G2/G3 Arcs for Delta
- Update prepare_move_delta to take a target argument - Add Delta support to plan_arc
This commit is contained in:
		
				
					committed by
					
						
						Richard Wackerbarth
					
				
			
			
				
	
			
			
			
						parent
						
							39092efe88
						
					
				
				
					commit
					5c5936508d
				
			@@ -410,6 +410,8 @@ bool target_direction;
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
void process_next_command();
 | 
					void process_next_command();
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					void plan_arc(float target[NUM_AXIS], float *offset, uint8_t clockwise);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
bool setTargetedHotend(int code);
 | 
					bool setTargetedHotend(int code);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
void serial_echopair_P(const char *s_P, float v)         { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | 
					void serial_echopair_P(const char *s_P, float v)         { serialprintPGM(s_P); SERIAL_ECHO(v); }
 | 
				
			||||||
@@ -1895,9 +1897,9 @@ inline void gcode_G0_G1() {
 | 
				
			|||||||
 * options for G2/G3 arc generation. In future these options may be GCode tunable.
 | 
					 * options for G2/G3 arc generation. In future these options may be GCode tunable.
 | 
				
			||||||
 */
 | 
					 */
 | 
				
			||||||
void plan_arc(
 | 
					void plan_arc(
 | 
				
			||||||
  float *target,    // Destination position
 | 
					  float target[NUM_AXIS], // Destination position
 | 
				
			||||||
  float *offset,    // Center of rotation relative to current_position
 | 
					  float *offset,          // Center of rotation relative to current_position
 | 
				
			||||||
  uint8_t clockwise // Clockwise?
 | 
					  uint8_t clockwise       // Clockwise?
 | 
				
			||||||
) {
 | 
					) {
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
 | 
					  float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
 | 
				
			||||||
@@ -1957,7 +1959,7 @@ void plan_arc(
 | 
				
			|||||||
  float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
 | 
					  float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
 | 
				
			||||||
  float sin_T = theta_per_segment;
 | 
					  float sin_T = theta_per_segment;
 | 
				
			||||||
  
 | 
					  
 | 
				
			||||||
  float arc_target[4];
 | 
					  float arc_target[NUM_AXIS];
 | 
				
			||||||
  float sin_Ti;
 | 
					  float sin_Ti;
 | 
				
			||||||
  float cos_Ti;
 | 
					  float cos_Ti;
 | 
				
			||||||
  float r_axisi;
 | 
					  float r_axisi;
 | 
				
			||||||
@@ -1998,10 +2000,28 @@ void plan_arc(
 | 
				
			|||||||
    arc_target[E_AXIS] += extruder_per_segment;
 | 
					    arc_target[E_AXIS] += extruder_per_segment;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    clamp_to_software_endstops(arc_target);
 | 
					    clamp_to_software_endstops(arc_target);
 | 
				
			||||||
    plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
 | 
					
 | 
				
			||||||
 | 
					    #if defined(DELTA) || defined(SCARA)
 | 
				
			||||||
 | 
					      calculate_delta(arc_target);
 | 
				
			||||||
 | 
					      #ifdef ENABLE_AUTO_BED_LEVELING
 | 
				
			||||||
 | 
					        adjust_delta(arc_target);
 | 
				
			||||||
 | 
					      #endif
 | 
				
			||||||
 | 
					      plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
 | 
				
			||||||
 | 
					    #else
 | 
				
			||||||
 | 
					      plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
 | 
				
			||||||
 | 
					    #endif
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // Ensure last segment arrives at target location.
 | 
					  // Ensure last segment arrives at target location.
 | 
				
			||||||
  plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
 | 
					  #if defined(DELTA) || defined(SCARA)
 | 
				
			||||||
 | 
					    calculate_delta(target);
 | 
				
			||||||
 | 
					    #ifdef ENABLE_AUTO_BED_LEVELING
 | 
				
			||||||
 | 
					      adjust_delta(target);
 | 
				
			||||||
 | 
					    #endif
 | 
				
			||||||
 | 
					    plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
 | 
				
			||||||
 | 
					  #else
 | 
				
			||||||
 | 
					    plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
 | 
				
			||||||
 | 
					  #endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  // As far as the parser is concerned, the position is now == target. In reality the
 | 
					  // As far as the parser is concerned, the position is now == target. In reality the
 | 
				
			||||||
  // motion control system might still be processing the action and the real tool position
 | 
					  // motion control system might still be processing the action and the real tool position
 | 
				
			||||||
@@ -6074,9 +6094,9 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
#if defined(DELTA) || defined(SCARA)
 | 
					#if defined(DELTA) || defined(SCARA)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  inline bool prepare_move_delta() {
 | 
					  inline bool prepare_move_delta(float target[NUM_AXIS]) {
 | 
				
			||||||
    float difference[NUM_AXIS];
 | 
					    float difference[NUM_AXIS];
 | 
				
			||||||
    for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
 | 
					    for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
 | 
					    float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
 | 
				
			||||||
    if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
 | 
					    if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
 | 
				
			||||||
@@ -6093,22 +6113,22 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
 | 
				
			|||||||
      float fraction = float(s) / float(steps);
 | 
					      float fraction = float(s) / float(steps);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      for (int8_t i = 0; i < NUM_AXIS; i++)
 | 
					      for (int8_t i = 0; i < NUM_AXIS; i++)
 | 
				
			||||||
        destination[i] = current_position[i] + difference[i] * fraction;
 | 
					        target[i] = current_position[i] + difference[i] * fraction;
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      calculate_delta(destination);
 | 
					      calculate_delta(target);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      #ifdef ENABLE_AUTO_BED_LEVELING
 | 
					      #ifdef ENABLE_AUTO_BED_LEVELING
 | 
				
			||||||
        adjust_delta(destination);
 | 
					        adjust_delta(target);
 | 
				
			||||||
      #endif
 | 
					      #endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
 | 
					      //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
 | 
				
			||||||
      //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
 | 
					      //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
 | 
				
			||||||
      //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
 | 
					      //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
 | 
				
			||||||
      //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
 | 
					      //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
 | 
				
			||||||
      //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | 
					      //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
 | 
				
			||||||
      //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
 | 
					      //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
 | 
				
			||||||
 | 
					
 | 
				
			||||||
      plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
 | 
					      plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
 | 
				
			||||||
    }
 | 
					    }
 | 
				
			||||||
    return true;
 | 
					    return true;
 | 
				
			||||||
  }
 | 
					  }
 | 
				
			||||||
@@ -6116,7 +6136,7 @@ void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_
 | 
				
			|||||||
#endif // DELTA || SCARA
 | 
					#endif // DELTA || SCARA
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef SCARA
 | 
					#ifdef SCARA
 | 
				
			||||||
  inline bool prepare_move_scara() { return prepare_move_delta(); }
 | 
					  inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
 | 
				
			||||||
#endif
 | 
					#endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#ifdef DUAL_X_CARRIAGE
 | 
					#ifdef DUAL_X_CARRIAGE
 | 
				
			||||||
@@ -6193,9 +6213,9 @@ void prepare_move() {
 | 
				
			|||||||
  #endif
 | 
					  #endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  #ifdef SCARA
 | 
					  #ifdef SCARA
 | 
				
			||||||
    if (!prepare_move_scara()) return;
 | 
					    if (!prepare_move_scara(destination)) return;
 | 
				
			||||||
  #elif defined(DELTA)
 | 
					  #elif defined(DELTA)
 | 
				
			||||||
    if (!prepare_move_delta()) return;
 | 
					    if (!prepare_move_delta(destination)) return;
 | 
				
			||||||
  #endif
 | 
					  #endif
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  #ifdef DUAL_X_CARRIAGE
 | 
					  #ifdef DUAL_X_CARRIAGE
 | 
				
			||||||
 
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user