copy of PR #8991 code
Formatting tweaks correct array initialization & remove test code
This commit is contained in:
		| @@ -66,6 +66,11 @@ typedef uint32_t hal_timer_t; | ||||
| #define HAL_STEP_TIMER_ISR  extern "C" void TIMER0_IRQHandler(void) | ||||
| #define HAL_TEMP_TIMER_ISR  extern "C" void TIMER1_IRQHandler(void) | ||||
|  | ||||
| // PWM timer  | ||||
| #define HAL_PWM_TIMER      LPC_TIM3 | ||||
| #define HAL_PWM_TIMER_ISR  extern "C" void TIMER3_IRQHandler(void) | ||||
| #define HAL_PWM_TIMER_IRQn TIMER3_IRQn | ||||
|  | ||||
| // -------------------------------------------------------------------------- | ||||
| // Types | ||||
| // -------------------------------------------------------------------------- | ||||
|   | ||||
| @@ -32,7 +32,7 @@ | ||||
|  * The PWM1 module is used to directly control the Servo 0, 1 & 3 pins and D9 & D10 pins.  This keeps | ||||
|  * the pulse width jitter to under a microsecond. | ||||
|  * | ||||
|  * For all other pins the PWM1 module is used to generate interrupts.  The ISR | ||||
|  * For all other pins a timer is used to generate interrupts.  The ISR | ||||
|  * routine does the actual setting/clearing of pins.  The upside is that any pin can | ||||
|  * have a PWM channel assigned to it.  The downside is that there is more pulse width | ||||
|  * jitter. The jitter depends on what else is happening in the system and what ISRs | ||||
| @@ -41,25 +41,11 @@ | ||||
|  | ||||
| /** | ||||
|  * The data structures are set up to minimize the computation done by the ISR which | ||||
|  * minimizes ISR execution time.  Execution times are 2-4µs except when updating to | ||||
|  * a new value when they are 19µs. | ||||
|  * minimizes ISR execution time.  Execution times are 5-14µs depending on how full the | ||||
|  * ISR table is.  14uS is for a 20 element ISR table. | ||||
|  * | ||||
|  * Two tables are used.  One table contains the data used by the ISR to update/control | ||||
|  * the PWM pins.  The other is used as an aid when rebuilding the ISR table. | ||||
|  * | ||||
|  * The LPC1768_PWM_attach_pin routine disables the ISR and then adds the new info to | ||||
|  * ISR table.  It can update the table directly because none of its changes affect | ||||
|  * what the ISR does. | ||||
|  * | ||||
|  * LPC1768_PWM_detach_pin routine disables the ISR, disables the pin immediately if | ||||
|  * it's a directly controlled pin and updates the helper table.  It then flags the | ||||
|  * ISR that the ISR table needs to be rebuilt. | ||||
|  * | ||||
|  * LPC1768_PWM_write routine disables the ISR and updates the helper table.  It then | ||||
|  * flags the ISR that the ISR table needs to be rebuilt. | ||||
|  * | ||||
|  * The ISR's priority is set to less than the stepper ISR otherwise it could cause jitter | ||||
|  * in the step pulses. | ||||
|  * the PWM pins.  The other is used as an aid when updating the ISR table. | ||||
|  * | ||||
|  * See the end of this file for details on the hardware/firmware interaction | ||||
|  */ | ||||
| @@ -86,46 +72,36 @@ | ||||
| #ifdef TARGET_LPC1768 | ||||
|  | ||||
| #include "../../inc/MarlinConfig.h" | ||||
|  | ||||
| #include <lpc17xx_pinsel.h> | ||||
| #include "LPC1768_PWM.h" | ||||
| #include "arduino.h" | ||||
|  | ||||
| #define NUM_PWMS 6 | ||||
| #define NUM_ISR_PWMS 20 | ||||
|  | ||||
|  | ||||
| #define LPC_PORT_OFFSET         (0x0020) | ||||
| #define LPC_PIN(pin)            (1UL << pin) | ||||
| #define LPC_GPIO(port)          ((volatile LPC_GPIO_TypeDef *)(LPC_GPIO0_BASE + LPC_PORT_OFFSET * port)) | ||||
|  | ||||
|  | ||||
| typedef struct {            // holds all data needed to control/init one of the PWM channels | ||||
|   uint8_t             sequence;       // 0: available slot, 1 - 6: PWM channel assigned to that slot | ||||
|   bool                active_flag;    // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN | ||||
|   pin_t               pin; | ||||
|   uint16_t            PWM_mask;       // MASK TO CHECK/WRITE THE IR REGISTER | ||||
|   volatile uint32_t*  set_register; | ||||
|   volatile uint32_t*  clr_register; | ||||
|   uint32_t            write_mask;     // USED BY SET/CLEAR COMMANDS | ||||
|   uint32_t            microseconds;   // value written to MR register | ||||
|   uint32_t            min;            // lower value limit checked by WRITE routine before writing to the MR register | ||||
|   uint32_t            max;            // upper value limit checked by WRITE routine before writing to the MR register | ||||
|   bool                PWM_flag;       // 0 - USED BY hardware PWM, 1 - USED BY ANALOGWRITE | ||||
|   uint8_t             servo_index;    // 0 - MAX_SERVO -1 : servo index,  0xFF : PWM channel | ||||
|   bool                active_flag;    // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN | ||||
|   uint32_t            PCR_bit;        // PCR register bit to enable PWM1 control of this pin | ||||
|   volatile uint32_t*  PINSEL_reg;     // PINSEL register | ||||
|   uint32_t            PINSEL_bits;    // PINSEL register bits to set pin mode to PWM1 control | ||||
|  | ||||
| } PWM_map; | ||||
|  | ||||
| PWM_map PWM1_map_A[NUM_ISR_PWMS];  // compiler will initialize to all zeros | ||||
| PWM_map PWM1_map_B[NUM_ISR_PWMS];  // compiler will initialize to all zeros | ||||
|  | ||||
| #define MICRO_MAX 0xFFFFFFFF | ||||
|  | ||||
| #define PWM_MAP_INIT_ROW { 0, 0x7FFF, 0, 0, 0, 0, MICRO_MAX, 0, 0, 0, 0, 0, 0, 0, 0 } | ||||
| #define PWM_MAP_INIT { PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, \ | ||||
|                        PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, \ | ||||
|                      }; | ||||
|  | ||||
| PWM_map ISR_table[NUM_PWMS] = PWM_MAP_INIT; | ||||
|  | ||||
| #define IR_BIT(p) ((p) >= 0 && (p) <= 3 ? (p) : p + 4 ) | ||||
| #define PIN_IS_INVERTED(p) 0  // placeholder in case inverting PWM output is offered | ||||
|  | ||||
|  | ||||
| PWM_map *active_table = PWM1_map_A; | ||||
| PWM_map *work_table = PWM1_map_B; | ||||
| PWM_map *temp_table; | ||||
|  | ||||
| #define P1_18_PWM_channel  1  // servo 3 | ||||
| #define P1_20_PWM_channel  2  // servo 0 | ||||
| @@ -134,35 +110,13 @@ PWM_map ISR_table[NUM_PWMS] = PWM_MAP_INIT; | ||||
| #define P2_04_PWM_channel  5  // D9 | ||||
| #define P2_05_PWM_channel  6  // D10 | ||||
|  | ||||
| // used to keep track of which Match Registers have been used and if they will be used by the | ||||
| // PWM1 module to directly control the pin or will be used to generate an interrupt | ||||
| typedef struct {                    // status of PWM1 channel | ||||
|   uint8_t             map_used;     // 0 - this MR register not used/assigned | ||||
|   uint8_t             map_PWM_INT;  // 0 - available for interrupts, 1 - in use by PWM | ||||
|   pin_t               map_PWM_PIN;  // pin for this PwM1 controlled pin / port | ||||
|   volatile uint32_t*  MR_register;  // address of the MR register for this PWM1 channel | ||||
|   uint32_t            PCR_bit;      // PCR register bit to enable PWM1 control of this pin | ||||
|                                     // 0 - don't switch to PWM1 direct control | ||||
|   volatile uint32_t*  PINSEL_reg;   // PINSEL register | ||||
|   uint32_t            PINSEL_bits;  // PINSEL register bits to set pin mode to PWM1 control | ||||
| } MR_map; | ||||
| typedef struct { | ||||
|   uint32_t min; | ||||
|   uint32_t max; | ||||
|   bool     assigned; | ||||
| } table_direct; | ||||
|  | ||||
| MR_map map_MR[NUM_PWMS]; | ||||
|  | ||||
| void LPC1768_PWM_update_map_MR(void) { | ||||
|   map_MR[0] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_18_PWM_channel) ? 1 : 0), P1_18, &LPC_PWM1->MR1, 0, 0, 0 }; | ||||
|   map_MR[1] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_20_PWM_channel) ? 1 : 0), P1_20, &LPC_PWM1->MR2, 0, 0, 0 }; | ||||
|   map_MR[2] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_21_PWM_channel) ? 1 : 0), P1_21, &LPC_PWM1->MR3, 0, 0, 0 }; | ||||
|   map_MR[3] = { | ||||
|     #if MB(MKS_SBASE) | ||||
|       0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_23_PWM_channel) ? 1 : 0), P1_23, &LPC_PWM1->MR4, 0, 0, 0 | ||||
|     #else | ||||
|       0, 0, P_NC, &LPC_PWM1->MR4, 0, 0, 0 | ||||
|     #endif | ||||
|   }; | ||||
|   map_MR[4] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P2_04_PWM_channel) ? 1 : 0), P2_04, &LPC_PWM1->MR5, 0, 0, 0 }; | ||||
|   map_MR[5] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P2_05_PWM_channel) ? 1 : 0), P2_05, &LPC_PWM1->MR6, 0, 0, 0 }; | ||||
| } | ||||
| table_direct direct_table[6];  // compiler will initialize to all zeros | ||||
|  | ||||
| /** | ||||
|  *  Prescale register and MR0 register values | ||||
| @@ -181,8 +135,8 @@ void LPC1768_PWM_update_map_MR(void) { | ||||
|  *   0.25       399        4,999    199        4,999      99       4,999   49          4,999    0.720 | ||||
|  *  0.125       799        2,499    399        2,499     199       2,499   99          2,499    1.440 | ||||
|  * | ||||
|  *  The desired prescale frequency comes from an input in the range of 544 - 2400 microseconds and the | ||||
|  *  desire to just shift the input left or right as needed. | ||||
|  *  The desired prescale frequency column comes from an input in the range of 544 - 2400 microseconds | ||||
|  *  and the desire to just shift the input left or right as needed. | ||||
|  * | ||||
|  *  A resolution of 0.2 degrees seems reasonable so a prescale frequency output of 1MHz is being used. | ||||
|  *  It also means we don't need to scale the input. | ||||
| @@ -197,9 +151,10 @@ void LPC1768_PWM_update_map_MR(void) { | ||||
|  * | ||||
|  */ | ||||
|  | ||||
| bool ISR_table_update = false;  // flag to tell the ISR that the tables need to be updated & swapped | ||||
|  | ||||
| void LPC1768_PWM_init(void) { | ||||
|  | ||||
|   /////  directly controlled PWM pins (interrupts not used for these) | ||||
|  | ||||
|   #define SBIT_CNTEN      0  // PWM1 counter & pre-scaler enable/disable | ||||
|   #define SBIT_CNTRST     1  // reset counters to known state | ||||
|   #define SBIT_PWMEN      3  // 1 - PWM, 0 - timer | ||||
| @@ -221,43 +176,116 @@ void LPC1768_PWM_init(void) { | ||||
|   LPC_PWM1->LER  = 0x07F;                                                 // Set the latch Enable Bits to load the new Match Values for MR0 - MR6 | ||||
|   LPC_PWM1->PCR  = 0;                                                     // Single edge mode for all channels, PWM1 control of outputs off | ||||
|  | ||||
|   NVIC_EnableIRQ(PWM1_IRQn);                                              // Enable interrupt handler | ||||
|   NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 10, 0));             // Normal priority for PWM module | ||||
|   //NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 0, 0));            // Minimizes jitter due to higher priority ISRs | ||||
|   ////  interrupt controlled PWM setup | ||||
|  | ||||
|   LPC_SC->PCONP |= 1 << 23;  // power on timer3 | ||||
|   HAL_PWM_TIMER->PR = LPC_PWM1_PR; | ||||
|   HAL_PWM_TIMER->MCR = 0x0B;              // Interrupt on MR0 & MR1, reset on MR0 | ||||
|   HAL_PWM_TIMER->MR0 = LPC_PWM1_MR0; | ||||
|   HAL_PWM_TIMER->MR1 = 0; | ||||
|   HAL_PWM_TIMER->TCR = _BV(0);       // enable | ||||
|   NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); | ||||
|   NVIC_SetPriority(HAL_PWM_TIMER_IRQn, NVIC_EncodePriority(0, 4, 0)); | ||||
| } | ||||
|  | ||||
|  | ||||
| bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min /* = 1 */, uint32_t max /* = (LPC_PWM1_MR0 - MR0_MARGIN) */, uint8_t servo_index /* = 0xff */) { | ||||
| bool ISR_table_update = false;  // flag to tell the ISR that the tables need to be updated & swapped | ||||
| uint8_t ISR_index = 0;          // index used by ISR to skip already actioned entries | ||||
| #define COPY_ACTIVE_TABLE    for (uint8_t i = 0; i < NUM_ISR_PWMS ; i++) work_table[i] = active_table[i] | ||||
| uint32_t first_MR1_value = LPC_PWM1_MR0 + 1; | ||||
|  | ||||
| void LPC1768_PWM_sort(void) { | ||||
|  | ||||
|   for (uint8_t i = NUM_ISR_PWMS; --i;) {  // (bubble) sort table by microseconds | ||||
|     bool didSwap = false; | ||||
|     PWM_map temp; | ||||
|     for (uint16_t j = 0; j < i; ++j) { | ||||
|       if (work_table[j].microseconds > work_table[j + 1].microseconds) { | ||||
|         temp = work_table[j + 1]; | ||||
|         work_table[j + 1] = work_table[j]; | ||||
|         work_table[j] = temp; | ||||
|         didSwap = true; | ||||
|       } | ||||
|     } | ||||
|     if (!didSwap) break; | ||||
|   } | ||||
| } | ||||
|  | ||||
| bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min /* = 1 */, uint32_t max /* = (LPC_PWM1_MR0 - 1) */, uint8_t servo_index /* = 0xff */) { | ||||
|  | ||||
|   pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF));  // Sometimes the upper byte is garbled | ||||
|  | ||||
|   NVIC_DisableIRQ(PWM1_IRQn);    // make it safe to update the active table | ||||
| ////  direct control PWM code | ||||
|   switch(pin) { | ||||
|     case P1_23:                                       // MKS Sbase Servo 0, PWM1 channel 4  (J3-8 PWM1.4) | ||||
|       direct_table[P1_23_PWM_channel - 1].min = min; | ||||
|       direct_table[P1_23_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); | ||||
|       direct_table[P1_23_PWM_channel - 1].assigned = true; | ||||
|       return true; | ||||
|     case P1_20:                                       // Servo 0, PWM1 channel 2  (Pin 11  P1.20 PWM1.2) | ||||
|       direct_table[P1_20_PWM_channel - 1].min = min; | ||||
|       direct_table[P1_20_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); | ||||
|       direct_table[P1_20_PWM_channel - 1].assigned = true; | ||||
|       return true; | ||||
|     case P1_21:                                       // Servo 1, PWM1 channel 3  (Pin 6  P1.21 PWM1.3) | ||||
|       direct_table[P1_21_PWM_channel - 1].min = min; | ||||
|       direct_table[P1_21_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); | ||||
|       direct_table[P1_21_PWM_channel - 1].assigned = true; | ||||
|       return true; | ||||
|     case P1_18:                                       // Servo 3, PWM1 channel 1 (Pin 4  P1.18 PWM1.1) | ||||
|       direct_table[P1_18_PWM_channel - 1].min = min; | ||||
|       direct_table[P1_18_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); | ||||
|       direct_table[P1_18_PWM_channel - 1].assigned = true; | ||||
|       return true; | ||||
|     case P2_04:                                       // D9 FET, PWM1 channel 5  (Pin 9  P2_04 PWM1.5) | ||||
|       direct_table[P2_04_PWM_channel - 1].min = min; | ||||
|       direct_table[P2_04_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); | ||||
|       direct_table[P2_04_PWM_channel - 1].assigned = true; | ||||
|       return true; | ||||
|     case P2_05:                                       // D10 FET, PWM1 channel 6 (Pin 10  P2_05 PWM1.6) | ||||
|       direct_table[P2_05_PWM_channel - 1].min = min; | ||||
|       direct_table[P2_05_PWM_channel - 1].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); | ||||
|       direct_table[P2_05_PWM_channel - 1].assigned = true; | ||||
|       return true; | ||||
|   } | ||||
|  | ||||
| ////  interrupt controlled PWM code | ||||
|   NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn);    // make it safe to update the active table | ||||
|                                  // OK to update the active table because the | ||||
|                                  // ISR doesn't use any of the changed items | ||||
|  | ||||
|   if (ISR_table_update) //use work table if that's the newest | ||||
|     temp_table = work_table; | ||||
|   else | ||||
|     temp_table = active_table; | ||||
|  | ||||
|   uint8_t slot = 0; | ||||
|   for (uint8_t i = 0; i < NUM_PWMS ; i++)         // see if already in table | ||||
|     if (ISR_table[i].pin == pin) { | ||||
|       NVIC_EnableIRQ(PWM1_IRQn);  // re-enable PWM interrupts | ||||
|   for (uint8_t i = 0; i < NUM_ISR_PWMS; i++)         // see if already in table | ||||
|     if (temp_table[i].pin == pin) { | ||||
|       NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);  // re-enable PWM interrupts | ||||
|       return 1; | ||||
|     } | ||||
|  | ||||
|   for (uint8_t i = 1; (i < NUM_PWMS + 1) && !slot; i++)         // find empty slot | ||||
|     if ( !(ISR_table[i - 1].set_register)) { slot = i; break; }  // any item that can't be zero when active or just attached is OK | ||||
|   if (!slot) return 0; | ||||
|   for (uint8_t i = 1; (i < NUM_ISR_PWMS + 1) && !slot; i++)         // find empty slot | ||||
|     if ( !(temp_table[i - 1].set_register)) { slot = i; break; }  // any item that can't be zero when active or just attached is OK | ||||
|  | ||||
|   if (!slot) { | ||||
|     NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);  // re-enable PWM interrupts | ||||
|     return 0; | ||||
|   } | ||||
|  | ||||
|   slot--;  // turn it into array index | ||||
|  | ||||
|   ISR_table[slot].pin          = pin;     // init slot | ||||
|   ISR_table[slot].PWM_mask     = 0;  // real value set by PWM_write | ||||
|   ISR_table[slot].set_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR : &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET; | ||||
|   ISR_table[slot].clr_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET : &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR; | ||||
|   ISR_table[slot].write_mask   = LPC_PIN(LPC1768_PIN_PIN(pin)); | ||||
|   ISR_table[slot].microseconds = MICRO_MAX; | ||||
|   ISR_table[slot].min          = min; | ||||
|   ISR_table[slot].max          = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN); | ||||
|   ISR_table[slot].servo_index  = servo_index; | ||||
|   ISR_table[slot].active_flag  = false; | ||||
|   temp_table[slot].pin          = pin;     // init slot | ||||
|   temp_table[slot].set_register = &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET; | ||||
|   temp_table[slot].clr_register = &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR; | ||||
|   temp_table[slot].write_mask   = LPC_PIN(LPC1768_PIN_PIN(pin)); | ||||
|   temp_table[slot].min          = min; | ||||
|   temp_table[slot].max          = max;                // different max for ISR PWMs than for direct PWMs | ||||
|   temp_table[slot].servo_index  = servo_index; | ||||
|   temp_table[slot].active_flag  = false; | ||||
|  | ||||
|   NVIC_EnableIRQ(PWM1_IRQn);  // re-enable PWM interrupts | ||||
|   NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);  // re-enable PWM interrupts | ||||
|  | ||||
|   return 1; | ||||
| } | ||||
| @@ -267,299 +295,257 @@ bool LPC1768_PWM_detach_pin(pin_t pin) { | ||||
|  | ||||
|   pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF)); | ||||
|  | ||||
|   NVIC_DisableIRQ(PWM1_IRQn); | ||||
|  | ||||
|   uint8_t slot = 0xFF; | ||||
|   for (uint8_t i = 0; i < NUM_PWMS; i++)         // find slot | ||||
|     if (ISR_table[i].pin == pin) { slot = i; break; } | ||||
|   if (slot == 0xFF) {   // return error if pin not found | ||||
|     NVIC_EnableIRQ(PWM1_IRQn); | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   LPC1768_PWM_update_map_MR(); | ||||
|  | ||||
|   // OK to make these changes before the MR0 interrupt | ||||
| ////  direct control PWM code | ||||
|   switch(pin) { | ||||
|     case P1_23:                                       // MKS Sbase Servo 0, PWM1 channel 4  (J3-8 PWM1.4) | ||||
|       if (!direct_table[P1_23_PWM_channel - 1].assigned) return false; | ||||
|       CBI(LPC_PWM1->PCR, 8 + P1_23_PWM_channel);      // disable PWM1 module control of this pin | ||||
|       map_MR[P1_23_PWM_channel - 1].PCR_bit = 0; | ||||
|       LPC_PINCON->PINSEL3 &= ~(0x3 <<  14);           // return pin to general purpose I/O | ||||
|       map_MR[P1_23_PWM_channel - 1].PINSEL_bits = 0; | ||||
|       map_MR[P1_23_PWM_channel - 1].map_PWM_INT = 0;  // 0 - available for interrupts, 1 - in use by PWM | ||||
|       break; | ||||
|       direct_table[P1_23_PWM_channel - 1].assigned = false; | ||||
|       return true; | ||||
|     case P1_20:                                       // Servo 0, PWM1 channel 2  (Pin 11  P1.20 PWM1.2) | ||||
|       if (!direct_table[P1_20_PWM_channel - 1].assigned) return false; | ||||
|       CBI(LPC_PWM1->PCR, 8 + P1_20_PWM_channel);      // disable PWM1 module control of this pin | ||||
|       map_MR[P1_20_PWM_channel - 1].PCR_bit = 0; | ||||
|       LPC_PINCON->PINSEL3 &= ~(0x3 <<  8);            // return pin to general purpose I/O | ||||
|       map_MR[P1_20_PWM_channel - 1].PINSEL_bits = 0; | ||||
|       map_MR[P1_20_PWM_channel - 1].map_PWM_INT = 0;  // 0 - available for interrupts, 1 - in use by PWM | ||||
|       break; | ||||
|       direct_table[P1_20_PWM_channel - 1].assigned = false; | ||||
|       return true; | ||||
|     case P1_21:                                       // Servo 1, PWM1 channel 3  (Pin 6  P1.21 PWM1.3) | ||||
|       if (!direct_table[P1_21_PWM_channel - 1].assigned) return false; | ||||
|       CBI(LPC_PWM1->PCR, 8 + P1_21_PWM_channel);      // disable PWM1 module control of this pin | ||||
|       map_MR[P1_21_PWM_channel - 1].PCR_bit = 0; | ||||
|       LPC_PINCON->PINSEL3 &= ~(0x3 << 10);            // return pin to general purpose I/O | ||||
|       map_MR[P1_21_PWM_channel - 1].PINSEL_bits = 0; | ||||
|       map_MR[P1_21_PWM_channel - 1].map_PWM_INT = 0;  // 0 - available for interrupts, 1 - in use by PWM | ||||
|       break; | ||||
|       direct_table[P1_21_PWM_channel - 1].assigned = false; | ||||
|       return true; | ||||
|     case P1_18:                                       // Servo 3, PWM1 channel 1 (Pin 4  P1.18 PWM1.1) | ||||
|       if (!direct_table[P1_18_PWM_channel - 1].assigned) return false; | ||||
|       CBI(LPC_PWM1->PCR, 8 + P1_18_PWM_channel);      // disable PWM1 module control of this pin | ||||
|       map_MR[P1_18_PWM_channel - 1].PCR_bit =  0; | ||||
|       LPC_PINCON->PINSEL3 &= ~(0x3 <<  4);            // return pin to general purpose I/O | ||||
|       map_MR[P1_18_PWM_channel - 1].PINSEL_bits =  0; | ||||
|       map_MR[P1_18_PWM_channel - 1].map_PWM_INT = 0;  // 0 - available for interrupts, 1 - in use by PWM | ||||
|       break; | ||||
|       direct_table[P1_18_PWM_channel - 1].assigned = false; | ||||
|       return true; | ||||
|     case P2_04:                                       // D9 FET, PWM1 channel 5  (Pin 9  P2_04 PWM1.5) | ||||
|       if (!direct_table[P2_04_PWM_channel - 1].assigned) return false; | ||||
|       CBI(LPC_PWM1->PCR, 8 + P2_04_PWM_channel);      // disable PWM1 module control of this pin | ||||
|       map_MR[P2_04_PWM_channel - 1].PCR_bit = 0; | ||||
|       LPC_PINCON->PINSEL4 &= ~(0x3 << 10);            // return pin to general purpose I/O | ||||
|       map_MR[P2_04_PWM_channel - 1].PINSEL_bits = 0; | ||||
|       map_MR[P2_04_PWM_channel - 1].map_PWM_INT = 0;  // 0 - available for interrupts, 1 - in use by PWM | ||||
|       break; | ||||
|       direct_table[P2_04_PWM_channel - 1].assigned = false; | ||||
|       return true; | ||||
|     case P2_05:                                       // D10 FET, PWM1 channel 6 (Pin 10  P2_05 PWM1.6) | ||||
|       if (!direct_table[P2_05_PWM_channel - 1].assigned) return false; | ||||
|       CBI(LPC_PWM1->PCR, 8 + P2_05_PWM_channel);      // disable PWM1 module control of this pin | ||||
|       map_MR[P2_05_PWM_channel - 1].PCR_bit =  0; | ||||
|       LPC_PINCON->PINSEL4 &= ~(0x3 <<  4);            // return pin to general purpose I/O | ||||
|       map_MR[P2_05_PWM_channel - 1].PINSEL_bits =  0; | ||||
|       map_MR[P2_05_PWM_channel - 1].map_PWM_INT = 0;  // 0 - available for interrupts, 1 - in use by PWM | ||||
|       break; | ||||
|     default: | ||||
|       break; | ||||
|       direct_table[P2_05_PWM_channel - 1].assigned = false; | ||||
|       return true; | ||||
|   } | ||||
|  | ||||
|   ISR_table[slot] = PWM_MAP_INIT_ROW; | ||||
| ////  interrupt controlled PWM code | ||||
|   NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn); | ||||
|  | ||||
|   if (ISR_table_update) { | ||||
|     ISR_table_update = false;    // don't update yet - have another update to do | ||||
|     NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);  // re-enable PWM interrupts | ||||
|   } | ||||
|   else { | ||||
|     NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);  // re-enable PWM interrupts | ||||
|     COPY_ACTIVE_TABLE;  // copy active table into work table | ||||
|   } | ||||
|  | ||||
|   uint8_t slot = 0xFF; | ||||
|   for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) {        // find slot | ||||
|     if (work_table[i].pin == pin) { | ||||
|       slot = i; | ||||
|       break; | ||||
|     } | ||||
|   } | ||||
|   if (slot == 0xFF)    // return error if pin not found | ||||
|     return false; | ||||
|  | ||||
|   work_table[slot] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; | ||||
|  | ||||
|   LPC1768_PWM_sort();    // sort table by microseconds | ||||
|   ISR_table_update = true; | ||||
|   NVIC_EnableIRQ(PWM1_IRQn);  // re-enable PWM interrupts | ||||
|  | ||||
|   return 1; | ||||
|   return true; | ||||
| } | ||||
|  | ||||
|  | ||||
| // value is 0-20,000 microseconds (0% to 100% duty cycle) | ||||
| // servo routine provides values in the 544 - 2400 range | ||||
| bool LPC1768_PWM_write(pin_t pin, uint32_t value) { | ||||
|  | ||||
|   pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF)); | ||||
|  | ||||
|   NVIC_DisableIRQ(PWM1_IRQn); | ||||
| ////  direct control PWM code | ||||
|   switch(pin) { | ||||
|     case P1_23:                                                           // MKS Sbase Servo 0, PWM1 channel 4  (J3-8 PWM1.4) | ||||
|       if (!direct_table[P1_23_PWM_channel - 1].assigned) return false; | ||||
|       LPC_PWM1->PCR |=  _BV(8 + P1_23_PWM_channel); // enable PWM1 module control of this pin | ||||
|       LPC_PINCON->PINSEL3 = 0x2 <<  14;             // must set pin function AFTER setting PCR | ||||
|       // load the new time value | ||||
|       LPC_PWM1->MR4 = MAX(MIN(value, direct_table[P1_23_PWM_channel - 1].max), direct_table[P1_23_PWM_channel - 1].min); | ||||
|       LPC_PWM1->LER = 0x1 << P1_23_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0 | ||||
|       return true; | ||||
|     case P1_20:                                                           // Servo 0, PWM1 channel 2 (Pin 11  P1.20 PWM1.2) | ||||
|       if (!direct_table[P1_20_PWM_channel - 1].assigned) return false; | ||||
|       LPC_PWM1->PCR |=  _BV(8 + P1_20_PWM_channel); // enable PWM1 module control of this pin | ||||
|       LPC_PINCON->PINSEL3 |= 0x2 <<  8;             // must set pin function AFTER setting PCR | ||||
|       // load the new time value | ||||
|       LPC_PWM1->MR2 = MAX(MIN(value, direct_table[P1_20_PWM_channel - 1].max), direct_table[P1_20_PWM_channel - 1].min); | ||||
|       LPC_PWM1->LER = 0x1 << P1_20_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0 | ||||
|       return true; | ||||
|     case P1_21:                                                           // Servo 1, PWM1 channel 3 (Pin 6  P1.21 PWM1.3) | ||||
|       if (!direct_table[P1_21_PWM_channel - 1].assigned) return false; | ||||
|       LPC_PWM1->PCR |=  _BV(8 + P1_21_PWM_channel); // enable PWM1 module control of this pin | ||||
|       LPC_PINCON->PINSEL3 |= 0x2 << 10;              // must set pin function AFTER setting PCR | ||||
|       // load the new time value | ||||
|       LPC_PWM1->MR3 = MAX(MIN(value, direct_table[P1_21_PWM_channel - 1].max), direct_table[P1_21_PWM_channel - 1].min); | ||||
|       LPC_PWM1->LER = 0x1 << P1_21_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0 | ||||
|       return true; | ||||
|     case P1_18:                                                           // Servo 3, PWM1 channel 1 (Pin 4  P1.18 PWM1.1) | ||||
|       if (!direct_table[P1_18_PWM_channel - 1].assigned) return false; | ||||
|       LPC_PWM1->PCR |=  _BV(8 + P1_18_PWM_channel); // enable PWM1 module control of this pin | ||||
|       LPC_PINCON->PINSEL3 |= 0x2 <<  4;             // must set pin function AFTER setting PCR | ||||
|       // load the new time value | ||||
|       LPC_PWM1->MR1 = MAX(MIN(value, direct_table[P1_18_PWM_channel - 1].max), direct_table[P1_18_PWM_channel - 1].min); | ||||
|       LPC_PWM1->LER = 0x1 << P1_18_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0 | ||||
|       return true; | ||||
|     case P2_04:                                                           // D9 FET, PWM1 channel 5 (Pin 9  P2_04 PWM1.5) | ||||
|       if (!direct_table[P2_04_PWM_channel - 1].assigned) return false; | ||||
|       LPC_PWM1->PCR |=  _BV(8 + P2_04_PWM_channel); // enable PWM1 module control of this pin | ||||
|       LPC_PINCON->PINSEL4 |= 0x1 <<  8;             // must set pin function AFTER setting PCR | ||||
|       // load the new time value | ||||
|       LPC_PWM1->MR5 = MAX(MIN(value, direct_table[P2_04_PWM_channel - 1].max), direct_table[P2_04_PWM_channel - 1].min); | ||||
|       LPC_PWM1->LER = 0x1 << P2_04_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0 | ||||
|       return true; | ||||
|     case P2_05:                                                           // D10 FET, PWM1 channel 6 (Pin 10  P2_05 PWM1.6) | ||||
|       if (!direct_table[P2_05_PWM_channel - 1].assigned) return false; | ||||
|       LPC_PWM1->PCR |=  _BV(8 + P2_05_PWM_channel); // enable PWM1 module control of this pin | ||||
|       LPC_PINCON->PINSEL4 |= 0x1 << 10;             // must set pin function AFTER setting PCR | ||||
|       // load the new time value | ||||
|       LPC_PWM1->MR6 = MAX(MIN(value, direct_table[P2_05_PWM_channel - 1].max), direct_table[P2_05_PWM_channel - 1].min); | ||||
|       LPC_PWM1->LER = 0x1 << P2_05_PWM_channel; // Set the latch Enable Bit to load the new Match Value on the next MR0 | ||||
|       return true; | ||||
|   } | ||||
|  | ||||
| ////  interrupt controlled PWM code | ||||
|   NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn); | ||||
|   if (!ISR_table_update)   // use the most up to date table | ||||
|     COPY_ACTIVE_TABLE;  // copy active table into work table | ||||
|  | ||||
|   uint8_t slot = 0xFF; | ||||
|   for (uint8_t i = 0; i < NUM_PWMS; i++)         // find slot | ||||
|     if (ISR_table[i].pin == pin) { slot = i; break; } | ||||
|   for (uint8_t i = 0; i < NUM_ISR_PWMS; i++)         // find slot | ||||
|     if (work_table[i].pin == pin) { slot = i; break; } | ||||
|   if (slot == 0xFF) {   // return error if pin not found | ||||
|     NVIC_EnableIRQ(PWM1_IRQn); | ||||
|     NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); | ||||
|     return false; | ||||
|   } | ||||
|  | ||||
|   LPC1768_PWM_update_map_MR(); | ||||
|  | ||||
|   switch(pin) { | ||||
|     case P1_23:                                                           // MKS Sbase Servo 0, PWM1 channel 4  (J3-8 PWM1.4) | ||||
|       map_MR[P1_23_PWM_channel - 1].PCR_bit = _BV(8 + P1_23_PWM_channel); // enable PWM1 module control of this pin | ||||
|       map_MR[P1_23_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3; | ||||
|       map_MR[P1_23_PWM_channel - 1].PINSEL_bits = 0x2 <<  14;             // ISR must do this AFTER setting PCR | ||||
|       break; | ||||
|     case P1_20:                                                           // Servo 0, PWM1 channel 2 (Pin 11  P1.20 PWM1.2) | ||||
|       map_MR[P1_20_PWM_channel - 1].PCR_bit = _BV(8 + P1_20_PWM_channel); // enable PWM1 module control of this pin | ||||
|       map_MR[P1_20_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3; | ||||
|       map_MR[P1_20_PWM_channel - 1].PINSEL_bits = 0x2 <<  8;              // ISR must do this AFTER setting PCR | ||||
|       break; | ||||
|     case P1_21:                                                           // Servo 1, PWM1 channel 3 (Pin 6  P1.21 PWM1.3) | ||||
|       map_MR[P1_21_PWM_channel - 1].PCR_bit = _BV(8 + P1_21_PWM_channel); // enable PWM1 module control of this pin | ||||
|       map_MR[P1_21_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3; | ||||
|       map_MR[P1_21_PWM_channel - 1].PINSEL_bits = 0x2 << 10;              // ISR must do this AFTER setting PCR | ||||
|       break; | ||||
|     case P1_18:                                                           // Servo 3, PWM1 channel 1 (Pin 4  P1.18 PWM1.1) | ||||
|       map_MR[P1_18_PWM_channel - 1].PCR_bit = _BV(8 + P1_18_PWM_channel); // enable PWM1 module control of this pin | ||||
|       map_MR[P1_18_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3; | ||||
|       map_MR[P1_18_PWM_channel - 1].PINSEL_bits = 0x2 <<  4;              // ISR must do this AFTER setting PCR | ||||
|       break; | ||||
|     case P2_04:                                                           // D9 FET, PWM1 channel 5 (Pin 9  P2_04 PWM1.5) | ||||
|       map_MR[P2_04_PWM_channel - 1].PCR_bit = _BV(8 + P2_04_PWM_channel); // enable PWM1 module control of this pin | ||||
|       map_MR[P2_04_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL4; | ||||
|       map_MR[P2_04_PWM_channel - 1].PINSEL_bits = 0x1 <<  8;              // ISR must do this AFTER setting PCR | ||||
|       break; | ||||
|     case P2_05:                                                           // D10 FET, PWM1 channel 6 (Pin 10  P2_05 PWM1.6) | ||||
|       map_MR[P2_05_PWM_channel - 1].PCR_bit = _BV(8 + P2_05_PWM_channel); // enable PWM1 module control of this pin | ||||
|       map_MR[P2_05_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL4; | ||||
|       map_MR[P2_05_PWM_channel - 1].PINSEL_bits = 0x1 << 10;              // ISR must do this AFTER setting PCR | ||||
|       break; | ||||
|     default:  // ISR pins | ||||
|       pinMode(pin, OUTPUT);  // set pin to output | ||||
|       break; | ||||
|   } | ||||
|  | ||||
|   ISR_table[slot].microseconds = MAX(MIN(value, ISR_table[slot].max), ISR_table[slot].min); | ||||
|   ISR_table[slot].active_flag = 1; | ||||
|   work_table[slot].microseconds = MAX(MIN(value, work_table[slot].max), work_table[slot].min);; | ||||
|   work_table[slot].active_flag  = true; | ||||
|  | ||||
|   LPC1768_PWM_sort();    // sort table by microseconds | ||||
|   ISR_table_update = true; | ||||
|  | ||||
|   NVIC_EnableIRQ(PWM1_IRQn);  // re-enable PWM interrupts | ||||
|  | ||||
|   NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);  // re-enable PWM interrupts | ||||
|   return 1; | ||||
| } | ||||
|  | ||||
|  | ||||
| uint32_t LPC1768_PWM_interrupt_mask = 1; | ||||
|  | ||||
|  | ||||
| void LPC1768_PWM_update(void) {     // only called by the ISR | ||||
|   LPC1768_PWM_interrupt_mask = 0;                          // set match registers to new values, build IRQ mask | ||||
|   // first setup directly controlled PWM pin slots | ||||
|  | ||||
|   bool found; | ||||
|   for (uint8_t i = 0; i < NUM_PWMS; i++) { | ||||
|     ISR_table[i].PCR_bit = 0;     // clear entries | ||||
|     ISR_table[i].PINSEL_reg = 0; | ||||
|     ISR_table[i].PINSEL_bits = 0; | ||||
|     ISR_table[i].PWM_flag = 1;    // mark slot as interrupt mode until find differently | ||||
|  | ||||
|     if (ISR_table[i].active_flag) { | ||||
|       ISR_table[i].sequence = i + 1; | ||||
|  | ||||
|       // first see if there is a PWM1 controlled pin for this entry | ||||
|       found = false; | ||||
|       for (uint8_t j = 0; (j < NUM_PWMS) && !found; j++) { | ||||
|         if ( (map_MR[j].map_PWM_PIN == ISR_table[i].pin)) { | ||||
|           map_MR[j].map_PWM_INT = 1;                          // flag that it's already setup for direct control | ||||
|           ISR_table[i].PWM_mask = 0; | ||||
|           ISR_table[i].PCR_bit = map_MR[j].PCR_bit;           // PCR register bit to enable PWM1 control of this pin | ||||
|           ISR_table[i].PINSEL_reg = map_MR[j].PINSEL_reg;     // PINSEL register address to set pin mode to PWM1 control} MR_map; | ||||
|           ISR_table[i].PINSEL_bits = map_MR[j].PINSEL_bits;   // PINSEL register bits to set pin mode to PWM1 control} MR_map; | ||||
|           map_MR[j].map_used = 2; | ||||
|           ISR_table[i].PWM_flag = 0; | ||||
|           *map_MR[j].MR_register = ISR_table[i].microseconds; | ||||
|           found = true; | ||||
|         } | ||||
|       } | ||||
|     } | ||||
|     else | ||||
|     ISR_table[i].sequence = 0; | ||||
|   } | ||||
|  | ||||
|   // next fill in interrupt slots | ||||
|   for (uint8_t i = 0; i < NUM_PWMS; i++) { | ||||
|  | ||||
|     if (ISR_table[i].active_flag && ISR_table[i].PWM_flag) { | ||||
|  | ||||
|       // setup interrupt slot | ||||
|       found = false; | ||||
|       for (uint8_t k = 0; (k < NUM_PWMS) && !found; k++) { | ||||
|         if ( !(map_MR[k].map_PWM_INT || map_MR[k].map_used)) { | ||||
|           *map_MR[k].MR_register = ISR_table[i].microseconds;  // found one for an interrupt pin | ||||
|           map_MR[k].map_used = 1; | ||||
|           LPC1768_PWM_interrupt_mask |= _BV(3 * (k + 1));  // set bit in the MCR to enable this MR to generate an interrupt | ||||
|           ISR_table[i].set_register = PIN_IS_INVERTED(ISR_table[i].pin) ? &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOCLR : &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOSET; | ||||
|           ISR_table[i].clr_register = PIN_IS_INVERTED(ISR_table[i].pin) ? &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOSET : &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOCLR; | ||||
|           ISR_table[i].write_mask = LPC_PIN(LPC1768_PIN_PIN(ISR_table[i].pin)); | ||||
|           ISR_table[i].PWM_mask = _BV(IR_BIT(k + 1));  // bit in the IR that will go active when this MR generates an interrupt | ||||
|           ISR_table[i].PWM_flag = 1; | ||||
|           found = true; | ||||
|         } | ||||
|       } | ||||
|     } | ||||
|   } | ||||
|  | ||||
|   LPC1768_PWM_interrupt_mask |= (uint32_t) _BV(0);  // add in MR0 interrupt | ||||
|  | ||||
|   LPC_PWM1->LER = 0x07E;  // Set the latch Enable Bits to load the new Match Values for MR1 - MR6 | ||||
| } | ||||
|  | ||||
|  | ||||
| bool useable_hardware_PWM(pin_t pin) { | ||||
|  | ||||
|   pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF)); | ||||
|  | ||||
|   NVIC_DisableIRQ(PWM1_IRQn); | ||||
|   NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn); | ||||
|  | ||||
|   bool return_flag = false; | ||||
|   for (uint8_t i = 0; i < NUM_PWMS; i++)         // see if it's already setup | ||||
|     if (ISR_table[i].pin == pin && ISR_table[i].sequence) return_flag = true; | ||||
|   for (uint8_t i = 0; i < NUM_PWMS; i++)         // see if there is an empty slot | ||||
|     if (!ISR_table[i].sequence) return_flag = true; | ||||
|   NVIC_EnableIRQ(PWM1_IRQn);  // re-enable PWM interrupts | ||||
|   for (uint8_t i = 0; i < NUM_ISR_PWMS; i++)         // see if it's already setup | ||||
|     if (active_table[i].pin == pin) return_flag = true; | ||||
|   for (uint8_t i = 0; i < NUM_ISR_PWMS; i++)         // see if there is an empty slot | ||||
|     if (!active_table[i].set_register) return_flag = true; | ||||
|   NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn);  // re-enable PWM interrupts | ||||
|   return return_flag; | ||||
| } | ||||
|  | ||||
|  | ||||
| //////////////////////////////////////////////////////////////////////////////// | ||||
|  | ||||
| #define HAL_PWM_LPC1768_ISR  extern "C" void PWM1_IRQHandler(void) | ||||
|  | ||||
| // Both loops could be terminated when the last active channel is found but that would | ||||
| // result in variations ISR run time which results in variations in pulse width | ||||
| #define PWM_LPC1768_ISR_SAFETY_FACTOR 5  // amount of time needed to guarantee MR1 count will be above TC | ||||
| volatile bool in_PWM_isr = false; | ||||
|  | ||||
| /** | ||||
|  * Changes to PINSEL, PCR and MCR are only done during the MR0 interrupt otherwise | ||||
|  * the wrong pin may be toggled or even have the system hang. | ||||
|  */ | ||||
| HAL_PWM_TIMER_ISR { | ||||
|   bool first_active_entry = true; | ||||
|   uint32_t next_MR1_val; | ||||
|  | ||||
|   if (in_PWM_isr) goto exit_PWM_ISR;  // prevent re-entering this ISR | ||||
|   in_PWM_isr = true; | ||||
|  | ||||
| HAL_PWM_LPC1768_ISR { | ||||
|  | ||||
|   if (LPC_PWM1->IR & 0x1) {                       // MR0 interrupt | ||||
|     if (ISR_table_update) {                       // new values have been loaded so set everything | ||||
|       LPC1768_PWM_update();                       // update & swap table | ||||
|       LPC_PWM1->MCR = LPC1768_PWM_interrupt_mask; // enable new PWM individual channel interrupts | ||||
|   if (HAL_PWM_TIMER->IR & 0x01) {  // MR0 interrupt | ||||
|     next_MR1_val = first_MR1_value;               // only used if have a blank ISR table | ||||
|     if (ISR_table_update) {                       // new values have been loaded so swap tables | ||||
|       temp_table = active_table; | ||||
|       active_table = work_table; | ||||
|       work_table = temp_table; | ||||
|       ISR_table_update = false; | ||||
|     } | ||||
|     for (uint8_t i = 0; i < NUM_PWMS; i++) { | ||||
|       if (ISR_table[i].active_flag && !((ISR_table[i].pin == P1_20) || | ||||
|                                         (ISR_table[i].pin == P1_21) || | ||||
|                                         (ISR_table[i].pin == P1_18) || | ||||
|                                         (ISR_table[i].pin == P2_04) || | ||||
|                                         (ISR_table[i].pin == P2_05)) | ||||
|       ) { | ||||
|         *ISR_table[i].set_register = ISR_table[i].write_mask;       // set pins for all enabled interrupt channels active | ||||
|   } | ||||
|   HAL_PWM_TIMER->IR = 0x3F;  // clear all interrupts | ||||
|  | ||||
|   for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) { | ||||
|     if (active_table[i].active_flag) { | ||||
|       if (first_active_entry) { | ||||
|         first_active_entry = false; | ||||
|         next_MR1_val = active_table[i].microseconds; | ||||
|       } | ||||
|       if (ISR_table_update && ISR_table[i].PCR_bit) { | ||||
|         LPC_PWM1->PCR |= ISR_table[i].PCR_bit;                  // enable PWM1 module control of this pin | ||||
|         *ISR_table[i].PINSEL_reg |= ISR_table[i].PINSEL_bits;   // set pin mode to PWM1 control - must be done after PCR | ||||
|       if (HAL_PWM_TIMER->TC < active_table[i].microseconds) { | ||||
|         *active_table[i].set_register = active_table[i].write_mask;   // set pin high | ||||
|       } | ||||
|       else { | ||||
|         *active_table[i].clr_register = active_table[i].write_mask;   // set pin low | ||||
|         next_MR1_val = (i == NUM_ISR_PWMS -1) | ||||
|           ? LPC_PWM1_MR0 + 1                  // done with table, wait for MR0 | ||||
|           : active_table[i + 1].microseconds; // set next MR1 interrupt? | ||||
|       } | ||||
|     } | ||||
|     ISR_table_update = false; | ||||
|     LPC_PWM1->IR = 0x01;                                             // clear the MR0 interrupt flag bit | ||||
|   } | ||||
|   else { | ||||
|     for (uint8_t i = 0; i < NUM_PWMS; i++) | ||||
|       if (ISR_table[i].active_flag && (LPC_PWM1->IR & ISR_table[i].PWM_mask)) { | ||||
|         LPC_PWM1->IR = ISR_table[i].PWM_mask;       // clear the interrupt flag bits for expected interrupts | ||||
|         *ISR_table[i].clr_register = ISR_table[i].write_mask;   // set channel to inactive | ||||
|       } | ||||
|   } | ||||
|  | ||||
|   LPC_PWM1->IR = 0x70F;  // guarantees all interrupt flags are cleared which, if there is an unexpected | ||||
|                          // PWM interrupt, will keep the ISR from hanging which will crash the controller | ||||
|   if (first_active_entry) next_MR1_val = LPC_PWM1_MR0 + 1;  // empty table so disable MR1 interrupt | ||||
|   HAL_PWM_TIMER->MR1 = MAX(next_MR1_val, HAL_PWM_TIMER->TC + PWM_LPC1768_ISR_SAFETY_FACTOR); // set next | ||||
|   in_PWM_isr = false; | ||||
|    | ||||
|   exit_PWM_ISR: | ||||
|   return; | ||||
| } | ||||
|  | ||||
| #endif | ||||
|  | ||||
|  | ||||
| ///////////////////////////////////////////////////////////////// | ||||
| /////////////////  HARDWARE FIRMWARE INTERACTION //////////////// | ||||
| ///////////////////////////////////////////////////////////////// | ||||
|  | ||||
| /** | ||||
|  *  Almost all changes to the hardware registers must be coordinated with the Match Register 0 (MR0) | ||||
|  *  interrupt.  The only exception is detaching pins.  It doesn't matter when they go | ||||
|  *  tristate. | ||||
|  *  There are two distinct systems used for PWMs: | ||||
|  *    directly controlled pins | ||||
|  *    ISR controlled pins. | ||||
|  * | ||||
|  *  The LPC1768_PWM_init routine kicks off the MR0 interrupt.  This interrupt is never disabled.  It | ||||
|  *  can be delayed by higher priority interrupts.  Actions on directly controlled pins are not delayed | ||||
|  *  by other interrupts | ||||
|  *  The two systems are independent of each other.  The use the same counter frequency so there's no | ||||
|  *  translation needed when setting the time values.  The init, attach, detach and write routines all | ||||
|  *  start with the direct pin code which is followed by the ISR pin code. | ||||
|  * | ||||
|  *  The ISR_table_update flag is set when the ISR table needs to be rebuilt.  It is | ||||
|  *  cleared by the ISR during the MR0 interrupt after it rebuilds the ISR table. | ||||
|  *  The PMW1 module handles the directly controlled pins.  Each directly controlled pin is associated | ||||
|  *  with a match register (MR1 - MR6).  When the associated MR equals the module's TIMER/COUNTER (TC) | ||||
|  *  then the pins is set to low.  The MR0 register controls the repetition rate.  When the TC equals | ||||
|  *  MR0 then the TC is reset and ALL directly controlled pins are set high.  The resulting pulse widths | ||||
|  *  are almost immune to system loading and ISRs.  No PWM1 interrupts are used. | ||||
|  * | ||||
|  *  The sequence of events during a write to a PWM channel is: | ||||
|  *    1) Attach routine puts the pin number in the ISR table but doesn't mark it active. | ||||
|  *    2) Write routine marks the pin as active, updates the helper table and flags the ISR that the | ||||
|  *       ISR table needs to be rebuilt. | ||||
|  *    3) On the MR0 interrupt the ISR: | ||||
|  *         a. Rebuilds the ISR table if needed. | ||||
|  *                 MR1-MR6 are updated at this time.  The updates aren't put into use until the first | ||||
|  *                 MR0 after the LER register has been written.  The LER register is written during the | ||||
|  *                 table rebuild process.  The result is new timing takes 20-40 mS to be implemented. | ||||
|  *         b. Sets the interrupt controlled pin(s) to their active state | ||||
|  *         c. Writes to the PCR register to enable the directly controlled pins | ||||
|  *         d. Sets the PINSEL register to the function/mode for the directly controlled pins | ||||
|  *  The ISR controlled pins use the TIMER/COUNTER, MR0 and MR1 registers from one timer.  MR0 controls | ||||
|  *  period of the controls the repetition rate.  When the TC equals MR0 then the TC is reset and an | ||||
|  *  interrupt is generated. When the TC equals MR1 then an interrupt is generated. | ||||
|  * | ||||
|  *    4) For each interrupt controlled pin there is another ISR call.  During this call the pin is set | ||||
|  *       to its inactive state.  The call is initiated when a MR1-MR6 reg times out. | ||||
|  *  Each interrupt does the following: | ||||
|  *    1) Swaps the tables if it's a MR0 interrupt and the swap flag is set.  It then clears the swap flag. | ||||
|  *    2) Scans the entire ISR table (it's been sorted low to high time) | ||||
|  *         a. If its the first active entry then it grabs the time as a tentative time for MR1 | ||||
|  *         b. If active and TC is less than the time then it sets the pin high | ||||
|  *         c. If active and TC is more than the time it sets the pin high | ||||
|  *         d. On every entry that sets a pin low it grabs the NEXT entry's time for use as the next MR1. | ||||
|  *            This results in MR1 being set to the time in the first active entry that does NOT set a | ||||
|  *            pin low. | ||||
|  *         e. If it's setting the last entry's pin low then it sets MR1 to a value bigger than MR0 | ||||
|  *         f. If no value has been grabbed for the next MR1 then it's an empty table and MR1 is set to a | ||||
|  *            value greater than MR0 | ||||
|  */ | ||||
|   | ||||
| @@ -136,8 +136,8 @@ void analogWrite(pin_t pin, int pwm_value) {  // 1 - 254: pwm_value, 0: LOW, 255 | ||||
|     digitalWrite(pin, value); | ||||
|   } | ||||
|   else { | ||||
|     if (LPC1768_PWM_attach_pin(pin, 1, (LPC_PWM1->MR0 - MR0_MARGIN),  0xff))   // locks up if get too close to MR0 value | ||||
|       LPC1768_PWM_write(pin, map(value, 1, 254, 1, (LPC_PWM1->MR0 - MR0_MARGIN)));  // map 1-254 onto PWM range | ||||
|     if (LPC1768_PWM_attach_pin(pin, 1, LPC_PWM1->MR0,  0xff))    | ||||
|       LPC1768_PWM_write(pin, map(value, 0, 255, 1, LPC_PWM1->MR0));  // map 1-254 onto PWM range | ||||
|     else {                                                                 // out of PWM channels | ||||
|       if (!out_of_PWM_slots) MYSERIAL.printf(".\nWARNING - OUT OF PWM CHANNELS\n.\n");  //only warn once | ||||
|       out_of_PWM_slots = true; | ||||
|   | ||||
		Reference in New Issue
	
	Block a user