Replace 'const float &' with 'const_float_t' (#21505)
This commit is contained in:
@ -213,7 +213,7 @@ void print_bilinear_leveling_grid() {
|
||||
) * 0.5f;
|
||||
}
|
||||
|
||||
static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
|
||||
static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const_float_t tx, const_float_t ty) {
|
||||
float row[4], column[4];
|
||||
LOOP_L_N(i, 4) {
|
||||
LOOP_L_N(j, 4) {
|
||||
@ -356,7 +356,7 @@ float bilinear_z_offset(const xy_pos_t &raw) {
|
||||
* Prepare a bilinear-leveled linear move on Cartesian,
|
||||
* splitting the move where it crosses grid borders.
|
||||
*/
|
||||
void bilinear_line_to_destination(const feedRate_t &scaled_fr_mm_s, uint16_t x_splits, uint16_t y_splits) {
|
||||
void bilinear_line_to_destination(const_feedRate_t scaled_fr_mm_s, uint16_t x_splits, uint16_t y_splits) {
|
||||
// Get current and destination cells for this line
|
||||
xy_int_t c1 { CELL_INDEX(x, current_position.x), CELL_INDEX(y, current_position.y) },
|
||||
c2 { CELL_INDEX(x, destination.x), CELL_INDEX(y, destination.y) };
|
||||
|
@ -37,7 +37,7 @@ void refresh_bed_level();
|
||||
#endif
|
||||
|
||||
#if IS_CARTESIAN && DISABLED(SEGMENT_LEVELED_MOVES)
|
||||
void bilinear_line_to_destination(const feedRate_t &scaled_fr_mm_s, uint16_t x_splits=0xFFFF, uint16_t y_splits=0xFFFF);
|
||||
void bilinear_line_to_destination(const_feedRate_t scaled_fr_mm_s, uint16_t x_splits=0xFFFF, uint16_t y_splits=0xFFFF);
|
||||
#endif
|
||||
|
||||
#define _GET_MESH_X(I) float(bilinear_start.x + (I) * bilinear_grid_spacing.x)
|
||||
|
@ -98,7 +98,7 @@ TemporaryBedLevelingState::TemporaryBedLevelingState(const bool enable) : saved(
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
|
||||
void set_z_fade_height(const float &zfh, const bool do_report/*=true*/) {
|
||||
void set_z_fade_height(const_float_t zfh, const bool do_report/*=true*/) {
|
||||
|
||||
if (planner.z_fade_height == zfh) return;
|
||||
|
||||
|
@ -38,7 +38,7 @@ void set_bed_leveling_enabled(const bool enable=true);
|
||||
void reset_bed_level();
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
void set_z_fade_height(const float &zfh, const bool do_report=true);
|
||||
void set_z_fade_height(const_float_t zfh, const bool do_report=true);
|
||||
#endif
|
||||
|
||||
#if EITHER(MESH_BED_LEVELING, PROBE_MANUALLY)
|
||||
|
@ -61,7 +61,7 @@
|
||||
* Prepare a mesh-leveled linear move in a Cartesian setup,
|
||||
* splitting the move where it crosses mesh borders.
|
||||
*/
|
||||
void mesh_bed_leveling::line_to_destination(const feedRate_t &scaled_fr_mm_s, uint8_t x_splits, uint8_t y_splits) {
|
||||
void mesh_bed_leveling::line_to_destination(const_feedRate_t scaled_fr_mm_s, uint8_t x_splits, uint8_t y_splits) {
|
||||
// Get current and destination cells for this line
|
||||
xy_int8_t scel = cell_indexes(current_position), ecel = cell_indexes(destination);
|
||||
NOMORE(scel.x, GRID_MAX_POINTS_X - 2);
|
||||
|
@ -56,7 +56,7 @@ public:
|
||||
return false;
|
||||
}
|
||||
|
||||
static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
|
||||
static void set_z(const int8_t px, const int8_t py, const_float_t z) { z_values[px][py] = z; }
|
||||
|
||||
static inline void zigzag(const int8_t index, int8_t &px, int8_t &py) {
|
||||
px = index % (GRID_MAX_POINTS_X);
|
||||
@ -64,39 +64,39 @@ public:
|
||||
if (py & 1) px = (GRID_MAX_POINTS_X - 1) - px; // Zig zag
|
||||
}
|
||||
|
||||
static void set_zigzag_z(const int8_t index, const float &z) {
|
||||
static void set_zigzag_z(const int8_t index, const_float_t z) {
|
||||
int8_t px, py;
|
||||
zigzag(index, px, py);
|
||||
set_z(px, py, z);
|
||||
}
|
||||
|
||||
static int8_t cell_index_x(const float &x) {
|
||||
static int8_t cell_index_x(const_float_t x) {
|
||||
int8_t cx = (x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST);
|
||||
return constrain(cx, 0, (GRID_MAX_POINTS_X) - 2);
|
||||
}
|
||||
static int8_t cell_index_y(const float &y) {
|
||||
static int8_t cell_index_y(const_float_t y) {
|
||||
int8_t cy = (y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST);
|
||||
return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 2);
|
||||
}
|
||||
static inline xy_int8_t cell_indexes(const float &x, const float &y) {
|
||||
static inline xy_int8_t cell_indexes(const_float_t x, const_float_t y) {
|
||||
return { cell_index_x(x), cell_index_y(y) };
|
||||
}
|
||||
static inline xy_int8_t cell_indexes(const xy_pos_t &xy) { return cell_indexes(xy.x, xy.y); }
|
||||
|
||||
static int8_t probe_index_x(const float &x) {
|
||||
static int8_t probe_index_x(const_float_t x) {
|
||||
int8_t px = (x - (MESH_MIN_X) + 0.5f * (MESH_X_DIST)) * RECIPROCAL(MESH_X_DIST);
|
||||
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
|
||||
}
|
||||
static int8_t probe_index_y(const float &y) {
|
||||
static int8_t probe_index_y(const_float_t y) {
|
||||
int8_t py = (y - (MESH_MIN_Y) + 0.5f * (MESH_Y_DIST)) * RECIPROCAL(MESH_Y_DIST);
|
||||
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
|
||||
}
|
||||
static inline xy_int8_t probe_indexes(const float &x, const float &y) {
|
||||
static inline xy_int8_t probe_indexes(const_float_t x, const_float_t y) {
|
||||
return { probe_index_x(x), probe_index_y(y) };
|
||||
}
|
||||
static inline xy_int8_t probe_indexes(const xy_pos_t &xy) { return probe_indexes(xy.x, xy.y); }
|
||||
|
||||
static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
||||
static float calc_z0(const_float_t a0, const_float_t a1, const_float_t z1, const_float_t a2, const_float_t z2) {
|
||||
const float delta_z = (z2 - z1) / (a2 - a1),
|
||||
delta_a = a0 - a1;
|
||||
return z1 + delta_a * delta_z;
|
||||
@ -104,7 +104,7 @@ public:
|
||||
|
||||
static float get_z(const xy_pos_t &pos
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
, const float &factor=1.0f
|
||||
, const_float_t factor=1.0f
|
||||
#endif
|
||||
) {
|
||||
#if DISABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
@ -120,7 +120,7 @@ public:
|
||||
}
|
||||
|
||||
#if IS_CARTESIAN && DISABLED(SEGMENT_LEVELED_MOVES)
|
||||
static void line_to_destination(const feedRate_t &scaled_fr_mm_s, uint8_t x_splits=0xFF, uint8_t y_splits=0xFF);
|
||||
static void line_to_destination(const_feedRate_t scaled_fr_mm_s, uint8_t x_splits=0xFF, uint8_t y_splits=0xFF);
|
||||
#endif
|
||||
};
|
||||
|
||||
|
@ -102,7 +102,7 @@ void unified_bed_leveling::invalidate() {
|
||||
set_all_mesh_points_to_value(NAN);
|
||||
}
|
||||
|
||||
void unified_bed_leveling::set_all_mesh_points_to_value(const float value) {
|
||||
void unified_bed_leveling::set_all_mesh_points_to_value(const_float_t value) {
|
||||
GRID_LOOP(x, y) {
|
||||
z_values[x][y] = value;
|
||||
TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, value));
|
||||
@ -115,7 +115,7 @@ void unified_bed_leveling::set_all_mesh_points_to_value(const float value) {
|
||||
constexpr int16_t Z_STEPS_NAN = INT16_MAX;
|
||||
|
||||
void unified_bed_leveling::set_store_from_mesh(const bed_mesh_t &in_values, mesh_store_t &stored_values) {
|
||||
auto z_to_store = [](const float &z) {
|
||||
auto z_to_store = [](const_float_t z) {
|
||||
if (isnan(z)) return Z_STEPS_NAN;
|
||||
const int32_t z_scaled = TRUNC(z * mesh_store_scaling);
|
||||
if (z_scaled == Z_STEPS_NAN || !WITHIN(z_scaled, INT16_MIN, INT16_MAX))
|
||||
|
@ -67,17 +67,17 @@ private:
|
||||
static G29_parameters_t param;
|
||||
|
||||
#if IS_NEWPANEL
|
||||
static void move_z_with_encoder(const float &multiplier);
|
||||
static void move_z_with_encoder(const_float_t multiplier);
|
||||
static float measure_point_with_encoder();
|
||||
static float measure_business_card_thickness();
|
||||
static void manually_probe_remaining_mesh(const xy_pos_t&, const float&, const float&, const bool) _O0;
|
||||
static void manually_probe_remaining_mesh(const xy_pos_t&, const_float_t , const_float_t , const bool) _O0;
|
||||
static void fine_tune_mesh(const xy_pos_t &pos, const bool do_ubl_mesh_map) _O0;
|
||||
#endif
|
||||
|
||||
static bool G29_parse_parameters() _O0;
|
||||
static void shift_mesh_height();
|
||||
static void probe_entire_mesh(const xy_pos_t &near, const bool do_ubl_mesh_map, const bool stow_probe, const bool do_furthest) _O0;
|
||||
static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
|
||||
static void tilt_mesh_based_on_3pts(const_float_t z1, const_float_t z2, const_float_t z3);
|
||||
static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
|
||||
static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
|
||||
static inline bool smart_fill_one(const xy_uint8_t &pos, const xy_uint8_t &dir) {
|
||||
@ -103,12 +103,12 @@ public:
|
||||
static mesh_index_pair find_furthest_invalid_mesh_point() _O0;
|
||||
static void reset();
|
||||
static void invalidate();
|
||||
static void set_all_mesh_points_to_value(const float value);
|
||||
static void adjust_mesh_to_mean(const bool cflag, const float value);
|
||||
static void set_all_mesh_points_to_value(const_float_t value);
|
||||
static void adjust_mesh_to_mean(const bool cflag, const_float_t value);
|
||||
static bool sanity_check();
|
||||
|
||||
static void G29() _O0; // O0 for no optimization
|
||||
static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
|
||||
static void smart_fill_wlsf(const_float_t ) _O2; // O2 gives smaller code than Os on A2560
|
||||
|
||||
static int8_t storage_slot;
|
||||
|
||||
@ -131,42 +131,42 @@ public:
|
||||
|
||||
unified_bed_leveling();
|
||||
|
||||
FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
|
||||
FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const_float_t z) { z_values[px][py] = z; }
|
||||
|
||||
static int8_t cell_index_x_raw(const float &x) {
|
||||
static int8_t cell_index_x_raw(const_float_t x) {
|
||||
return FLOOR((x - (MESH_MIN_X)) * RECIPROCAL(MESH_X_DIST));
|
||||
}
|
||||
|
||||
static int8_t cell_index_y_raw(const float &y) {
|
||||
static int8_t cell_index_y_raw(const_float_t y) {
|
||||
return FLOOR((y - (MESH_MIN_Y)) * RECIPROCAL(MESH_Y_DIST));
|
||||
}
|
||||
|
||||
static int8_t cell_index_x_valid(const float &x) {
|
||||
static int8_t cell_index_x_valid(const_float_t x) {
|
||||
return WITHIN(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X - 2));
|
||||
}
|
||||
|
||||
static int8_t cell_index_y_valid(const float &y) {
|
||||
static int8_t cell_index_y_valid(const_float_t y) {
|
||||
return WITHIN(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y - 2));
|
||||
}
|
||||
|
||||
static int8_t cell_index_x(const float &x) {
|
||||
static int8_t cell_index_x(const_float_t x) {
|
||||
return constrain(cell_index_x_raw(x), 0, (GRID_MAX_POINTS_X) - 2);
|
||||
}
|
||||
|
||||
static int8_t cell_index_y(const float &y) {
|
||||
static int8_t cell_index_y(const_float_t y) {
|
||||
return constrain(cell_index_y_raw(y), 0, (GRID_MAX_POINTS_Y) - 2);
|
||||
}
|
||||
|
||||
static inline xy_int8_t cell_indexes(const float &x, const float &y) {
|
||||
static inline xy_int8_t cell_indexes(const_float_t x, const_float_t y) {
|
||||
return { cell_index_x(x), cell_index_y(y) };
|
||||
}
|
||||
static inline xy_int8_t cell_indexes(const xy_pos_t &xy) { return cell_indexes(xy.x, xy.y); }
|
||||
|
||||
static int8_t closest_x_index(const float &x) {
|
||||
static int8_t closest_x_index(const_float_t x) {
|
||||
const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * RECIPROCAL(MESH_X_DIST);
|
||||
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
|
||||
}
|
||||
static int8_t closest_y_index(const float &y) {
|
||||
static int8_t closest_y_index(const_float_t y) {
|
||||
const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * RECIPROCAL(MESH_Y_DIST);
|
||||
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
|
||||
}
|
||||
@ -189,7 +189,7 @@ public:
|
||||
* It is fairly expensive with its 4 floating point additions and 2 floating point
|
||||
* multiplications.
|
||||
*/
|
||||
FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
||||
FORCE_INLINE static float calc_z0(const_float_t a0, const_float_t a1, const_float_t z1, const_float_t a2, const_float_t z2) {
|
||||
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
|
||||
}
|
||||
|
||||
@ -203,7 +203,7 @@ public:
|
||||
* z_correction_for_x_on_horizontal_mesh_line is an optimization for
|
||||
* the case where the printer is making a vertical line that only crosses horizontal mesh lines.
|
||||
*/
|
||||
static inline float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) {
|
||||
static inline float z_correction_for_x_on_horizontal_mesh_line(const_float_t rx0, const int x1_i, const int yi) {
|
||||
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
|
||||
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
@ -226,7 +226,7 @@ public:
|
||||
//
|
||||
// See comments above for z_correction_for_x_on_horizontal_mesh_line
|
||||
//
|
||||
static inline float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) {
|
||||
static inline float z_correction_for_y_on_vertical_mesh_line(const_float_t ry0, const int xi, const int y1_i) {
|
||||
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
|
||||
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
@ -252,7 +252,7 @@ public:
|
||||
* Z-Height at both ends. Then it does a linear interpolation of these heights based
|
||||
* on the Y position within the cell.
|
||||
*/
|
||||
static float get_z_correction(const float &rx0, const float &ry0) {
|
||||
static float get_z_correction(const_float_t rx0, const_float_t ry0) {
|
||||
const int8_t cx = cell_index_x(rx0), cy = cell_index_y(ry0); // return values are clamped
|
||||
|
||||
/**
|
||||
@ -309,9 +309,9 @@ public:
|
||||
}
|
||||
|
||||
#if UBL_SEGMENTED
|
||||
static bool line_to_destination_segmented(const feedRate_t &scaled_fr_mm_s);
|
||||
static bool line_to_destination_segmented(const_feedRate_t scaled_fr_mm_s);
|
||||
#else
|
||||
static void line_to_destination_cartesian(const feedRate_t &scaled_fr_mm_s, const uint8_t e);
|
||||
static void line_to_destination_cartesian(const_feedRate_t scaled_fr_mm_s, const uint8_t e);
|
||||
#endif
|
||||
|
||||
static inline bool mesh_is_valid() {
|
||||
|
@ -672,7 +672,7 @@ void unified_bed_leveling::G29() {
|
||||
* G29 P5 C<value> : Adjust Mesh To Mean (and subtract the given offset).
|
||||
* Find the mean average and shift the mesh to center on that value.
|
||||
*/
|
||||
void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const float offset) {
|
||||
void unified_bed_leveling::adjust_mesh_to_mean(const bool cflag, const_float_t offset) {
|
||||
float sum = 0;
|
||||
int n = 0;
|
||||
GRID_LOOP(x, y)
|
||||
@ -821,7 +821,7 @@ void set_message_with_feedback(PGM_P const msg_P) {
|
||||
return false;
|
||||
}
|
||||
|
||||
void unified_bed_leveling::move_z_with_encoder(const float &multiplier) {
|
||||
void unified_bed_leveling::move_z_with_encoder(const_float_t multiplier) {
|
||||
ui.wait_for_release();
|
||||
while (!ui.button_pressed()) {
|
||||
idle();
|
||||
@ -883,7 +883,7 @@ void set_message_with_feedback(PGM_P const msg_P) {
|
||||
* Move to INVALID points and
|
||||
* NOTE: Blocks the G-code queue and captures Marlin UI during use.
|
||||
*/
|
||||
void unified_bed_leveling::manually_probe_remaining_mesh(const xy_pos_t &pos, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
|
||||
void unified_bed_leveling::manually_probe_remaining_mesh(const xy_pos_t &pos, const_float_t z_clearance, const_float_t thick, const bool do_ubl_mesh_map) {
|
||||
ui.capture();
|
||||
|
||||
save_ubl_active_state_and_disable(); // No bed level correction so only raw data is obtained
|
||||
@ -1633,10 +1633,10 @@ void unified_bed_leveling::smart_fill_mesh() {
|
||||
*/
|
||||
#ifdef VALIDATE_MESH_TILT
|
||||
auto d_from = []{ DEBUG_ECHOPGM("D from "); };
|
||||
auto normed = [&](const xy_pos_t &pos, const float &zadd) {
|
||||
auto normed = [&](const xy_pos_t &pos, const_float_t zadd) {
|
||||
return normal.x * pos.x + normal.y * pos.y + zadd;
|
||||
};
|
||||
auto debug_pt = [](PGM_P const pre, const xy_pos_t &pos, const float &zadd) {
|
||||
auto debug_pt = [](PGM_P const pre, const xy_pos_t &pos, const_float_t zadd) {
|
||||
d_from(); SERIAL_ECHOPGM_P(pre);
|
||||
DEBUG_ECHO_F(normed(pos, zadd), 6);
|
||||
DEBUG_ECHOLNPAIR_F(" Z error = ", zadd - get_z_correction(pos), 6);
|
||||
@ -1658,7 +1658,7 @@ void unified_bed_leveling::smart_fill_mesh() {
|
||||
#endif // HAS_BED_PROBE
|
||||
|
||||
#if ENABLED(UBL_G29_P31)
|
||||
void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) {
|
||||
void unified_bed_leveling::smart_fill_wlsf(const_float_t weight_factor) {
|
||||
|
||||
// For each undefined mesh point, compute a distance-weighted least squares fit
|
||||
// from all the originally populated mesh points, weighted toward the point
|
||||
|
@ -37,7 +37,7 @@
|
||||
|
||||
#if !UBL_SEGMENTED
|
||||
|
||||
void unified_bed_leveling::line_to_destination_cartesian(const feedRate_t &scaled_fr_mm_s, const uint8_t extruder) {
|
||||
void unified_bed_leveling::line_to_destination_cartesian(const_feedRate_t scaled_fr_mm_s, const uint8_t extruder) {
|
||||
/**
|
||||
* Much of the nozzle movement will be within the same cell. So we will do as little computation
|
||||
* as possible to determine if this is the case. If this move is within the same cell, we will
|
||||
@ -323,7 +323,7 @@
|
||||
* Returns true if did NOT move, false if moved (requires current_position update).
|
||||
*/
|
||||
|
||||
bool _O2 unified_bed_leveling::line_to_destination_segmented(const feedRate_t &scaled_fr_mm_s) {
|
||||
bool _O2 unified_bed_leveling::line_to_destination_segmented(const_feedRate_t scaled_fr_mm_s) {
|
||||
|
||||
if (!position_is_reachable(destination)) // fail if moving outside reachable boundary
|
||||
return true; // did not move, so current_position still accurate
|
||||
|
Reference in New Issue
Block a user