🐛 Fix Bed/Chamber PID Autotune with MPCTEMP (#23983)

This commit is contained in:
Giuliano Zaro
2022-04-04 01:44:45 +02:00
committed by Scott Lahteine
parent a6ce9bf559
commit 6c557a2480
9 changed files with 92 additions and 96 deletions

View File

@ -415,6 +415,21 @@ FORCE_INLINE void probe_specific_action(const bool deploy) {
#endif
/**
* Print an error and stop()
*/
void Probe::probe_error_stop() {
SERIAL_ERROR_START();
SERIAL_ECHOPGM(STR_STOP_PRE);
#if EITHER(Z_PROBE_SLED, Z_PROBE_ALLEN_KEY)
SERIAL_ECHOPGM(STR_STOP_UNHOMED);
#elif ENABLED(BLTOUCH)
SERIAL_ECHOPGM(STR_STOP_BLTOUCH);
#endif
SERIAL_ECHOLNPGM(STR_STOP_POST);
stop();
}
/**
* Attempt to deploy or stow the probe
*
@ -443,8 +458,7 @@ bool Probe::set_deployed(const bool deploy) {
#if EITHER(Z_PROBE_SLED, Z_PROBE_ALLEN_KEY)
if (homing_needed_error(TERN_(Z_PROBE_SLED, _BV(X_AXIS)))) {
SERIAL_ERROR_MSG(STR_STOP_UNHOMED);
stop();
probe_error_stop();
return true;
}
#endif
@ -484,15 +498,12 @@ bool Probe::set_deployed(const bool deploy) {
}
/**
* @brief Used by run_z_probe to do a single Z probe move.
* @brief Move down until the probe triggers or the low limit is reached
* Used by run_z_probe to do a single Z probe move.
*
* @param z Z destination
* @param fr_mm_s Feedrate in mm/s
* @return true to indicate an error
*/
/**
* @brief Move down until the probe triggers or the low limit is reached
*
* @details Used by run_z_probe to get each bed Z height measurement.
* Sets current_position.z to the height where the probe triggered

View File

@ -78,6 +78,8 @@ public:
static void preheat_for_probing(const celsius_t hotend_temp, const celsius_t bed_temp);
#endif
static void probe_error_stop();
static bool set_deployed(const bool deploy);
#if IS_KINEMATIC

View File

@ -638,6 +638,7 @@ volatile bool Temperature::raw_temps_ready = false;
TERN_(DWIN_LCD_PROUI, DWIN_PidTuning(isbed ? PID_BED_START : PID_EXTR_START));
if (target > GHV(CHAMBER_MAX_TARGET, BED_MAX_TARGET, temp_range[heater_id].maxtemp - (HOTEND_OVERSHOOT))) {
SERIAL_ECHOPGM(STR_PID_AUTOTUNE);
SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH);
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH));
TERN_(DWIN_LCD_PROUI, DWIN_PidTuning(PID_TEMP_TOO_HIGH));
@ -645,6 +646,7 @@ volatile bool Temperature::raw_temps_ready = false;
return;
}
SERIAL_ECHOPGM(STR_PID_AUTOTUNE);
SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_START);
disable_all_heaters();
@ -660,10 +662,11 @@ volatile bool Temperature::raw_temps_ready = false;
TERN_(NO_FAN_SLOWING_IN_PID_TUNING, adaptive_fan_slowing = false);
// PID Tuning loop
wait_for_heatup = true; // Can be interrupted with M108
LCD_MESSAGE(MSG_HEATING);
while (wait_for_heatup) {
// PID Tuning loop
wait_for_heatup = true;
while (wait_for_heatup) { // Can be interrupted with M108
const millis_t ms = millis();
@ -729,6 +732,7 @@ volatile bool Temperature::raw_temps_ready = false;
#define MAX_OVERSHOOT_PID_AUTOTUNE 30
#endif
if (current_temp > target + MAX_OVERSHOOT_PID_AUTOTUNE) {
SERIAL_ECHOPGM(STR_PID_AUTOTUNE);
SERIAL_ECHOLNPGM(STR_PID_TEMP_TOO_HIGH);
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TEMP_TOO_HIGH));
TERN_(DWIN_LCD_PROUI, DWIN_PidTuning(PID_TEMP_TOO_HIGH));
@ -771,11 +775,13 @@ volatile bool Temperature::raw_temps_ready = false;
TERN_(DWIN_LCD_PROUI, DWIN_PidTuning(PID_TUNING_TIMEOUT));
TERN_(EXTENSIBLE_UI, ExtUI::onPidTuning(ExtUI::result_t::PID_TUNING_TIMEOUT));
TERN_(HOST_PROMPT_SUPPORT, hostui.notify(GET_TEXT_F(MSG_PID_TIMEOUT)));
SERIAL_ECHOPGM(STR_PID_AUTOTUNE);
SERIAL_ECHOLNPGM(STR_PID_TIMEOUT);
break;
}
if (cycles > ncycles && cycles > 2) {
SERIAL_ECHOPGM(STR_PID_AUTOTUNE);
SERIAL_ECHOLNPGM(STR_PID_AUTOTUNE_FINISHED);
TERN_(HOST_PROMPT_SUPPORT, hostui.notify(GET_TEXT_F(MSG_PID_AUTOTUNE_DONE)));
@ -875,7 +881,6 @@ volatile bool Temperature::raw_temps_ready = false;
MPC_t& constants = hotend.constants;
// move to center of bed, just above bed height and cool with max fan
SERIAL_ECHOLNPGM("Moving to tuning position");
TERN_(HAS_FAN, zero_fan_speeds());
disable_all_heaters();
TERN_(HAS_FAN, set_fan_speed(ANY(MPC_FAN_0_ALL_HOTENDS, MPC_FAN_0_ACTIVE_HOTEND) ? 0 : active_extruder, 255));
@ -902,6 +907,7 @@ volatile bool Temperature::raw_temps_ready = false;
next_test_ms += 10000UL;
}
}
TERN_(HAS_FAN, set_fan_speed(ANY(MPC_FAN_0_ALL_HOTENDS, MPC_FAN_0_ACTIVE_HOTEND) ? 0 : active_extruder, 0));
TERN_(HAS_FAN, planner.sync_fan_speeds(fan_speed));
@ -909,8 +915,7 @@ volatile bool Temperature::raw_temps_ready = false;
SERIAL_ECHOLNPGM("Heating to 200C");
hotend.soft_pwm_amount = MPC_MAX >> 1;
const millis_t heat_start_time = ms;
next_test_ms = ms;
const millis_t heat_start_time = next_test_ms = ms;
celsius_float_t temp_samples[16];
uint8_t sample_count = 0;
uint16_t sample_distance = 1;
@ -941,7 +946,7 @@ volatile bool Temperature::raw_temps_ready = false;
}
hotend.soft_pwm_amount = 0;
// calculate physical constants from three equally spaced samples
// Calculate physical constants from three equally-spaced samples
sample_count = (sample_count + 1) / 2 * 2 - 1;
const float t1 = temp_samples[0],
t2 = temp_samples[(sample_count - 1) >> 1],
@ -957,14 +962,13 @@ volatile bool Temperature::raw_temps_ready = false;
hotend.modeled_block_temp = asymp_temp + (ambient_temp - asymp_temp) * exp(-block_responsiveness * (ms - heat_start_time) / 1000.0f);
hotend.modeled_sensor_temp = current_temp;
// let the system stabilise under MPC control then get a better measure of ambient loss without and with fan
// Allow the system to stabilize under MPC, then get a better measure of ambient loss with and without fan
SERIAL_ECHOLNPGM("Measuring ambient heatloss at target ", hotend.modeled_block_temp);
hotend.target = hotend.modeled_block_temp;
next_test_ms = ms + MPC_dT * 1000;
constexpr millis_t settle_time = 20000UL,
test_length = 20000UL;
constexpr millis_t settle_time = 20000UL, test_duration = 20000UL;
millis_t settle_end_ms = ms + settle_time,
test_end_ms = settle_end_ms + test_length;
test_end_ms = settle_end_ms + test_duration;
float total_energy_fan0 = 0.0f;
#if HAS_FAN
bool fan0_done = false;
@ -987,7 +991,7 @@ volatile bool Temperature::raw_temps_ready = false;
set_fan_speed(ANY(MPC_FAN_0_ALL_HOTENDS, MPC_FAN_0_ACTIVE_HOTEND) ? 0 : active_extruder, 255);
planner.sync_fan_speeds(fan_speed);
settle_end_ms = ms + settle_time;
test_end_ms = settle_end_ms + test_length;
test_end_ms = settle_end_ms + test_duration;
fan0_done = true;
}
else if (ELAPSED(ms, settle_end_ms) && !ELAPSED(ms, test_end_ms))
@ -1005,11 +1009,11 @@ volatile bool Temperature::raw_temps_ready = false;
}
}
const float power_fan0 = total_energy_fan0 * 1000 / test_length;
const float power_fan0 = total_energy_fan0 * 1000 / test_duration;
constants.ambient_xfer_coeff_fan0 = power_fan0 / (hotend.target - ambient_temp);
#if HAS_FAN
const float power_fan255 = total_energy_fan255 * 1000 / test_length,
const float power_fan255 = total_energy_fan255 * 1000 / test_duration,
ambient_xfer_coeff_fan255 = power_fan255 / (hotend.target - ambient_temp);
constants.fan255_adjustment = ambient_xfer_coeff_fan255 - constants.ambient_xfer_coeff_fan0;
#endif
@ -1371,8 +1375,8 @@ void Temperature::min_temp_error(const heater_id_t heater_id) {
#endif
#elif ENABLED(MPCTEMP)
MPCHeaterInfo& hotend = temp_hotend[ee];
MPC_t& constants = hotend.constants;
MPCHeaterInfo &hotend = temp_hotend[ee];
MPC_t &constants = hotend.constants;
// At startup, initialize modeled temperatures
if (isnan(hotend.modeled_block_temp)) {