Host parseble output for M109, M190 and M303

Make the output of M105 more similar to Repetier.
Make the text-print pert of M105 an extra function to make it reusable. `print_heaterstates()`
Use `print_heaterstates()` in M019, M190 and M303
This commit is contained in:
AnHardt 2015-11-10 00:02:11 +01:00 committed by Richard Wackerbarth
parent fcceb98191
commit 57da1b8497
3 changed files with 87 additions and 72 deletions

View File

@ -351,6 +351,10 @@ extern uint8_t active_extruder;
extern void digipot_i2c_init(); extern void digipot_i2c_init();
#endif #endif
#if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
void print_heaterstates();
#endif
extern void calculate_volumetric_multipliers(); extern void calculate_volumetric_multipliers();
#endif //MARLIN_H #endif //MARLIN_H

View File

@ -3802,14 +3802,9 @@ inline void gcode_M104() {
} }
} }
/** #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
* M105: Read hot end and bed temperature
*/
inline void gcode_M105() {
if (setTargetedHotend(105)) return;
#if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675) void print_heaterstates() {
SERIAL_PROTOCOLPGM(MSG_OK);
#if HAS_TEMP_0 || ENABLED(HEATER_0_USES_MAX6675) #if HAS_TEMP_0 || ENABLED(HEATER_0_USES_MAX6675)
SERIAL_PROTOCOLPGM(" T:"); SERIAL_PROTOCOLPGM(" T:");
SERIAL_PROTOCOL_F(degHotend(target_extruder), 1); SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
@ -3822,52 +3817,78 @@ inline void gcode_M105() {
SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetBed(), 1); SERIAL_PROTOCOL_F(degTargetBed(), 1);
#endif #endif
for (int8_t e = 0; e < EXTRUDERS; ++e) { #if EXTRUDERS > 1
SERIAL_PROTOCOLPGM(" T"); for (int8_t e = 0; e < EXTRUDERS; ++e) {
SERIAL_PROTOCOL(e); SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOLCHAR(':'); SERIAL_PROTOCOL(e);
SERIAL_PROTOCOL_F(degHotend(e), 1); SERIAL_PROTOCOLCHAR(':');
SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(degHotend(e), 1);
SERIAL_PROTOCOL_F(degTargetHotend(e), 1); SERIAL_PROTOCOLPGM(" /");
} SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
}
#endif
#if HAS_TEMP_BED
SERIAL_PROTOCOLPGM(" B@:");
#ifdef BED_WATTS
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1)) / 127);
SERIAL_PROTOCOLCHAR('W');
#else
SERIAL_PROTOCOL(getHeaterPower(-1));
#endif
#endif
SERIAL_PROTOCOLPGM(" @:");
#ifdef EXTRUDER_WATTS
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder)) / 127);
SERIAL_PROTOCOLCHAR('W');
#else
SERIAL_PROTOCOL(getHeaterPower(target_extruder));
#endif
#if EXTRUDERS > 1
for (int8_t e = 0; e < EXTRUDERS; ++e) {
SERIAL_PROTOCOLPGM(" @");
SERIAL_PROTOCOL(e);
SERIAL_PROTOCOLCHAR(':');
#ifdef EXTRUDER_WATTS
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(e)) / 127);
SERIAL_PROTOCOLCHAR('W');
#else
SERIAL_PROTOCOL(getHeaterPower(e));
#endif
}
#endif
#if ENABLED(SHOW_TEMP_ADC_VALUES)
#if HAS_TEMP_BED
SERIAL_PROTOCOLPGM(" ADC B:");
SERIAL_PROTOCOL_F(degBed(), 1);
SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
#endif
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLCHAR(':');
SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
}
#endif
}
#endif
/**
* M105: Read hot end and bed temperature
*/
inline void gcode_M105() {
if (setTargetedHotend(105)) return;
#if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
SERIAL_PROTOCOLPGM(MSG_OK);
print_heaterstates();
#else // !HAS_TEMP_0 && !HAS_TEMP_BED #else // !HAS_TEMP_0 && !HAS_TEMP_BED
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS); SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
#endif #endif
SERIAL_PROTOCOLPGM(" @:");
#ifdef EXTRUDER_WATTS
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder)) / 127);
SERIAL_PROTOCOLCHAR('W');
#else
SERIAL_PROTOCOL(getHeaterPower(target_extruder));
#endif
SERIAL_PROTOCOLPGM(" B@:");
#ifdef BED_WATTS
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1)) / 127);
SERIAL_PROTOCOLCHAR('W');
#else
SERIAL_PROTOCOL(getHeaterPower(-1));
#endif
#if ENABLED(SHOW_TEMP_ADC_VALUES)
#if HAS_TEMP_BED
SERIAL_PROTOCOLPGM(" ADC B:");
SERIAL_PROTOCOL_F(degBed(), 1);
SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
#endif
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLCHAR(':');
SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
}
#endif
SERIAL_EOL; SERIAL_EOL;
} }
@ -3932,10 +3953,9 @@ inline void gcode_M109() {
{ // while loop { // while loop
if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
SERIAL_PROTOCOLPGM("T:"); #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
SERIAL_PROTOCOL_F(degHotend(target_extruder), 1); print_heaterstates();
SERIAL_PROTOCOLPGM(" E:"); #endif
SERIAL_PROTOCOL((int)target_extruder);
#ifdef TEMP_RESIDENCY_TIME #ifdef TEMP_RESIDENCY_TIME
SERIAL_PROTOCOLPGM(" W:"); SERIAL_PROTOCOLPGM(" W:");
if (residency_start_ms > -1) { if (residency_start_ms > -1) {
@ -3996,13 +4016,10 @@ inline void gcode_M109() {
if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
temp_ms = ms; temp_ms = ms;
float tt = degHotend(active_extruder); float tt = degHotend(active_extruder);
SERIAL_PROTOCOLPGM("T:"); #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
SERIAL_PROTOCOL(tt); print_heaterstates();
SERIAL_PROTOCOLPGM(" E:"); SERIAL_EOL;
SERIAL_PROTOCOL((int)active_extruder); #endif
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(), 1);
SERIAL_EOL;
} }
idle(); idle();
} }
@ -4915,6 +4932,9 @@ inline void gcode_M303() {
int e = code_seen('E') ? code_value_short() : 0; int e = code_seen('E') ? code_value_short() : 0;
int c = code_seen('C') ? code_value_short() : 5; int c = code_seen('C') ? code_value_short() : 5;
float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0); float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
if (e >=0 && e < EXTRUDERS)
target_extruder = e;
PID_autotune(temp, e, c); PID_autotune(temp, e, c);
} }

View File

@ -328,19 +328,10 @@ void PID_autotune(float temp, int extruder, int ncycles) {
} }
// Every 2 seconds... // Every 2 seconds...
if (ms > temp_ms + 2000) { if (ms > temp_ms + 2000) {
int p; #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
if (extruder < 0) { print_heaterstates();
p = soft_pwm_bed; SERIAL_EOL;
SERIAL_PROTOCOLPGM(MSG_B); #endif
}
else {
p = soft_pwm[extruder];
SERIAL_PROTOCOLPGM(MSG_T);
}
SERIAL_PROTOCOL(input);
SERIAL_PROTOCOLPGM(MSG_AT);
SERIAL_PROTOCOLLN(p);
temp_ms = ms; temp_ms = ms;
} // every 2 seconds } // every 2 seconds