Enhanced G29
- Adapted “Enhanced G29” code referred to in #1499 and posted at [3dprintboard.com](http://3dprintboard.com/showthread.php?3105-Auto_Bed_ Leveling-Enhanced-G29-command) - Compatible with current G29 while adding some new arguments - `V` sets the verbose level for serial out - `T` (or `V` > 2) send a Topology report to serial out - `E` works the same way as before - `P` works as before (source used `n` or `U`/`u`) - `L`, `R`, `B`, `F` work as before - Still needs sanity checking for `LRBF`
This commit is contained in:
		@@ -1200,22 +1200,24 @@ static void retract_z_probe() {
 | 
			
		||||
    #endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
enum ProbeAction { ProbeEngageRetract, ProbeEngage, ProbeStay, ProbeRetract };
 | 
			
		||||
 | 
			
		||||
/// Probe bed height at position (x,y), returns the measured z value
 | 
			
		||||
static float probe_pt(float x, float y, float z_before, int retract_action=0) {
 | 
			
		||||
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract) {
 | 
			
		||||
  // move to right place
 | 
			
		||||
  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
 | 
			
		||||
  do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
 | 
			
		||||
 | 
			
		||||
  #ifndef Z_PROBE_SLED
 | 
			
		||||
   if ((retract_action==0) || (retract_action==1)) 
 | 
			
		||||
     engage_z_probe();   // Engage Z Servo endstop if available
 | 
			
		||||
#endif // Z_PROBE_SLED
 | 
			
		||||
    if (retract_action == ProbeEngageRetract || retract_action == ProbeEngage) engage_z_probe();
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
  run_z_probe();
 | 
			
		||||
  float measured_z = current_position[Z_AXIS];
 | 
			
		||||
 | 
			
		||||
  #ifndef Z_PROBE_SLED
 | 
			
		||||
  if ((retract_action==0) || (retract_action==3)) 
 | 
			
		||||
     retract_z_probe();
 | 
			
		||||
#endif // Z_PROBE_SLED
 | 
			
		||||
    if (retract_action == ProbeEngageRetract || retract_action == ProbeRetract) retract_z_probe();
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
  SERIAL_PROTOCOLPGM(MSG_BED);
 | 
			
		||||
  SERIAL_PROTOCOLPGM(" x: ");
 | 
			
		||||
@@ -1376,6 +1378,11 @@ void refresh_cmd_timeout(void)
 | 
			
		||||
#endif //FWRETRACT
 | 
			
		||||
 | 
			
		||||
#ifdef Z_PROBE_SLED
 | 
			
		||||
 | 
			
		||||
  #ifndef SLED_DOCKING_OFFSET
 | 
			
		||||
    #define SLED_DOCKING_OFFSET 0
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
//
 | 
			
		||||
// Method to dock/undock a sled designed by Charles Bell.
 | 
			
		||||
//
 | 
			
		||||
@@ -1719,25 +1726,96 @@ void process_commands()
 | 
			
		||||
      break;
 | 
			
		||||
 | 
			
		||||
#ifdef ENABLE_AUTO_BED_LEVELING
 | 
			
		||||
    case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
 | 
			
		||||
    	     // Override probing area by providing [F]ront [B]ack [L]eft [R]ight Grid[P]oints values
 | 
			
		||||
        {
 | 
			
		||||
 | 
			
		||||
    #if Z_MIN_PIN == -1
 | 
			
		||||
            #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
 | 
			
		||||
      #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling!!! Z_MIN_PIN must point to a valid hardware pin."
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
            // Prevent user from running a G29 without first homing in X and Y
 | 
			
		||||
            if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
 | 
			
		||||
   /**
 | 
			
		||||
    * Enhanced G29 Auto Bed Leveling Probe Routine
 | 
			
		||||
    * 
 | 
			
		||||
    * Parameters With AUTO_BED_LEVELING_GRID:
 | 
			
		||||
    *
 | 
			
		||||
    *  P  Set the size of the grid that will be probed (P x P points).
 | 
			
		||||
    *     Example: "G29 P4"
 | 
			
		||||
    *
 | 
			
		||||
    *  V  Set the verbose level (0-4). Example: "G29 V3"
 | 
			
		||||
    *
 | 
			
		||||
    *  T  Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
 | 
			
		||||
    *     This is useful for manual bed leveling and finding flaws in the bed (to
 | 
			
		||||
    *     assist with part placement).
 | 
			
		||||
    *
 | 
			
		||||
    *  F  Set the Front limit of the probing grid
 | 
			
		||||
    *  B  Set the Back limit of the probing grid
 | 
			
		||||
    *  L  Set the Left limit of the probing grid
 | 
			
		||||
    *  R  Set the Right limit of the probing grid
 | 
			
		||||
    *
 | 
			
		||||
    * Global Parameters:
 | 
			
		||||
    *
 | 
			
		||||
    * E/e By default G29 engages / disengages the probe for each point.
 | 
			
		||||
    *     Include "E" to engage and disengage the probe just once.
 | 
			
		||||
    *     There's no extra effect if you have a fixed probe.
 | 
			
		||||
    *     Usage: "G29 E" or "G29 e"
 | 
			
		||||
    *
 | 
			
		||||
    */
 | 
			
		||||
 | 
			
		||||
    case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
 | 
			
		||||
    {
 | 
			
		||||
      // Use one of these defines to specify the origin
 | 
			
		||||
      // for a topographical map to be printed for your bed.
 | 
			
		||||
      #define ORIGIN_BACK_LEFT   1
 | 
			
		||||
      #define ORIGIN_FRONT_RIGHT 2
 | 
			
		||||
      #define ORIGIN_BACK_RIGHT  3
 | 
			
		||||
      #define ORIGIN_FRONT_LEFT  4
 | 
			
		||||
      #define TOPO_ORIGIN        ORIGIN_FRONT_LEFT
 | 
			
		||||
 | 
			
		||||
      // Prevent user from running a G29 without first homing in X and Y
 | 
			
		||||
      if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS])) {
 | 
			
		||||
        LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
 | 
			
		||||
        SERIAL_ECHO_START;
 | 
			
		||||
        SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
 | 
			
		||||
        break; // abort G29, since we don't know where we are
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      bool enhanced_g29 = code_seen('E') || code_seen('e');
 | 
			
		||||
 | 
			
		||||
      #ifdef AUTO_BED_LEVELING_GRID
 | 
			
		||||
 | 
			
		||||
        // Example Syntax:  G29 N4 V2 E T
 | 
			
		||||
        int verbose_level = 1;
 | 
			
		||||
 | 
			
		||||
        bool topo_flag = code_seen('T') || code_seen('t');
 | 
			
		||||
 | 
			
		||||
        if (code_seen('V') || code_seen('v')) {
 | 
			
		||||
          verbose_level = code_value();
 | 
			
		||||
          if (verbose_level < 0 || verbose_level > 4) {
 | 
			
		||||
            SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
 | 
			
		||||
            break;
 | 
			
		||||
          }
 | 
			
		||||
          if (verbose_level > 0) {
 | 
			
		||||
            SERIAL_PROTOCOLPGM("Enhanced G29 Auto_Bed_Leveling Code V1.25:\n");
 | 
			
		||||
            SERIAL_PROTOCOLPGM("Full support at http://3dprintboard.com\n");
 | 
			
		||||
            if (verbose_level > 2) topo_flag = true;
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
 | 
			
		||||
        if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
 | 
			
		||||
          SERIAL_PROTOCOLPGM("?Number of probed points not plausible (2 minimum).\n");
 | 
			
		||||
          break;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION;
 | 
			
		||||
        int right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION;
 | 
			
		||||
        int back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
 | 
			
		||||
        int front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION;
 | 
			
		||||
 | 
			
		||||
      #endif
 | 
			
		||||
 | 
			
		||||
      #ifdef Z_PROBE_SLED
 | 
			
		||||
            dock_sled(false);
 | 
			
		||||
#endif // Z_PROBE_SLED
 | 
			
		||||
        dock_sled(false); // engage (un-dock) the probe
 | 
			
		||||
      #endif
 | 
			
		||||
 | 
			
		||||
      st_synchronize();
 | 
			
		||||
      // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
 | 
			
		||||
      //vector_3 corrected_position = plan_get_position_mm();
 | 
			
		||||
@@ -1752,144 +1830,164 @@ void process_commands()
 | 
			
		||||
      setup_for_endstop_move();
 | 
			
		||||
 | 
			
		||||
      feedrate = homing_feedrate[Z_AXIS];
 | 
			
		||||
 | 
			
		||||
      #ifdef AUTO_BED_LEVELING_GRID
 | 
			
		||||
        // probe at the points of a lattice grid
 | 
			
		||||
            int left_probe_bed_position=LEFT_PROBE_BED_POSITION;
 | 
			
		||||
            int right_probe_bed_position=RIGHT_PROBE_BED_POSITION;
 | 
			
		||||
            int back_probe_bed_position=BACK_PROBE_BED_POSITION;
 | 
			
		||||
            int front_probe_bed_position=FRONT_PROBE_BED_POSITION;
 | 
			
		||||
            int auto_bed_leveling_grid_points=AUTO_BED_LEVELING_GRID_POINTS;
 | 
			
		||||
            if (code_seen('L')) left_probe_bed_position=(int)code_value();
 | 
			
		||||
            if (code_seen('R')) right_probe_bed_position=(int)code_value();
 | 
			
		||||
            if (code_seen('B')) back_probe_bed_position=(int)code_value();
 | 
			
		||||
            if (code_seen('F')) front_probe_bed_position=(int)code_value();
 | 
			
		||||
            if (code_seen('P')) auto_bed_leveling_grid_points=(int)code_value();
 | 
			
		||||
 | 
			
		||||
        int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
 | 
			
		||||
        int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        // solve the plane equation ax + by + d = z
 | 
			
		||||
        // A is the matrix with rows [x y 1] for all the probed points
 | 
			
		||||
        // B is the vector of the Z positions
 | 
			
		||||
        // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
 | 
			
		||||
        // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
 | 
			
		||||
 | 
			
		||||
            // "A" matrix of the linear system of equations
 | 
			
		||||
            double eqnAMatrix[auto_bed_leveling_grid_points*auto_bed_leveling_grid_points*3];
 | 
			
		||||
 | 
			
		||||
            // "B" vector of Z points
 | 
			
		||||
            double eqnBVector[auto_bed_leveling_grid_points*auto_bed_leveling_grid_points];
 | 
			
		||||
 | 
			
		||||
        int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
 | 
			
		||||
 | 
			
		||||
        double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
 | 
			
		||||
               eqnBVector[abl2],     // "B" vector of Z points
 | 
			
		||||
               mean = 0.0;
 | 
			
		||||
 | 
			
		||||
        int probePointCounter = 0;
 | 
			
		||||
        bool zig = true;
 | 
			
		||||
 | 
			
		||||
            for (int yProbe=front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing)
 | 
			
		||||
 | 
			
		||||
            {
 | 
			
		||||
        for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
 | 
			
		||||
          int xProbe, xInc;
 | 
			
		||||
 | 
			
		||||
          if (zig)
 | 
			
		||||
              {
 | 
			
		||||
                xProbe = left_probe_bed_position;
 | 
			
		||||
                //xEnd = right_probe_bed_position;
 | 
			
		||||
                xInc = xGridSpacing;
 | 
			
		||||
                zig = false;
 | 
			
		||||
              } else // zag
 | 
			
		||||
              {
 | 
			
		||||
                xProbe = right_probe_bed_position;
 | 
			
		||||
                //xEnd = left_probe_bed_position;
 | 
			
		||||
                xInc = -xGridSpacing;
 | 
			
		||||
                zig = true;
 | 
			
		||||
              }
 | 
			
		||||
            xProbe = left_probe_bed_position, xInc = xGridSpacing;
 | 
			
		||||
          else
 | 
			
		||||
            xProbe = right_probe_bed_position, xInc = -xGridSpacing;
 | 
			
		||||
 | 
			
		||||
              for (int xCount=0; xCount < auto_bed_leveling_grid_points; xCount++)
 | 
			
		||||
              {
 | 
			
		||||
                float z_before;
 | 
			
		||||
                if (probePointCounter == 0)
 | 
			
		||||
                {
 | 
			
		||||
                  // raise before probing
 | 
			
		||||
                  z_before = Z_RAISE_BEFORE_PROBING;
 | 
			
		||||
                } else
 | 
			
		||||
                {
 | 
			
		||||
          // If topo_flag is set then don't zig-zag. Just scan in one direction.
 | 
			
		||||
          // This gets the probe points in more readable order.
 | 
			
		||||
          if (!topo_flag) zig = !zig;
 | 
			
		||||
 | 
			
		||||
          for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
 | 
			
		||||
            // raise extruder
 | 
			
		||||
                  z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
 | 
			
		||||
                }
 | 
			
		||||
            float z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
 | 
			
		||||
                  measured_z;
 | 
			
		||||
 | 
			
		||||
                float measured_z;
 | 
			
		||||
            // Enhanced G29 - Do not retract servo between probes
 | 
			
		||||
                if (code_seen('E') || code_seen('e') )
 | 
			
		||||
                   {
 | 
			
		||||
                   if ((yProbe==FRONT_PROBE_BED_POSITION) && (xCount==0))
 | 
			
		||||
                       {
 | 
			
		||||
                        measured_z = probe_pt(xProbe, yProbe, z_before,1);
 | 
			
		||||
                       } else if ((yProbe==FRONT_PROBE_BED_POSITION + (yGridSpacing * (AUTO_BED_LEVELING_GRID_POINTS-1))) && (xCount == AUTO_BED_LEVELING_GRID_POINTS-1))
 | 
			
		||||
                         {
 | 
			
		||||
                         measured_z = probe_pt(xProbe, yProbe, z_before,3);
 | 
			
		||||
                         } else {
 | 
			
		||||
                           measured_z = probe_pt(xProbe, yProbe, z_before,2);
 | 
			
		||||
                         }
 | 
			
		||||
                    } else {
 | 
			
		||||
                    measured_z = probe_pt(xProbe, yProbe, z_before);
 | 
			
		||||
            ProbeAction act;
 | 
			
		||||
            if (enhanced_g29) {
 | 
			
		||||
              if (yProbe == front_probe_bed_position && xCount == 0)
 | 
			
		||||
                act = ProbeEngage;
 | 
			
		||||
              else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
 | 
			
		||||
                act = ProbeRetract;
 | 
			
		||||
              else
 | 
			
		||||
                act = ProbeStay;
 | 
			
		||||
            }
 | 
			
		||||
            else
 | 
			
		||||
              act = ProbeEngageRetract;
 | 
			
		||||
 | 
			
		||||
            measured_z = probe_pt(xProbe, yProbe, z_before, act);
 | 
			
		||||
 | 
			
		||||
            mean += measured_z;
 | 
			
		||||
 | 
			
		||||
            eqnBVector[probePointCounter] = measured_z;
 | 
			
		||||
            eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
 | 
			
		||||
            eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
 | 
			
		||||
            eqnAMatrix[probePointCounter + 2 * abl2] = 1;
 | 
			
		||||
 | 
			
		||||
                eqnAMatrix[probePointCounter + 0*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = xProbe;
 | 
			
		||||
                eqnAMatrix[probePointCounter + 1*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = yProbe;
 | 
			
		||||
                eqnAMatrix[probePointCounter + 2*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = 1;
 | 
			
		||||
            probePointCounter++;
 | 
			
		||||
            xProbe += xInc;
 | 
			
		||||
              }
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
          } //xProbe
 | 
			
		||||
 | 
			
		||||
        } //yProbe
 | 
			
		||||
 | 
			
		||||
        clean_up_after_endstop_move();
 | 
			
		||||
 | 
			
		||||
        // solve lsq problem
 | 
			
		||||
            double *plane_equation_coefficients = qr_solve(auto_bed_leveling_grid_points*auto_bed_leveling_grid_points, 3, eqnAMatrix, eqnBVector);
 | 
			
		||||
        double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
 | 
			
		||||
 | 
			
		||||
        mean /= abl2;
 | 
			
		||||
 | 
			
		||||
        if (verbose_level) {
 | 
			
		||||
          SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
 | 
			
		||||
          SERIAL_PROTOCOL(plane_equation_coefficients[0]);
 | 
			
		||||
          SERIAL_PROTOCOLPGM(" b: ");
 | 
			
		||||
          SERIAL_PROTOCOL(plane_equation_coefficients[1]);
 | 
			
		||||
          SERIAL_PROTOCOLPGM(" d: ");
 | 
			
		||||
          SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
 | 
			
		||||
          if (verbose_level > 2) {
 | 
			
		||||
            SERIAL_PROTOCOLPGM("Mean of sampled points: ");
 | 
			
		||||
            SERIAL_PROTOCOL_F(mean, 6);
 | 
			
		||||
            SERIAL_PROTOCOLPGM(" \n");
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        if (topo_flag) {
 | 
			
		||||
 | 
			
		||||
          int xx, yy;
 | 
			
		||||
 | 
			
		||||
          SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
 | 
			
		||||
          #if TOPO_ORIGIN == ORIGIN_FRONT_LEFT
 | 
			
		||||
            for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
 | 
			
		||||
          #else
 | 
			
		||||
            for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
 | 
			
		||||
          #endif
 | 
			
		||||
            {
 | 
			
		||||
              #if TOPO_ORIGIN == ORIGIN_BACK_RIGHT
 | 
			
		||||
                for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
 | 
			
		||||
              #else
 | 
			
		||||
                for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
 | 
			
		||||
              #endif
 | 
			
		||||
                {
 | 
			
		||||
                  int ind =
 | 
			
		||||
                    #if TOPO_ORIGIN == ORIGIN_BACK_RIGHT || TOPO_ORIGIN == ORIGIN_FRONT_LEFT
 | 
			
		||||
                      yy * auto_bed_leveling_grid_points + xx
 | 
			
		||||
                    #elif TOPO_ORIGIN == ORIGIN_BACK_LEFT
 | 
			
		||||
                      xx * auto_bed_leveling_grid_points + yy
 | 
			
		||||
                    #elif TOPO_ORIGIN == ORIGIN_FRONT_RIGHT
 | 
			
		||||
                      abl2 - xx * auto_bed_leveling_grid_points - yy - 1
 | 
			
		||||
                    #endif
 | 
			
		||||
                  ;
 | 
			
		||||
                  float diff = eqnBVector[ind] - mean;
 | 
			
		||||
                  if (diff >= 0.0)
 | 
			
		||||
                    SERIAL_PROTOCOLPGM(" +");   // Watch column alignment in Pronterface
 | 
			
		||||
                  else
 | 
			
		||||
                    SERIAL_PROTOCOLPGM(" -");
 | 
			
		||||
                  SERIAL_PROTOCOL_F(diff, 5);
 | 
			
		||||
                } // xx
 | 
			
		||||
                SERIAL_PROTOCOLPGM("\n");
 | 
			
		||||
            } // yy
 | 
			
		||||
            SERIAL_PROTOCOLPGM("\n");
 | 
			
		||||
 | 
			
		||||
        } //topo_flag
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        set_bed_level_equation_lsq(plane_equation_coefficients);
 | 
			
		||||
 | 
			
		||||
        free(plane_equation_coefficients);
 | 
			
		||||
 | 
			
		||||
#else // AUTO_BED_LEVELING_GRID not defined
 | 
			
		||||
      #else // !AUTO_BED_LEVELING_GRID
 | 
			
		||||
 | 
			
		||||
        // Probe at 3 arbitrary points
 | 
			
		||||
            // Enhanced G29
 | 
			
		||||
            
 | 
			
		||||
        float z_at_pt_1, z_at_pt_2, z_at_pt_3;
 | 
			
		||||
 | 
			
		||||
            if (code_seen('E') || code_seen('e')) {
 | 
			
		||||
              // probe 1               
 | 
			
		||||
              z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING,1);
 | 
			
		||||
              // probe 2
 | 
			
		||||
              z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,2);
 | 
			
		||||
              // probe 3
 | 
			
		||||
              z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,3); 
 | 
			
		||||
        if (enhanced_g29) {
 | 
			
		||||
          // Basic Enhanced G29
 | 
			
		||||
          z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage);
 | 
			
		||||
          z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay);
 | 
			
		||||
          z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract);
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
              // probe 1
 | 
			
		||||
          z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
 | 
			
		||||
              // probe 2
 | 
			
		||||
          z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
 | 
			
		||||
              // probe 3
 | 
			
		||||
          z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
 | 
			
		||||
        }
 | 
			
		||||
        clean_up_after_endstop_move();
 | 
			
		||||
        set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
 | 
			
		||||
 | 
			
		||||
      #endif // !AUTO_BED_LEVELING_GRID
 | 
			
		||||
 | 
			
		||||
#endif // AUTO_BED_LEVELING_GRID
 | 
			
		||||
      st_synchronize();
 | 
			
		||||
 | 
			
		||||
      if (verbose_level > 0)
 | 
			
		||||
        plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
 | 
			
		||||
 | 
			
		||||
      // The following code correct the Z height difference from z-probe position and hotend tip position.
 | 
			
		||||
      // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
 | 
			
		||||
      // When the bed is uneven, this height must be corrected.
 | 
			
		||||
@@ -1901,11 +1999,13 @@ void process_commands()
 | 
			
		||||
      apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);         //Apply the correction sending the probe offset
 | 
			
		||||
      current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS];   //The difference is added to current position and sent to planner.
 | 
			
		||||
      plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
 | 
			
		||||
 | 
			
		||||
      #ifdef Z_PROBE_SLED
 | 
			
		||||
            dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
 | 
			
		||||
#endif // Z_PROBE_SLED
 | 
			
		||||
        dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
 | 
			
		||||
      #endif
 | 
			
		||||
    }
 | 
			
		||||
    break;
 | 
			
		||||
 | 
			
		||||
#ifndef Z_PROBE_SLED
 | 
			
		||||
    case 30: // G30 Single Z Probe
 | 
			
		||||
        {
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user