Added Y_DUAL_STEPPER_DRIVERS
Enables two stepper drivers to be used for the Y axis (useful for Shapeoko style machines) Each Y driver can be stepped either the same way or in opposite directions, accounting for different hardware setups (leadscrew vs. belt driven)
This commit is contained in:
		| @@ -18,12 +18,6 @@ | ||||
| //#define WATCH_TEMP_PERIOD 40000 //40 seconds | ||||
| //#define WATCH_TEMP_INCREASE 10  //Heat up at least 10 degree in 20 seconds | ||||
|  | ||||
| // Wait for Cooldown | ||||
| // This defines if the M109 call should not block if it is cooling down. | ||||
| // example: From a current temp of 220, you set M109 S200.  | ||||
| // if CooldownNoWait is defined M109 will not wait for the cooldown to finish | ||||
| #define CooldownNoWait true | ||||
|  | ||||
| #ifdef PIDTEMP | ||||
|   // this adds an experimental additional term to the heatingpower, proportional to the extrusion speed. | ||||
|   // if Kc is choosen well, the additional required power due to increased melting should be compensated. | ||||
| @@ -152,6 +146,68 @@ | ||||
|   #define EXTRUDERS 1 | ||||
| #endif | ||||
|  | ||||
| // Same again but for Y Axis. | ||||
| #define Y_DUAL_STEPPER_DRIVERS | ||||
|  | ||||
| // Define if the two Y drives need to rotate in opposite directions | ||||
| #define INVERT_Y2_VS_Y_DIR true | ||||
|  | ||||
| #ifdef Y_DUAL_STEPPER_DRIVERS | ||||
|   #undef EXTRUDERS | ||||
|   #define EXTRUDERS 1 | ||||
| #endif | ||||
|  | ||||
| #ifdef Z_DUAL_STEPPER_DRIVERS && Y_DUAL_STEPPER_DRIVERS | ||||
|   #error "You cannot have dual drivers for both Y and Z" | ||||
| #endif  | ||||
|  | ||||
| // Enable this for dual x-carriage printers.  | ||||
| // A dual x-carriage design has the advantage that the inactive extruder can be parked which | ||||
| // prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage | ||||
| // allowing faster printing speeds. | ||||
| //#define DUAL_X_CARRIAGE | ||||
| #ifdef DUAL_X_CARRIAGE | ||||
| // Configuration for second X-carriage | ||||
| // Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop; | ||||
| // the second x-carriage always homes to the maximum endstop. | ||||
| #define X2_MIN_POS 80     // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage | ||||
| #define X2_MAX_POS 353    // set maximum to the distance between toolheads when both heads are homed  | ||||
| #define X2_HOME_DIR 1     // the second X-carriage always homes to the maximum endstop position | ||||
| #define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position  | ||||
|     // However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software  | ||||
|     // override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops | ||||
|     // without modifying the firmware (through the "M218 T1 X???" command). | ||||
|     // Remember: you should set the second extruder x-offset to 0 in your slicer. | ||||
|  | ||||
| // Pins for second x-carriage stepper driver (defined here to avoid further complicating pins.h) | ||||
| #define X2_ENABLE_PIN 29 | ||||
| #define X2_STEP_PIN 25 | ||||
| #define X2_DIR_PIN 23 | ||||
|  | ||||
| // There are a few selectable movement modes for dual x-carriages using M605 S<mode> | ||||
| //    Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results | ||||
| //                           as long as it supports dual x-carriages. (M605 S0) | ||||
| //    Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so | ||||
| //                           that additional slicer support is not required. (M605 S1) | ||||
| //    Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all   | ||||
| //                           actions of the first x-carriage. This allows the printer to print 2 arbitrary items at | ||||
| //                           once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm]) | ||||
|  | ||||
| // This is the default power-up mode which can be later using M605.  | ||||
| #define DEFAULT_DUAL_X_CARRIAGE_MODE 0  | ||||
|  | ||||
| // As the x-carriages are independent we can now account for any relative Z offset | ||||
| #define EXTRUDER1_Z_OFFSET 0.0           // z offset relative to extruder 0 | ||||
|  | ||||
| // Default settings in "Auto-park Mode"  | ||||
| #define TOOLCHANGE_PARK_ZLIFT   0.2      // the distance to raise Z axis when parking an extruder | ||||
| #define TOOLCHANGE_UNPARK_ZLIFT 1        // the distance to raise Z axis when unparking an extruder | ||||
|  | ||||
| // Default x offset in duplication mode (typically set to half print bed width) | ||||
| #define DEFAULT_DUPLICATION_X_OFFSET 100 | ||||
|  | ||||
| #endif //DUAL_X_CARRIAGE | ||||
|      | ||||
| //homing hits the endstop, then retracts by this distance, before it tries to slowly bump again: | ||||
| #define X_HOME_RETRACT_MM 5  | ||||
| #define Y_HOME_RETRACT_MM 5  | ||||
| @@ -174,6 +230,11 @@ | ||||
| #define DEFAULT_MINIMUMFEEDRATE       0.0     // minimum feedrate | ||||
| #define DEFAULT_MINTRAVELFEEDRATE     0.0 | ||||
|  | ||||
| // Feedrates for manual moves along X, Y, Z, E from panel | ||||
| #ifdef ULTIPANEL | ||||
| #define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60}  // set the speeds for manual moves (mm/min) | ||||
| #endif | ||||
|  | ||||
| // minimum time in microseconds that a movement needs to take if the buffer is emptied. | ||||
| #define DEFAULT_MINSEGMENTTIME        20000 | ||||
|  | ||||
|   | ||||
| @@ -51,22 +51,22 @@ | ||||
|   #define MYSERIAL MSerial | ||||
| #endif | ||||
|  | ||||
| #define SERIAL_PROTOCOL(x) MYSERIAL.print(x); | ||||
| #define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y); | ||||
| #define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x)); | ||||
| #define SERIAL_PROTOCOLLN(x) {MYSERIAL.print(x);MYSERIAL.write('\n');} | ||||
| #define SERIAL_PROTOCOLLNPGM(x) {serialprintPGM(PSTR(x));MYSERIAL.write('\n');} | ||||
| #define SERIAL_PROTOCOL(x) (MYSERIAL.print(x)) | ||||
| #define SERIAL_PROTOCOL_F(x,y) (MYSERIAL.print(x,y)) | ||||
| #define SERIAL_PROTOCOLPGM(x) (serialprintPGM(PSTR(x))) | ||||
| #define SERIAL_PROTOCOLLN(x) (MYSERIAL.print(x),MYSERIAL.write('\n')) | ||||
| #define SERIAL_PROTOCOLLNPGM(x) (serialprintPGM(PSTR(x)),MYSERIAL.write('\n')) | ||||
|  | ||||
|  | ||||
| const char errormagic[] PROGMEM ="Error:"; | ||||
| const char echomagic[] PROGMEM ="echo:"; | ||||
| #define SERIAL_ERROR_START serialprintPGM(errormagic); | ||||
| #define SERIAL_ERROR_START (serialprintPGM(errormagic)) | ||||
| #define SERIAL_ERROR(x) SERIAL_PROTOCOL(x) | ||||
| #define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x) | ||||
| #define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x) | ||||
| #define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x) | ||||
|  | ||||
| #define SERIAL_ECHO_START serialprintPGM(echomagic); | ||||
| #define SERIAL_ECHO_START (serialprintPGM(echomagic)) | ||||
| #define SERIAL_ECHO(x) SERIAL_PROTOCOL(x) | ||||
| #define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x) | ||||
| #define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x) | ||||
| @@ -96,7 +96,11 @@ void process_commands(); | ||||
|  | ||||
| void manage_inactivity(); | ||||
|  | ||||
| #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 | ||||
| #if defined(DUAL_X_CARRIAGE) && defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 \ | ||||
|     && defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 | ||||
|   #define  enable_x() do { WRITE(X_ENABLE_PIN, X_ENABLE_ON); WRITE(X2_ENABLE_PIN, X_ENABLE_ON); } while (0) | ||||
|   #define disable_x() do { WRITE(X_ENABLE_PIN,!X_ENABLE_ON); WRITE(X2_ENABLE_PIN,!X_ENABLE_ON); } while (0) | ||||
| #elif defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 | ||||
|   #define  enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON) | ||||
|   #define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON) | ||||
| #else | ||||
| @@ -105,8 +109,13 @@ void manage_inactivity(); | ||||
| #endif | ||||
|  | ||||
| #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1 | ||||
|   #define  enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON) | ||||
|   #define disable_y() WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON) | ||||
|   #ifdef Y_DUAL_STEPPER_DRIVERS | ||||
|     #define  enable_y() { WRITE(Y_ENABLE_PIN, Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN,  Y_ENABLE_ON); } | ||||
|     #define disable_y() { WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, !Y_ENABLE_ON); } | ||||
|   #else | ||||
|     #define  enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON) | ||||
|     #define disable_y() WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON) | ||||
|   #endif | ||||
| #else | ||||
|   #define enable_y() ; | ||||
|   #define disable_y() ; | ||||
| @@ -159,6 +168,7 @@ void ClearToSend(); | ||||
| void get_coordinates(); | ||||
| #ifdef DELTA | ||||
| void calculate_delta(float cartesian[3]); | ||||
| extern float delta[3]; | ||||
| #endif | ||||
| void prepare_move(); | ||||
| void kill(); | ||||
|   | ||||
| @@ -48,8 +48,8 @@ block_t *current_block;  // A pointer to the block currently being traced | ||||
| // Variables used by The Stepper Driver Interrupt | ||||
| static unsigned char out_bits;        // The next stepping-bits to be output | ||||
| static long counter_x,       // Counter variables for the bresenham line tracer | ||||
|             counter_y,  | ||||
|             counter_z,        | ||||
|             counter_y, | ||||
|             counter_z, | ||||
|             counter_e; | ||||
| volatile static unsigned long step_events_completed; // The number of step events executed in the current block | ||||
| #ifdef ADVANCE | ||||
| @@ -224,27 +224,27 @@ void enable_endstops(bool check) | ||||
| //   |               BLOCK 1            |      BLOCK 2          |    d | ||||
| // | ||||
| //                           time -----> | ||||
| //  | ||||
| //  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates  | ||||
| //  first block->accelerate_until step_events_completed, then keeps going at constant speed until  | ||||
| // | ||||
| //  The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates | ||||
| //  first block->accelerate_until step_events_completed, then keeps going at constant speed until | ||||
| //  step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. | ||||
| //  The slope of acceleration is calculated with the leib ramp alghorithm. | ||||
|  | ||||
| void st_wake_up() { | ||||
|   //  TCNT1 = 0; | ||||
|   ENABLE_STEPPER_DRIVER_INTERRUPT();   | ||||
|   ENABLE_STEPPER_DRIVER_INTERRUPT(); | ||||
| } | ||||
|  | ||||
| void step_wait(){ | ||||
|     for(int8_t i=0; i < 6; i++){ | ||||
|     } | ||||
| } | ||||
|    | ||||
|  | ||||
|  | ||||
| FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { | ||||
|   unsigned short timer; | ||||
|   if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; | ||||
|    | ||||
|  | ||||
|   if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times | ||||
|     step_rate = (step_rate >> 2)&0x3fff; | ||||
|     step_loops = 4; | ||||
| @@ -255,11 +255,11 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { | ||||
|   } | ||||
|   else { | ||||
|     step_loops = 1; | ||||
|   }  | ||||
|    | ||||
|   } | ||||
|  | ||||
|   if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000); | ||||
|   step_rate -= (F_CPU/500000); // Correct for minimal speed | ||||
|   if(step_rate >= (8*256)){ // higher step rate  | ||||
|   if(step_rate >= (8*256)){ // higher step rate | ||||
|     unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; | ||||
|     unsigned char tmp_step_rate = (step_rate & 0x00ff); | ||||
|     unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2); | ||||
| @@ -276,7 +276,7 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { | ||||
|   return timer; | ||||
| } | ||||
|  | ||||
| // Initializes the trapezoid generator from the current block. Called whenever a new  | ||||
| // Initializes the trapezoid generator from the current block. Called whenever a new | ||||
| // block begins. | ||||
| FORCE_INLINE void trapezoid_generator_reset() { | ||||
|   #ifdef ADVANCE | ||||
| @@ -284,7 +284,7 @@ FORCE_INLINE void trapezoid_generator_reset() { | ||||
|     final_advance = current_block->final_advance; | ||||
|     // Do E steps + advance steps | ||||
|     e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); | ||||
|     old_advance = advance >>8;   | ||||
|     old_advance = advance >>8; | ||||
|   #endif | ||||
|   deceleration_time = 0; | ||||
|   // step_rate to timer interval | ||||
| @@ -294,7 +294,7 @@ FORCE_INLINE void trapezoid_generator_reset() { | ||||
|   acc_step_rate = current_block->initial_rate; | ||||
|   acceleration_time = calc_timer(acc_step_rate); | ||||
|   OCR1A = acceleration_time; | ||||
|    | ||||
|  | ||||
| //    SERIAL_ECHO_START; | ||||
| //    SERIAL_ECHOPGM("advance :"); | ||||
| //    SERIAL_ECHO(current_block->advance/256.0); | ||||
| @@ -304,13 +304,13 @@ FORCE_INLINE void trapezoid_generator_reset() { | ||||
| //  SERIAL_ECHO(current_block->initial_advance/256.0); | ||||
| //    SERIAL_ECHOPGM("final advance :"); | ||||
| //    SERIAL_ECHOLN(current_block->final_advance/256.0); | ||||
|      | ||||
|  | ||||
| } | ||||
|  | ||||
| // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.   | ||||
| // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.  | ||||
| // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. | ||||
| // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. | ||||
| ISR(TIMER1_COMPA_vect) | ||||
| {     | ||||
| { | ||||
|   // If there is no current block, attempt to pop one from the buffer | ||||
|   if (current_block == NULL) { | ||||
|     // Anything in the buffer? | ||||
| @@ -322,24 +322,24 @@ ISR(TIMER1_COMPA_vect) | ||||
|       counter_y = counter_x; | ||||
|       counter_z = counter_x; | ||||
|       counter_e = counter_x; | ||||
|       step_events_completed = 0;  | ||||
|        | ||||
|       #ifdef Z_LATE_ENABLE  | ||||
|       step_events_completed = 0; | ||||
|  | ||||
|       #ifdef Z_LATE_ENABLE | ||||
|         if(current_block->steps_z > 0) { | ||||
|           enable_z(); | ||||
|           OCR1A = 2000; //1ms wait | ||||
|           return; | ||||
|         } | ||||
|       #endif | ||||
|        | ||||
|  | ||||
| //      #ifdef ADVANCE | ||||
| //      e_steps[current_block->active_extruder] = 0; | ||||
| //      #endif | ||||
|     }  | ||||
|     } | ||||
|     else { | ||||
|         OCR1A=2000; // 1kHz. | ||||
|     }     | ||||
|   }  | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   if (current_block != NULL) { | ||||
|     // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt | ||||
| @@ -348,22 +348,58 @@ ISR(TIMER1_COMPA_vect) | ||||
|  | ||||
|     // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY) | ||||
|     if((out_bits & (1<<X_AXIS))!=0){ | ||||
|       WRITE(X_DIR_PIN, INVERT_X_DIR); | ||||
|       #ifdef DUAL_X_CARRIAGE | ||||
|         if (extruder_duplication_enabled){ | ||||
|           WRITE(X_DIR_PIN, INVERT_X_DIR); | ||||
|           WRITE(X2_DIR_PIN, INVERT_X_DIR); | ||||
|         } | ||||
|         else{ | ||||
|           if (current_block->active_extruder != 0) | ||||
|             WRITE(X2_DIR_PIN, INVERT_X_DIR); | ||||
|           else | ||||
|             WRITE(X_DIR_PIN, INVERT_X_DIR); | ||||
|         } | ||||
|       #else | ||||
|         WRITE(X_DIR_PIN, INVERT_X_DIR); | ||||
|       #endif         | ||||
|       count_direction[X_AXIS]=-1; | ||||
|     } | ||||
|     else{ | ||||
|       WRITE(X_DIR_PIN, !INVERT_X_DIR); | ||||
|       #ifdef DUAL_X_CARRIAGE | ||||
|         if (extruder_duplication_enabled){ | ||||
|           WRITE(X_DIR_PIN, !INVERT_X_DIR); | ||||
|           WRITE(X2_DIR_PIN, !INVERT_X_DIR); | ||||
|         } | ||||
|         else{ | ||||
|           if (current_block->active_extruder != 0) | ||||
|             WRITE(X2_DIR_PIN, !INVERT_X_DIR); | ||||
|           else | ||||
|             WRITE(X_DIR_PIN, !INVERT_X_DIR); | ||||
|         } | ||||
|       #else | ||||
|         WRITE(X_DIR_PIN, !INVERT_X_DIR); | ||||
|       #endif         | ||||
|       count_direction[X_AXIS]=1; | ||||
|     } | ||||
|     if((out_bits & (1<<Y_AXIS))!=0){ | ||||
|       WRITE(Y_DIR_PIN, INVERT_Y_DIR); | ||||
| 	   | ||||
| 	  #ifdef Y_DUAL_STEPPER_DRIVERS | ||||
| 	    WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR)); | ||||
| 	  #endif | ||||
| 	   | ||||
|       count_direction[Y_AXIS]=-1; | ||||
|     } | ||||
|     else{ | ||||
|       WRITE(Y_DIR_PIN, !INVERT_Y_DIR); | ||||
| 	   | ||||
| 	  #ifdef Y_DUAL_STEPPER_DRIVERS | ||||
| 	    WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR)); | ||||
| 	  #endif | ||||
| 	   | ||||
|       count_direction[Y_AXIS]=1; | ||||
|     } | ||||
|      | ||||
|  | ||||
|     // Set direction en check limit switches | ||||
|     #ifndef COREXY | ||||
|     if ((out_bits & (1<<X_AXIS)) != 0) {   // stepping along -X axis | ||||
| @@ -372,29 +408,43 @@ ISR(TIMER1_COMPA_vect) | ||||
|     #endif | ||||
|       CHECK_ENDSTOPS | ||||
|       { | ||||
|         #if defined(X_MIN_PIN) && X_MIN_PIN > -1 | ||||
|           bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING); | ||||
|           if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { | ||||
|             endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; | ||||
|             endstop_x_hit=true; | ||||
|             step_events_completed = current_block->step_event_count; | ||||
|           } | ||||
|           old_x_min_endstop = x_min_endstop; | ||||
|         #endif | ||||
|         #ifdef DUAL_X_CARRIAGE | ||||
|         // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder | ||||
|         if ((current_block->active_extruder == 0 && X_HOME_DIR == -1)  | ||||
|             || (current_block->active_extruder != 0 && X2_HOME_DIR == -1)) | ||||
|         #endif           | ||||
|         { | ||||
|           #if defined(X_MIN_PIN) && X_MIN_PIN > -1 | ||||
|             bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING); | ||||
|             if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { | ||||
|               endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; | ||||
|               endstop_x_hit=true; | ||||
|               step_events_completed = current_block->step_event_count; | ||||
|             } | ||||
|             old_x_min_endstop = x_min_endstop; | ||||
|           #endif | ||||
|         } | ||||
|       } | ||||
|     } | ||||
|     else { // +direction | ||||
|       CHECK_ENDSTOPS  | ||||
|       CHECK_ENDSTOPS | ||||
|       { | ||||
|         #if defined(X_MAX_PIN) && X_MAX_PIN > -1 | ||||
|           bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING); | ||||
|           if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ | ||||
|             endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; | ||||
|             endstop_x_hit=true; | ||||
|             step_events_completed = current_block->step_event_count; | ||||
|           } | ||||
|           old_x_max_endstop = x_max_endstop; | ||||
|         #endif | ||||
|         #ifdef DUAL_X_CARRIAGE | ||||
|         // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder | ||||
|         if ((current_block->active_extruder == 0 && X_HOME_DIR == 1)  | ||||
|             || (current_block->active_extruder != 0 && X2_HOME_DIR == 1)) | ||||
|         #endif           | ||||
|         { | ||||
|           #if defined(X_MAX_PIN) && X_MAX_PIN > -1 | ||||
|             bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING); | ||||
|             if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ | ||||
|               endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; | ||||
|               endstop_x_hit=true; | ||||
|               step_events_completed = current_block->step_event_count; | ||||
|             } | ||||
|             old_x_max_endstop = x_max_endstop; | ||||
|           #endif | ||||
|         } | ||||
|       } | ||||
|     } | ||||
|  | ||||
| @@ -406,7 +456,7 @@ ISR(TIMER1_COMPA_vect) | ||||
|       CHECK_ENDSTOPS | ||||
|       { | ||||
|         #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 | ||||
|           bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING); | ||||
|           bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING); | ||||
|           if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) { | ||||
|             endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; | ||||
|             endstop_y_hit=true; | ||||
| @@ -420,7 +470,7 @@ ISR(TIMER1_COMPA_vect) | ||||
|       CHECK_ENDSTOPS | ||||
|       { | ||||
|         #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 | ||||
|           bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING); | ||||
|           bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING); | ||||
|           if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){ | ||||
|             endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; | ||||
|             endstop_y_hit=true; | ||||
| @@ -434,15 +484,15 @@ ISR(TIMER1_COMPA_vect) | ||||
|     if ((out_bits & (1<<Z_AXIS)) != 0) {   // -direction | ||||
|       WRITE(Z_DIR_PIN,INVERT_Z_DIR); | ||||
|        | ||||
| 	  #ifdef Z_DUAL_STEPPER_DRIVERS | ||||
|       #ifdef Z_DUAL_STEPPER_DRIVERS | ||||
|         WRITE(Z2_DIR_PIN,INVERT_Z_DIR); | ||||
|       #endif | ||||
|        | ||||
|  | ||||
|       count_direction[Z_AXIS]=-1; | ||||
|       CHECK_ENDSTOPS | ||||
|       { | ||||
|         #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 | ||||
|           bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING); | ||||
|           bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); | ||||
|           if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) { | ||||
|             endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; | ||||
|             endstop_z_hit=true; | ||||
| @@ -455,7 +505,7 @@ ISR(TIMER1_COMPA_vect) | ||||
|     else { // +direction | ||||
|       WRITE(Z_DIR_PIN,!INVERT_Z_DIR); | ||||
|  | ||||
| 	  #ifdef Z_DUAL_STEPPER_DRIVERS | ||||
|       #ifdef Z_DUAL_STEPPER_DRIVERS | ||||
|         WRITE(Z2_DIR_PIN,!INVERT_Z_DIR); | ||||
|       #endif | ||||
|  | ||||
| @@ -463,7 +513,7 @@ ISR(TIMER1_COMPA_vect) | ||||
|       CHECK_ENDSTOPS | ||||
|       { | ||||
|         #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 | ||||
|           bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING); | ||||
|           bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING); | ||||
|           if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) { | ||||
|             endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; | ||||
|             endstop_z_hit=true; | ||||
| @@ -484,10 +534,10 @@ ISR(TIMER1_COMPA_vect) | ||||
|         count_direction[E_AXIS]=1; | ||||
|       } | ||||
|     #endif //!ADVANCE | ||||
|      | ||||
|  | ||||
|      | ||||
|     for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)  | ||||
|  | ||||
|  | ||||
|     for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves) | ||||
|       #ifndef AT90USB | ||||
|       MSerial.checkRx(); // Check for serial chars. | ||||
|       #endif | ||||
| @@ -502,38 +552,73 @@ ISR(TIMER1_COMPA_vect) | ||||
|         else { | ||||
|           e_steps[current_block->active_extruder]++; | ||||
|         } | ||||
|       }     | ||||
|       } | ||||
|       #endif //ADVANCE | ||||
|  | ||||
|         counter_x += current_block->steps_x; | ||||
|         if (counter_x > 0) { | ||||
|         #ifdef DUAL_X_CARRIAGE | ||||
|           if (extruder_duplication_enabled){ | ||||
|             WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); | ||||
|             WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN); | ||||
|           } | ||||
|           else { | ||||
|             if (current_block->active_extruder != 0) | ||||
|               WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN); | ||||
|             else | ||||
|               WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); | ||||
|           } | ||||
|         #else | ||||
|           WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); | ||||
|         #endif         | ||||
|           counter_x -= current_block->step_event_count; | ||||
|           count_position[X_AXIS]+=count_direction[X_AXIS];    | ||||
|         #ifdef DUAL_X_CARRIAGE | ||||
|           if (extruder_duplication_enabled){ | ||||
|             WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); | ||||
|             WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN); | ||||
|           } | ||||
|           else { | ||||
|             if (current_block->active_extruder != 0) | ||||
|               WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN); | ||||
|             else | ||||
|               WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); | ||||
|           } | ||||
|         #else | ||||
|           WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); | ||||
|         #endif | ||||
|         } | ||||
|    | ||||
|  | ||||
|         counter_y += current_block->steps_y; | ||||
|         if (counter_y > 0) { | ||||
|           WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); | ||||
|           counter_y -= current_block->step_event_count;  | ||||
|           count_position[Y_AXIS]+=count_direction[Y_AXIS];  | ||||
| 		   | ||||
| 		  #ifdef Y_DUAL_STEPPER_DRIVERS | ||||
| 			WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN); | ||||
| 		  #endif | ||||
| 		   | ||||
|           counter_y -= current_block->step_event_count; | ||||
|           count_position[Y_AXIS]+=count_direction[Y_AXIS]; | ||||
|           WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); | ||||
| 		   | ||||
| 		  #ifdef Y_DUAL_STEPPER_DRIVERS | ||||
| 			WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN); | ||||
| 		  #endif | ||||
|         } | ||||
|    | ||||
|  | ||||
|       counter_z += current_block->steps_z; | ||||
|       if (counter_z > 0) { | ||||
|         WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); | ||||
|          | ||||
| 		#ifdef Z_DUAL_STEPPER_DRIVERS | ||||
|         #ifdef Z_DUAL_STEPPER_DRIVERS | ||||
|           WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN); | ||||
|         #endif | ||||
|          | ||||
|  | ||||
|         counter_z -= current_block->step_event_count; | ||||
|         count_position[Z_AXIS]+=count_direction[Z_AXIS]; | ||||
|         WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); | ||||
|          | ||||
| 		#ifdef Z_DUAL_STEPPER_DRIVERS | ||||
|         #ifdef Z_DUAL_STEPPER_DRIVERS | ||||
|           WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN); | ||||
|         #endif | ||||
|       } | ||||
| @@ -547,17 +632,17 @@ ISR(TIMER1_COMPA_vect) | ||||
|           WRITE_E_STEP(INVERT_E_STEP_PIN); | ||||
|         } | ||||
|       #endif //!ADVANCE | ||||
|       step_events_completed += 1;   | ||||
|       step_events_completed += 1; | ||||
|       if(step_events_completed >= current_block->step_event_count) break; | ||||
|     } | ||||
|     // Calculare new timer value | ||||
|     unsigned short timer; | ||||
|     unsigned short step_rate; | ||||
|     if (step_events_completed <= (unsigned long int)current_block->accelerate_until) { | ||||
|        | ||||
|  | ||||
|       MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); | ||||
|       acc_step_rate += current_block->initial_rate; | ||||
|        | ||||
|  | ||||
|       // upper limit | ||||
|       if(acc_step_rate > current_block->nominal_rate) | ||||
|         acc_step_rate = current_block->nominal_rate; | ||||
| @@ -573,13 +658,13 @@ ISR(TIMER1_COMPA_vect) | ||||
|         //if(advance > current_block->advance) advance = current_block->advance; | ||||
|         // Do E steps + advance steps | ||||
|         e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); | ||||
|         old_advance = advance >>8;   | ||||
|          | ||||
|         old_advance = advance >>8; | ||||
|  | ||||
|       #endif | ||||
|     }  | ||||
|     else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {    | ||||
|     } | ||||
|     else if (step_events_completed > (unsigned long int)current_block->decelerate_after) { | ||||
|       MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate); | ||||
|        | ||||
|  | ||||
|       if(step_rate > acc_step_rate) { // Check step_rate stays positive | ||||
|         step_rate = current_block->final_rate; | ||||
|       } | ||||
| @@ -602,7 +687,7 @@ ISR(TIMER1_COMPA_vect) | ||||
|         if(advance < final_advance) advance = final_advance; | ||||
|         // Do E steps + advance steps | ||||
|         e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); | ||||
|         old_advance = advance >>8;   | ||||
|         old_advance = advance >>8; | ||||
|       #endif //ADVANCE | ||||
|     } | ||||
|     else { | ||||
| @@ -611,12 +696,12 @@ ISR(TIMER1_COMPA_vect) | ||||
|       step_loops = step_loops_nominal; | ||||
|     } | ||||
|  | ||||
|     // If current block is finished, reset pointer  | ||||
|     // If current block is finished, reset pointer | ||||
|     if (step_events_completed >= current_block->step_event_count) { | ||||
|       current_block = NULL; | ||||
|       plan_discard_current_block(); | ||||
|     }    | ||||
|   }  | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| #ifdef ADVANCE | ||||
| @@ -635,7 +720,7 @@ ISR(TIMER1_COMPA_vect) | ||||
|           WRITE(E0_DIR_PIN, INVERT_E0_DIR); | ||||
|           e_steps[0]++; | ||||
|           WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); | ||||
|         }  | ||||
|         } | ||||
|         else if (e_steps[0] > 0) { | ||||
|           WRITE(E0_DIR_PIN, !INVERT_E0_DIR); | ||||
|           e_steps[0]--; | ||||
| @@ -649,7 +734,7 @@ ISR(TIMER1_COMPA_vect) | ||||
|           WRITE(E1_DIR_PIN, INVERT_E1_DIR); | ||||
|           e_steps[1]++; | ||||
|           WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN); | ||||
|         }  | ||||
|         } | ||||
|         else if (e_steps[1] > 0) { | ||||
|           WRITE(E1_DIR_PIN, !INVERT_E1_DIR); | ||||
|           e_steps[1]--; | ||||
| @@ -664,7 +749,7 @@ ISR(TIMER1_COMPA_vect) | ||||
|           WRITE(E2_DIR_PIN, INVERT_E2_DIR); | ||||
|           e_steps[2]++; | ||||
|           WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN); | ||||
|         }  | ||||
|         } | ||||
|         else if (e_steps[2] > 0) { | ||||
|           WRITE(E2_DIR_PIN, !INVERT_E2_DIR); | ||||
|           e_steps[2]--; | ||||
| @@ -680,22 +765,29 @@ void st_init() | ||||
| { | ||||
|   digipot_init(); //Initialize Digipot Motor Current | ||||
|   microstep_init(); //Initialize Microstepping Pins | ||||
|    | ||||
|  | ||||
|   //Initialize Dir Pins | ||||
|   #if defined(X_DIR_PIN) && X_DIR_PIN > -1 | ||||
|     SET_OUTPUT(X_DIR_PIN); | ||||
|   #endif | ||||
|   #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1  | ||||
|     SET_OUTPUT(Y_DIR_PIN); | ||||
|   #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1 | ||||
|     SET_OUTPUT(X2_DIR_PIN); | ||||
|   #endif | ||||
|   #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1  | ||||
|   #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1 | ||||
|     SET_OUTPUT(Y_DIR_PIN); | ||||
| 	 | ||||
| 	#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1) | ||||
| 	  SET_OUTPUT(Y2_DIR_PIN); | ||||
| 	#endif | ||||
|   #endif | ||||
|   #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1 | ||||
|     SET_OUTPUT(Z_DIR_PIN); | ||||
|  | ||||
|     #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1) | ||||
|       SET_OUTPUT(Z2_DIR_PIN); | ||||
|     #endif | ||||
|   #endif | ||||
|   #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1  | ||||
|   #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1 | ||||
|     SET_OUTPUT(E0_DIR_PIN); | ||||
|   #endif | ||||
|   #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1) | ||||
| @@ -711,14 +803,23 @@ void st_init() | ||||
|     SET_OUTPUT(X_ENABLE_PIN); | ||||
|     if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH); | ||||
|   #endif | ||||
|   #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1 | ||||
|     SET_OUTPUT(X2_ENABLE_PIN); | ||||
|     if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH); | ||||
|   #endif | ||||
|   #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1 | ||||
|     SET_OUTPUT(Y_ENABLE_PIN); | ||||
|     if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH); | ||||
| 	 | ||||
| 	#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1) | ||||
| 	  SET_OUTPUT(Y2_ENABLE_PIN); | ||||
| 	  if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH); | ||||
| 	#endif | ||||
|   #endif | ||||
|   #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1 | ||||
|     SET_OUTPUT(Z_ENABLE_PIN); | ||||
|     if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); | ||||
|      | ||||
|  | ||||
|     #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1) | ||||
|       SET_OUTPUT(Z2_ENABLE_PIN); | ||||
|       if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH); | ||||
| @@ -738,62 +839,71 @@ void st_init() | ||||
|   #endif | ||||
|  | ||||
|   //endstops and pullups | ||||
|    | ||||
|  | ||||
|   #if defined(X_MIN_PIN) && X_MIN_PIN > -1 | ||||
|     SET_INPUT(X_MIN_PIN);  | ||||
|     SET_INPUT(X_MIN_PIN); | ||||
|     #ifdef ENDSTOPPULLUP_XMIN | ||||
|       WRITE(X_MIN_PIN,HIGH); | ||||
|     #endif | ||||
|   #endif | ||||
|        | ||||
|  | ||||
|   #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 | ||||
|     SET_INPUT(Y_MIN_PIN);  | ||||
|     SET_INPUT(Y_MIN_PIN); | ||||
|     #ifdef ENDSTOPPULLUP_YMIN | ||||
|       WRITE(Y_MIN_PIN,HIGH); | ||||
|     #endif | ||||
|   #endif | ||||
|    | ||||
|  | ||||
|   #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 | ||||
|     SET_INPUT(Z_MIN_PIN);  | ||||
|     SET_INPUT(Z_MIN_PIN); | ||||
|     #ifdef ENDSTOPPULLUP_ZMIN | ||||
|       WRITE(Z_MIN_PIN,HIGH); | ||||
|     #endif | ||||
|   #endif | ||||
|        | ||||
|  | ||||
|   #if defined(X_MAX_PIN) && X_MAX_PIN > -1 | ||||
|     SET_INPUT(X_MAX_PIN);  | ||||
|     SET_INPUT(X_MAX_PIN); | ||||
|     #ifdef ENDSTOPPULLUP_XMAX | ||||
|       WRITE(X_MAX_PIN,HIGH); | ||||
|     #endif | ||||
|   #endif | ||||
|        | ||||
|  | ||||
|   #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 | ||||
|     SET_INPUT(Y_MAX_PIN);  | ||||
|     SET_INPUT(Y_MAX_PIN); | ||||
|     #ifdef ENDSTOPPULLUP_YMAX | ||||
|       WRITE(Y_MAX_PIN,HIGH); | ||||
|     #endif | ||||
|   #endif | ||||
|    | ||||
|  | ||||
|   #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 | ||||
|     SET_INPUT(Z_MAX_PIN);  | ||||
|     SET_INPUT(Z_MAX_PIN); | ||||
|     #ifdef ENDSTOPPULLUP_ZMAX | ||||
|       WRITE(Z_MAX_PIN,HIGH); | ||||
|     #endif | ||||
|   #endif | ||||
|   | ||||
|  | ||||
|  | ||||
|   //Initialize Step Pins | ||||
|   #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)  | ||||
|   #if defined(X_STEP_PIN) && (X_STEP_PIN > -1) | ||||
|     SET_OUTPUT(X_STEP_PIN); | ||||
|     WRITE(X_STEP_PIN,INVERT_X_STEP_PIN); | ||||
|     disable_x(); | ||||
|   #endif   | ||||
|   #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)  | ||||
|   #endif | ||||
|   #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1) | ||||
|     SET_OUTPUT(X2_STEP_PIN); | ||||
|     WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN); | ||||
|     disable_x(); | ||||
|   #endif | ||||
|   #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1) | ||||
|     SET_OUTPUT(Y_STEP_PIN); | ||||
|     WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN); | ||||
|     #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1) | ||||
|       SET_OUTPUT(Y2_STEP_PIN); | ||||
|       WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN); | ||||
|     #endif | ||||
|     disable_y(); | ||||
|   #endif   | ||||
|   #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)  | ||||
|   #endif | ||||
|   #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1) | ||||
|     SET_OUTPUT(Z_STEP_PIN); | ||||
|     WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN); | ||||
|     #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1) | ||||
| @@ -801,33 +911,33 @@ void st_init() | ||||
|       WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN); | ||||
|     #endif | ||||
|     disable_z(); | ||||
|   #endif   | ||||
|   #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)  | ||||
|   #endif | ||||
|   #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1) | ||||
|     SET_OUTPUT(E0_STEP_PIN); | ||||
|     WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN); | ||||
|     disable_e0(); | ||||
|   #endif   | ||||
|   #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)  | ||||
|   #endif | ||||
|   #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) | ||||
|     SET_OUTPUT(E1_STEP_PIN); | ||||
|     WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN); | ||||
|     disable_e1(); | ||||
|   #endif   | ||||
|   #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)  | ||||
|   #endif | ||||
|   #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) | ||||
|     SET_OUTPUT(E2_STEP_PIN); | ||||
|     WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN); | ||||
|     disable_e2(); | ||||
|   #endif   | ||||
|   #endif | ||||
|  | ||||
|   // waveform generation = 0100 = CTC | ||||
|   TCCR1B &= ~(1<<WGM13); | ||||
|   TCCR1B |=  (1<<WGM12); | ||||
|   TCCR1A &= ~(1<<WGM11);  | ||||
|   TCCR1A &= ~(1<<WGM11); | ||||
|   TCCR1A &= ~(1<<WGM10); | ||||
|  | ||||
|   // output mode = 00 (disconnected) | ||||
|   TCCR1A &= ~(3<<COM1A0);  | ||||
|   TCCR1A &= ~(3<<COM1B0);  | ||||
|    | ||||
|   TCCR1A &= ~(3<<COM1A0); | ||||
|   TCCR1A &= ~(3<<COM1B0); | ||||
|  | ||||
|   // Set the timer pre-scaler | ||||
|   // Generally we use a divider of 8, resulting in a 2MHz timer | ||||
|   // frequency on a 16MHz MCU. If you are going to change this, be | ||||
| @@ -837,19 +947,19 @@ void st_init() | ||||
|  | ||||
|   OCR1A = 0x4000; | ||||
|   TCNT1 = 0; | ||||
|   ENABLE_STEPPER_DRIVER_INTERRUPT();   | ||||
|   ENABLE_STEPPER_DRIVER_INTERRUPT(); | ||||
|  | ||||
|   #ifdef ADVANCE | ||||
|   #if defined(TCCR0A) && defined(WGM01) | ||||
|     TCCR0A &= ~(1<<WGM01); | ||||
|     TCCR0A &= ~(1<<WGM00); | ||||
|   #endif   | ||||
|   #endif | ||||
|     e_steps[0] = 0; | ||||
|     e_steps[1] = 0; | ||||
|     e_steps[2] = 0; | ||||
|     TIMSK0 |= (1<<OCIE0A); | ||||
|   #endif //ADVANCE | ||||
|    | ||||
|  | ||||
|   enable_endstops(true); // Start with endstops active. After homing they can be disabled | ||||
|   sei(); | ||||
| } | ||||
| @@ -893,13 +1003,13 @@ long st_get_position(uint8_t axis) | ||||
|  | ||||
| void finishAndDisableSteppers() | ||||
| { | ||||
|   st_synchronize();  | ||||
|   disable_x();  | ||||
|   disable_y();  | ||||
|   disable_z();  | ||||
|   disable_e0();  | ||||
|   disable_e1();  | ||||
|   disable_e2();  | ||||
|   st_synchronize(); | ||||
|   disable_x(); | ||||
|   disable_y(); | ||||
|   disable_z(); | ||||
|   disable_e0(); | ||||
|   disable_e1(); | ||||
|   disable_e2(); | ||||
| } | ||||
|  | ||||
| void quickStop() | ||||
| @@ -926,10 +1036,10 @@ void digipot_init() //Initialize Digipot Motor Current | ||||
| { | ||||
|   #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 | ||||
|     const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT; | ||||
|      | ||||
|     SPI.begin();  | ||||
|     pinMode(DIGIPOTSS_PIN, OUTPUT);     | ||||
|     for(int i=0;i<=4;i++)  | ||||
|  | ||||
|     SPI.begin(); | ||||
|     pinMode(DIGIPOTSS_PIN, OUTPUT); | ||||
|     for(int i=0;i<=4;i++) | ||||
|       //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]); | ||||
|       digipot_current(i,digipot_motor_current[i]); | ||||
|   #endif | ||||
|   | ||||
		Reference in New Issue
	
	Block a user