3 arc generation. | ||||||
|  |  */ | ||||||
|  | void plan_arc( | ||||||
|  |   float *target,    // Destination position | ||||||
|  |   float *offset,    // Center of rotation relative to current_position | ||||||
|  |   uint8_t clockwise // Clockwise? | ||||||
|  | ) { | ||||||
|  |  | ||||||
|  |   float radius = hypot(offset[X_AXIS], offset[Y_AXIS]), | ||||||
|  |         center_axis0 = current_position[X_AXIS] + offset[X_AXIS], | ||||||
|  |         center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS], | ||||||
|  |         linear_travel = target[Z_AXIS] - current_position[Z_AXIS], | ||||||
|  |         extruder_travel = target[E_AXIS] - current_position[E_AXIS], | ||||||
|  |         r_axis0 = -offset[X_AXIS],  // Radius vector from center to current location | ||||||
|  |         r_axis1 = -offset[Y_AXIS], | ||||||
|  |         rt_axis0 = target[X_AXIS] - center_axis0, | ||||||
|  |         rt_axis1 = target[Y_AXIS] - center_axis1; | ||||||
|  |    | ||||||
|  |   // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required. | ||||||
|  |   float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); | ||||||
|  |   if (angular_travel < 0) { angular_travel += RADIANS(360); } | ||||||
|  |   if (clockwise) { angular_travel -= RADIANS(360); } | ||||||
|  |    | ||||||
|  |   // Make a circle if the angular rotation is 0 | ||||||
|  |   if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0) | ||||||
|  |     angular_travel += RADIANS(360); | ||||||
|  |    | ||||||
|  |   float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); | ||||||
|  |   if (mm_of_travel < 0.001) { return; } | ||||||
|  |   uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT); | ||||||
|  |   if (segments == 0) segments = 1; | ||||||
|  |    | ||||||
|  |   float theta_per_segment = angular_travel/segments; | ||||||
|  |   float linear_per_segment = linear_travel/segments; | ||||||
|  |   float extruder_per_segment = extruder_travel/segments; | ||||||
|  |    | ||||||
|  |   /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, | ||||||
|  |      and phi is the angle of rotation. Based on the solution approach by Jens Geisler. | ||||||
|  |          r_T = [cos(phi) -sin(phi); | ||||||
|  |                 sin(phi)  cos(phi] * r ; | ||||||
|  |       | ||||||
|  |      For arc generation, the center of the circle is the axis of rotation and the radius vector is  | ||||||
|  |      defined from the circle center to the initial position. Each line segment is formed by successive | ||||||
|  |      vector rotations. This requires only two cos() and sin() computations to form the rotation | ||||||
|  |      matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since | ||||||
|  |      all double numbers are single precision on the Arduino. (True double precision will not have | ||||||
|  |      round off issues for CNC applications.) Single precision error can accumulate to be greater than | ||||||
|  |      tool precision in some cases. Therefore, arc path correction is implemented.  | ||||||
|  |  | ||||||
|  |      Small angle approximation may be used to reduce computation overhead further. This approximation | ||||||
|  |      holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words, | ||||||
|  |      theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large | ||||||
|  |      to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for  | ||||||
|  |      numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an | ||||||
|  |      issue for CNC machines with the single precision Arduino calculations. | ||||||
|  |       | ||||||
|  |      This approximation also allows plan_arc to immediately insert a line segment into the planner  | ||||||
|  |      without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied | ||||||
|  |      a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.  | ||||||
|  |      This is important when there are successive arc motions.  | ||||||
|  |   */ | ||||||
|  |   // Vector rotation matrix values | ||||||
|  |   float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation | ||||||
|  |   float sin_T = theta_per_segment; | ||||||
|  |    | ||||||
|  |   float arc_target[4]; | ||||||
|  |   float sin_Ti; | ||||||
|  |   float cos_Ti; | ||||||
|  |   float r_axisi; | ||||||
|  |   uint16_t i; | ||||||
|  |   int8_t count = 0; | ||||||
|  |  | ||||||
|  |   // Initialize the linear axis | ||||||
|  |   arc_target[Z_AXIS] = current_position[Z_AXIS]; | ||||||
|  |    | ||||||
|  |   // Initialize the extruder axis | ||||||
|  |   arc_target[E_AXIS] = current_position[E_AXIS]; | ||||||
|  |  | ||||||
|  |   float feed_rate = feedrate*feedrate_multiplier/60/100.0; | ||||||
|  |  | ||||||
|  |   for (i = 1; i < segments; i++) { // Increment (segments-1) | ||||||
|  |  | ||||||
|  |     if (count < N_ARC_CORRECTION) { | ||||||
|  |       // Apply vector rotation matrix to previous r_axis0 / 1 | ||||||
|  |       r_axisi = r_axis0*sin_T + r_axis1*cos_T; | ||||||
|  |       r_axis0 = r_axis0*cos_T - r_axis1*sin_T; | ||||||
|  |       r_axis1 = r_axisi; | ||||||
|  |       count++; | ||||||
|  |     } | ||||||
|  |     else { | ||||||
|  |       // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. | ||||||
|  |       // Compute exact location by applying transformation matrix from initial radius vector(=-offset). | ||||||
|  |       cos_Ti = cos(i*theta_per_segment); | ||||||
|  |       sin_Ti = sin(i*theta_per_segment); | ||||||
|  |       r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti; | ||||||
|  |       r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti; | ||||||
|  |       count = 0; | ||||||
|  |     } | ||||||
|  |  | ||||||
|  |     // Update arc_target location | ||||||
|  |     arc_target[X_AXIS] = center_axis0 + r_axis0; | ||||||
|  |     arc_target[Y_AXIS] = center_axis1 + r_axis1; | ||||||
|  |     arc_target[Z_AXIS] += linear_per_segment; | ||||||
|  |     arc_target[E_AXIS] += extruder_per_segment; | ||||||
|  |  | ||||||
|  |     clamp_to_software_endstops(arc_target); | ||||||
|  |     plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); | ||||||
|  |   } | ||||||
|  |   // Ensure last segment arrives at target location. | ||||||
|  |   plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); | ||||||
|  |  | ||||||
|  |   // As far as the parser is concerned, the position is now == target. In reality the | ||||||
|  |   // motion control system might still be processing the action and the real tool position | ||||||
|  |   // in any intermediate location. | ||||||
|  |   set_current_to_destination(); | ||||||
|  | } | ||||||
|  |  | ||||||
| /** | /** | ||||||
|  * G2: Clockwise Arc |  * G2: Clockwise Arc | ||||||
|  * G3: Counterclockwise Arc |  * G3: Counterclockwise Arc | ||||||
|  */ |  */ | ||||||
| inline void gcode_G2_G3(bool clockwise) { | inline void gcode_G2_G3(bool clockwise) { | ||||||
|   if (IsRunning()) { |   if (IsRunning()) { | ||||||
|     get_arc_coordinates(); |  | ||||||
|     prepare_arc_move(clockwise); |     #ifdef SF_ARC_FIX | ||||||
|  |       bool relative_mode_backup = relative_mode; | ||||||
|  |       relative_mode = true; | ||||||
|  |     #endif | ||||||
|  |  | ||||||
|  |     gcode_get_destination(); | ||||||
|  |  | ||||||
|  |     #ifdef SF_ARC_FIX | ||||||
|  |       relative_mode = relative_mode_backup; | ||||||
|  |     #endif | ||||||
|  |  | ||||||
|  |     // Center of arc as offset from current_position | ||||||
|  |     arc_offset[0] = code_seen('I') ? code_value() : 0; | ||||||
|  |     arc_offset[1] = code_seen('J') ? code_value() : 0; | ||||||
|  |  | ||||||
|  |     // Send an arc to the planner | ||||||
|  |     plan_arc(destination, arc_offset, clockwise); | ||||||
|  |  | ||||||
|  |     refresh_cmd_timeout(); | ||||||
|   } |   } | ||||||
| } | } | ||||||
|  |  | ||||||
| @@ -4308,7 +4467,7 @@ inline void gcode_M303() { | |||||||
|     //SoftEndsEnabled = false;              // Ignore soft endstops during calibration |     //SoftEndsEnabled = false;              // Ignore soft endstops during calibration | ||||||
|     //SERIAL_ECHOLN(" Soft endstops disabled "); |     //SERIAL_ECHOLN(" Soft endstops disabled "); | ||||||
|     if (IsRunning()) { |     if (IsRunning()) { | ||||||
|       //get_coordinates(); // For X Y Z E F |       //gcode_get_destination(); // For X Y Z E F | ||||||
|       delta[X_AXIS] = delta_x; |       delta[X_AXIS] = delta_x; | ||||||
|       delta[Y_AXIS] = delta_y; |       delta[Y_AXIS] = delta_y; | ||||||
|       calculate_SCARA_forward_Transform(delta); |       calculate_SCARA_forward_Transform(delta); | ||||||
| @@ -4932,7 +5091,7 @@ inline void gcode_T() { | |||||||
|         make_move = true; |         make_move = true; | ||||||
|       #endif |       #endif | ||||||
|  |  | ||||||
|       next_feedrate = code_value(); |       float next_feedrate = code_value(); | ||||||
|       if (next_feedrate > 0.0) feedrate = next_feedrate; |       if (next_feedrate > 0.0) feedrate = next_feedrate; | ||||||
|     } |     } | ||||||
|     #if EXTRUDERS > 1 |     #if EXTRUDERS > 1 | ||||||
| @@ -5562,33 +5721,6 @@ void ok_to_send() { | |||||||
|   SERIAL_EOL;   |   SERIAL_EOL;   | ||||||
| } | } | ||||||
|  |  | ||||||
| void get_coordinates() { |  | ||||||
|   for (int i = 0; i < NUM_AXIS; i++) { |  | ||||||
|     if (code_seen(axis_codes[i])) |  | ||||||
|       destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0); |  | ||||||
|     else |  | ||||||
|       destination[i] = current_position[i]; |  | ||||||
|   } |  | ||||||
|   if (code_seen('F')) { |  | ||||||
|     next_feedrate = code_value(); |  | ||||||
|     if (next_feedrate > 0.0) feedrate = next_feedrate; |  | ||||||
|   } |  | ||||||
| } |  | ||||||
|  |  | ||||||
| void get_arc_coordinates() { |  | ||||||
|   #ifdef SF_ARC_FIX |  | ||||||
|     bool relative_mode_backup = relative_mode; |  | ||||||
|     relative_mode = true; |  | ||||||
|   #endif |  | ||||||
|     get_coordinates(); |  | ||||||
|   #ifdef SF_ARC_FIX |  | ||||||
|     relative_mode = relative_mode_backup; |  | ||||||
|   #endif |  | ||||||
|  |  | ||||||
|   offset[0] = code_seen('I') ? code_value() : 0; |  | ||||||
|   offset[1] = code_seen('J') ? code_value() : 0; |  | ||||||
| } |  | ||||||
|  |  | ||||||
| void clamp_to_software_endstops(float target[3]) { | void clamp_to_software_endstops(float target[3]) { | ||||||
|   if (min_software_endstops) { |   if (min_software_endstops) { | ||||||
|     NOLESS(target[X_AXIS], min_pos[X_AXIS]); |     NOLESS(target[X_AXIS], min_pos[X_AXIS]); | ||||||
| @@ -5912,19 +6044,6 @@ void prepare_move() { | |||||||
|   set_current_to_destination(); |   set_current_to_destination(); | ||||||
| } | } | ||||||
|  |  | ||||||
| void prepare_arc_move(char isclockwise) { |  | ||||||
|   float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc |  | ||||||
|  |  | ||||||
|   // Trace the arc |  | ||||||
|   mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder); |  | ||||||
|  |  | ||||||
|   // As far as the parser is concerned, the position is now == target. In reality the |  | ||||||
|   // motion control system might still be processing the action and the real tool position |  | ||||||
|   // in any intermediate location. |  | ||||||
|   set_current_to_destination(); |  | ||||||
|   refresh_cmd_timeout(); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| #if HAS_CONTROLLERFAN | #if HAS_CONTROLLERFAN | ||||||
|  |  | ||||||
|   void controllerFan() { |   void controllerFan() { | ||||||
|   | |||||||
| @@ -1,145 +0,0 @@ | |||||||
| /* |  | ||||||
|   motion_control.c - high level interface for issuing motion commands |  | ||||||
|   Part of Grbl |  | ||||||
|  |  | ||||||
|   Copyright (c) 2009-2011 Simen Svale Skogsrud |  | ||||||
|   Copyright (c) 2011 Sungeun K. Jeon |  | ||||||
|    |  | ||||||
|   Grbl is free software: you can redistribute it and/or modify |  | ||||||
|   it under the terms of the GNU General Public License as published by |  | ||||||
|   the Free Software Foundation, either version 3 of the License, or |  | ||||||
|   (at your option) any later version. |  | ||||||
|  |  | ||||||
|   Grbl is distributed in the hope that it will be useful, |  | ||||||
|   but WITHOUT ANY WARRANTY; without even the implied warranty of |  | ||||||
|   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the |  | ||||||
|   GNU General Public License for more details. |  | ||||||
|  |  | ||||||
|   You should have received a copy of the GNU General Public License |  | ||||||
|   along with Grbl.  If not, see <http://www.gnu.org/licenses/>. |  | ||||||
| */ |  | ||||||
|  |  | ||||||
| #include "Marlin.h" |  | ||||||
| #include "stepper.h" |  | ||||||
| #include "planner.h" |  | ||||||
|  |  | ||||||
| // The arc is approximated by generating a huge number of tiny, linear segments. The length of each  |  | ||||||
| // segment is configured in settings.mm_per_arc_segment.   |  | ||||||
| void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,  |  | ||||||
|   uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise, uint8_t extruder) |  | ||||||
| {       |  | ||||||
|   //   int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled(); |  | ||||||
|   //   plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc |  | ||||||
|   float center_axis0 = position[axis_0] + offset[axis_0]; |  | ||||||
|   float center_axis1 = position[axis_1] + offset[axis_1]; |  | ||||||
|   float linear_travel = target[axis_linear] - position[axis_linear]; |  | ||||||
|   float extruder_travel = target[E_AXIS] - position[E_AXIS]; |  | ||||||
|   float r_axis0 = -offset[axis_0];  // Radius vector from center to current location |  | ||||||
|   float r_axis1 = -offset[axis_1]; |  | ||||||
|   float rt_axis0 = target[axis_0] - center_axis0; |  | ||||||
|   float rt_axis1 = target[axis_1] - center_axis1; |  | ||||||
|    |  | ||||||
|   // CCW angle between position and target from circle center. Only one atan2() trig computation required. |  | ||||||
|   float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1); |  | ||||||
|   if (angular_travel < 0) { angular_travel += 2*M_PI; } |  | ||||||
|   if (isclockwise) { angular_travel -= 2*M_PI; } |  | ||||||
|    |  | ||||||
|   //20141002:full circle for G03 did not work, e.g. G03 X80 Y80 I20 J0 F2000 is giving an Angle of zero so head is not moving |  | ||||||
|   //to compensate when start pos = target pos && angle is zero -> angle = 2Pi |  | ||||||
|   if (position[axis_0] == target[axis_0] && position[axis_1] == target[axis_1] && angular_travel == 0) |  | ||||||
|   { |  | ||||||
| 	  angular_travel += 2*M_PI; |  | ||||||
|   } |  | ||||||
|   //end fix G03 |  | ||||||
|    |  | ||||||
|   float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel)); |  | ||||||
|   if (millimeters_of_travel < 0.001) { return; } |  | ||||||
|   uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT); |  | ||||||
|   if(segments == 0) segments = 1; |  | ||||||
|    |  | ||||||
|   /*   |  | ||||||
|     // Multiply inverse feed_rate to compensate for the fact that this movement is approximated |  | ||||||
|     // by a number of discrete segments. The inverse feed_rate should be correct for the sum of  |  | ||||||
|     // all segments. |  | ||||||
|     if (invert_feed_rate) { feed_rate *= segments; } |  | ||||||
|   */ |  | ||||||
|   float theta_per_segment = angular_travel/segments; |  | ||||||
|   float linear_per_segment = linear_travel/segments; |  | ||||||
|   float extruder_per_segment = extruder_travel/segments; |  | ||||||
|    |  | ||||||
|   /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, |  | ||||||
|      and phi is the angle of rotation. Based on the solution approach by Jens Geisler. |  | ||||||
|          r_T = [cos(phi) -sin(phi); |  | ||||||
|                 sin(phi)  cos(phi] * r ; |  | ||||||
|       |  | ||||||
|      For arc generation, the center of the circle is the axis of rotation and the radius vector is  |  | ||||||
|      defined from the circle center to the initial position. Each line segment is formed by successive |  | ||||||
|      vector rotations. This requires only two cos() and sin() computations to form the rotation |  | ||||||
|      matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since |  | ||||||
|      all double numbers are single precision on the Arduino. (True double precision will not have |  | ||||||
|      round off issues for CNC applications.) Single precision error can accumulate to be greater than |  | ||||||
|      tool precision in some cases. Therefore, arc path correction is implemented.  |  | ||||||
|  |  | ||||||
|      Small angle approximation may be used to reduce computation overhead further. This approximation |  | ||||||
|      holds for everything, but very small circles and large mm_per_arc_segment values. In other words, |  | ||||||
|      theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large |  | ||||||
|      to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for  |  | ||||||
|      numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an |  | ||||||
|      issue for CNC machines with the single precision Arduino calculations. |  | ||||||
|       |  | ||||||
|      This approximation also allows mc_arc to immediately insert a line segment into the planner  |  | ||||||
|      without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied |  | ||||||
|      a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.  |  | ||||||
|      This is important when there are successive arc motions.  |  | ||||||
|   */ |  | ||||||
|   // Vector rotation matrix values |  | ||||||
|   float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation |  | ||||||
|   float sin_T = theta_per_segment; |  | ||||||
|    |  | ||||||
|   float arc_target[4]; |  | ||||||
|   float sin_Ti; |  | ||||||
|   float cos_Ti; |  | ||||||
|   float r_axisi; |  | ||||||
|   uint16_t i; |  | ||||||
|   int8_t count = 0; |  | ||||||
|  |  | ||||||
|   // Initialize the linear axis |  | ||||||
|   arc_target[axis_linear] = position[axis_linear]; |  | ||||||
|    |  | ||||||
|   // Initialize the extruder axis |  | ||||||
|   arc_target[E_AXIS] = position[E_AXIS]; |  | ||||||
|  |  | ||||||
|   for (i = 1; i<segments; i++) { // Increment (segments-1) |  | ||||||
|      |  | ||||||
|     if (count < N_ARC_CORRECTION) { |  | ||||||
|       // Apply vector rotation matrix  |  | ||||||
|       r_axisi = r_axis0*sin_T + r_axis1*cos_T; |  | ||||||
|       r_axis0 = r_axis0*cos_T - r_axis1*sin_T; |  | ||||||
|       r_axis1 = r_axisi; |  | ||||||
|       count++; |  | ||||||
|     } else { |  | ||||||
|       // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. |  | ||||||
|       // Compute exact location by applying transformation matrix from initial radius vector(=-offset). |  | ||||||
|       cos_Ti = cos(i*theta_per_segment); |  | ||||||
|       sin_Ti = sin(i*theta_per_segment); |  | ||||||
|       r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti; |  | ||||||
|       r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti; |  | ||||||
|       count = 0; |  | ||||||
|     } |  | ||||||
|  |  | ||||||
|     // Update arc_target location |  | ||||||
|     arc_target[axis_0] = center_axis0 + r_axis0; |  | ||||||
|     arc_target[axis_1] = center_axis1 + r_axis1; |  | ||||||
|     arc_target[axis_linear] += linear_per_segment; |  | ||||||
|     arc_target[E_AXIS] += extruder_per_segment; |  | ||||||
|  |  | ||||||
|     clamp_to_software_endstops(arc_target); |  | ||||||
|     plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, extruder); |  | ||||||
|      |  | ||||||
|   } |  | ||||||
|   // Ensure last segment arrives at target location. |  | ||||||
|   plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, extruder); |  | ||||||
|  |  | ||||||
|   //   plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled); |  | ||||||
| } |  | ||||||
|  |  | ||||||
| @@ -1,32 +0,0 @@ | |||||||
| /* |  | ||||||
|   motion_control.h - high level interface for issuing motion commands |  | ||||||
|   Part of Grbl |  | ||||||
|  |  | ||||||
|   Copyright (c) 2009-2011 Simen Svale Skogsrud |  | ||||||
|   Copyright (c) 2011 Sungeun K. Jeon |  | ||||||
|    |  | ||||||
|   Grbl is free software: you can redistribute it and/or modify |  | ||||||
|   it under the terms of the GNU General Public License as published by |  | ||||||
|   the Free Software Foundation, either version 3 of the License, or |  | ||||||
|   (at your option) any later version. |  | ||||||
|  |  | ||||||
|   Grbl is distributed in the hope that it will be useful, |  | ||||||
|   but WITHOUT ANY WARRANTY; without even the implied warranty of |  | ||||||
|   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the |  | ||||||
|   GNU General Public License for more details. |  | ||||||
|  |  | ||||||
|   You should have received a copy of the GNU General Public License |  | ||||||
|   along with Grbl.  If not, see <http://www.gnu.org/licenses/>. |  | ||||||
| */ |  | ||||||
|  |  | ||||||
| #ifndef motion_control_h |  | ||||||
| #define motion_control_h |  | ||||||
|  |  | ||||||
| // Execute an arc in offset mode format. position == current xyz, target == target xyz,  |  | ||||||
| // offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is |  | ||||||
| // the direction of helical travel, radius == circle radius, isclockwise boolean. Used |  | ||||||
| // for vector transformation direction. |  | ||||||
| void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1, |  | ||||||
|   unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise, uint8_t extruder); |  | ||||||
|    |  | ||||||
| #endif |  | ||||||
		Reference in New Issue
	
	Block a user