Use 'logical' rather than 'target' or 'cartesian'
This commit is contained in:
		| @@ -303,7 +303,7 @@ float code_value_temp_diff(); | ||||
|  | ||||
| #if IS_KINEMATIC | ||||
|   extern float delta[ABC]; | ||||
|   void inverse_kinematics(const float cartesian[XYZ]); | ||||
|   void inverse_kinematics(const float logical[XYZ]); | ||||
| #endif | ||||
|  | ||||
| #if ENABLED(DELTA) | ||||
|   | ||||
| @@ -7992,9 +7992,9 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { | ||||
|    * This calls planner.buffer_line several times, adding | ||||
|    * small incremental moves for DELTA or SCARA. | ||||
|    */ | ||||
|   inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) { | ||||
|   inline bool prepare_kinematic_move_to(float logical[NUM_AXIS]) { | ||||
|     float difference[NUM_AXIS]; | ||||
|     LOOP_XYZE(i) difference[i] = target[i] - current_position[i]; | ||||
|     LOOP_XYZE(i) difference[i] = logical[i] - current_position[i]; | ||||
|  | ||||
|     float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); | ||||
|     if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]); | ||||
| @@ -8013,18 +8013,18 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) { | ||||
|       float fraction = float(s) * inv_steps; | ||||
|  | ||||
|       LOOP_XYZE(i) | ||||
|         target[i] = current_position[i] + difference[i] * fraction; | ||||
|         logical[i] = current_position[i] + difference[i] * fraction; | ||||
|  | ||||
|       inverse_kinematics(target); | ||||
|       inverse_kinematics(logical); | ||||
|  | ||||
|       #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR) | ||||
|         if (!bed_leveling_in_progress) adjust_delta(target); | ||||
|         if (!bed_leveling_in_progress) adjust_delta(logical); | ||||
|       #endif | ||||
|  | ||||
|       //DEBUG_POS("prepare_kinematic_move_to", target); | ||||
|       //DEBUG_POS("prepare_kinematic_move_to", logical); | ||||
|       //DEBUG_POS("prepare_kinematic_move_to", delta); | ||||
|  | ||||
|       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder); | ||||
|       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder); | ||||
|     } | ||||
|     return true; | ||||
|   } | ||||
| @@ -8156,7 +8156,7 @@ void prepare_move_to_destination() { | ||||
|    * options for G2/G3 arc generation. In future these options may be GCode tunable. | ||||
|    */ | ||||
|   void plan_arc( | ||||
|     float target[NUM_AXIS], // Destination position | ||||
|     float logical[NUM_AXIS], // Destination position | ||||
|     float* offset,           // Center of rotation relative to current_position | ||||
|     uint8_t clockwise        // Clockwise? | ||||
|   ) { | ||||
| @@ -8164,12 +8164,12 @@ void prepare_move_to_destination() { | ||||
|     float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]), | ||||
|           center_X = current_position[X_AXIS] + offset[X_AXIS], | ||||
|           center_Y = current_position[Y_AXIS] + offset[Y_AXIS], | ||||
|           linear_travel = target[Z_AXIS] - current_position[Z_AXIS], | ||||
|           extruder_travel = target[E_AXIS] - current_position[E_AXIS], | ||||
|           linear_travel = logical[Z_AXIS] - current_position[Z_AXIS], | ||||
|           extruder_travel = logical[E_AXIS] - current_position[E_AXIS], | ||||
|           r_X = -offset[X_AXIS],  // Radius vector from center to current location | ||||
|           r_Y = -offset[Y_AXIS], | ||||
|           rt_X = target[X_AXIS] - center_X, | ||||
|           rt_Y = target[Y_AXIS] - center_Y; | ||||
|           rt_X = logical[X_AXIS] - center_X, | ||||
|           rt_Y = logical[Y_AXIS] - center_Y; | ||||
|  | ||||
|     // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required. | ||||
|     float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y); | ||||
| @@ -8177,7 +8177,7 @@ void prepare_move_to_destination() { | ||||
|     if (clockwise) angular_travel -= RADIANS(360); | ||||
|  | ||||
|     // Make a circle if the angular rotation is 0 | ||||
|     if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS]) | ||||
|     if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS]) | ||||
|       angular_travel += RADIANS(360); | ||||
|  | ||||
|     float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel)); | ||||
| @@ -8282,13 +8282,13 @@ void prepare_move_to_destination() { | ||||
|  | ||||
|     // Ensure last segment arrives at target location. | ||||
|     #if IS_KINEMATIC | ||||
|       inverse_kinematics(target); | ||||
|       inverse_kinematics(logical); | ||||
|       #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR) | ||||
|         adjust_delta(target); | ||||
|         adjust_delta(logical); | ||||
|       #endif | ||||
|       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder); | ||||
|       planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder); | ||||
|     #else | ||||
|       planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder); | ||||
|       planner.buffer_line(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], logical[E_AXIS], fr_mm_s, active_extruder); | ||||
|     #endif | ||||
|  | ||||
|     // As far as the parser is concerned, the position is now == target. In reality the | ||||
| @@ -8303,7 +8303,7 @@ void prepare_move_to_destination() { | ||||
|   void plan_cubic_move(const float offset[4]) { | ||||
|     cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder); | ||||
|  | ||||
|     // As far as the parser is concerned, the position is now == target. In reality the | ||||
|     // As far as the parser is concerned, the position is now == destination. In reality the | ||||
|     // motion control system might still be processing the action and the real tool position | ||||
|     // in any intermediate location. | ||||
|     set_current_to_destination(); | ||||
| @@ -8376,7 +8376,7 @@ void prepare_move_to_destination() { | ||||
|     //*/ | ||||
|   } | ||||
|  | ||||
|   void inverse_kinematics(const float cartesian[XYZ]) { | ||||
|   void inverse_kinematics(const float logical[XYZ]) { | ||||
|     // Inverse kinematics. | ||||
|     // Perform SCARA IK and place results in delta[]. | ||||
|     // The maths and first version were done by QHARLEY. | ||||
| @@ -8384,8 +8384,8 @@ void prepare_move_to_destination() { | ||||
|  | ||||
|     static float C2, S2, SK1, SK2, THETA, PSI; | ||||
|  | ||||
|     float sx = RAW_X_POSITION(cartesian[X_AXIS]) - SCARA_OFFSET_X,  //Translate SCARA to standard X Y | ||||
|           sy = RAW_Y_POSITION(cartesian[Y_AXIS]) - SCARA_OFFSET_Y;  // With scaling factor. | ||||
|     float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X,  // Translate SCARA to standard X Y | ||||
|           sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y;  // With scaling factor. | ||||
|  | ||||
|     #if (L1 == L2) | ||||
|       C2 = HYPOT2(sx, sy) / (2 * L1_2) - 1; | ||||
| @@ -8403,10 +8403,10 @@ void prepare_move_to_destination() { | ||||
|  | ||||
|     delta[A_AXIS] = DEGREES(THETA);        // theta is support arm angle | ||||
|     delta[B_AXIS] = DEGREES(THETA + PSI);  // equal to sub arm angle (inverted motor) | ||||
|     delta[Z_AXIS] = cartesian[Z_AXIS]; | ||||
|     delta[Z_AXIS] = logical[Z_AXIS]; | ||||
|  | ||||
|     /** | ||||
|       DEBUG_POS("SCARA IK", cartesian); | ||||
|     /* | ||||
|       DEBUG_POS("SCARA IK", logical); | ||||
|       DEBUG_POS("SCARA IK", delta); | ||||
|       SERIAL_ECHOPAIR("  SCARA (x,y) ", sx); | ||||
|       SERIAL_ECHOPAIR(",", sy); | ||||
|   | ||||
		Reference in New Issue
	
	Block a user