Merge pull request #7100 from thinkyhead/bf_HAL_prepare
Apply maths macros and type changes ahead of HAL
This commit is contained in:
		
							
								
								
									
										15
									
								
								.travis.yml
									
									
									
									
									
								
							
							
						
						
									
										15
									
								
								.travis.yml
									
									
									
									
									
								
							@@ -300,12 +300,11 @@ script:
 | 
			
		||||
  ######## Example Configurations ##############
 | 
			
		||||
  #
 | 
			
		||||
  # BQ Hephestos 2
 | 
			
		||||
  - restore_configs
 | 
			
		||||
  - use_example_configs Hephestos_2
 | 
			
		||||
  - build_marlin
 | 
			
		||||
  #- restore_configs
 | 
			
		||||
  #- use_example_configs Hephestos_2
 | 
			
		||||
  #- build_marlin
 | 
			
		||||
  #
 | 
			
		||||
  # Delta Config (generic) + ABL bilinear + PROBE_MANUALLY
 | 
			
		||||
  - restore_configs
 | 
			
		||||
  - use_example_configs delta/generic
 | 
			
		||||
  - opt_enable REPRAP_DISCOUNT_SMART_CONTROLLER DELTA_CALIBRATION_MENU AUTO_BED_LEVELING_BILINEAR PROBE_MANUALLY
 | 
			
		||||
  - build_marlin
 | 
			
		||||
@@ -327,17 +326,11 @@ script:
 | 
			
		||||
  #- use_example_configs makibox
 | 
			
		||||
  #- build_marlin
 | 
			
		||||
  #
 | 
			
		||||
  # SCARA Config
 | 
			
		||||
  # SCARA with TMC2130
 | 
			
		||||
  #
 | 
			
		||||
  - use_example_configs SCARA
 | 
			
		||||
  - opt_enable AUTO_BED_LEVELING_BILINEAR FIX_MOUNTED_PROBE USE_ZMIN_PLUG EEPROM_SETTINGS EEPROM_CHITCHAT ULTIMAKERCONTROLLER
 | 
			
		||||
  - build_marlin
 | 
			
		||||
  #
 | 
			
		||||
  # TMC2130 Config
 | 
			
		||||
  #
 | 
			
		||||
  - restore_configs
 | 
			
		||||
  - opt_enable_adv HAVE_TMC2130 X_IS_TMC2130 Y_IS_TMC2130 Z_IS_TMC2130
 | 
			
		||||
  - build_marlin
 | 
			
		||||
  - opt_enable_adv AUTOMATIC_CURRENT_CONTROL STEALTHCHOP HYBRID_THRESHOLD SENSORLESS_HOMING
 | 
			
		||||
  - build_marlin
 | 
			
		||||
  #
 | 
			
		||||
 
 | 
			
		||||
@@ -600,7 +600,7 @@
 | 
			
		||||
 | 
			
		||||
    // If the end point of the line is closer to the nozzle, flip the direction,
 | 
			
		||||
    // moving from the end to the start. On very small lines the optimization isn't worth it.
 | 
			
		||||
    if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
 | 
			
		||||
    if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < FABS(line_length)) {
 | 
			
		||||
      return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -126,16 +126,16 @@
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    lastPosition = position;
 | 
			
		||||
    unsigned long positionTime = millis();
 | 
			
		||||
    millis_t positionTime = millis();
 | 
			
		||||
 | 
			
		||||
    //only do error correction if setup and enabled
 | 
			
		||||
    if (ec && ecMethod != I2CPE_ECM_NONE) {
 | 
			
		||||
 | 
			
		||||
      #if defined(I2CPE_EC_THRESH_PROPORTIONAL)
 | 
			
		||||
        millis_t deltaTime = positionTime - lastPositionTime;
 | 
			
		||||
        unsigned long distance = abs(position - lastPosition);
 | 
			
		||||
        unsigned long deltaTime = positionTime - lastPositionTime;
 | 
			
		||||
        unsigned long speed = distance / deltaTime;
 | 
			
		||||
        float threshold = constrain((speed / 50), 1, 50) * ecThreshold;
 | 
			
		||||
        float threshold = constrain(speed / 50, 1, 50) * ecThreshold;
 | 
			
		||||
      #else
 | 
			
		||||
        float threshold = get_error_correct_threshold();
 | 
			
		||||
      #endif
 | 
			
		||||
@@ -162,7 +162,7 @@
 | 
			
		||||
      //SERIAL_ECHOLN(error);
 | 
			
		||||
 | 
			
		||||
      #if defined(I2CPE_ERR_THRESH_ABORT)
 | 
			
		||||
        if (abs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) {
 | 
			
		||||
        if (labs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) {
 | 
			
		||||
          //kill("Significant Error");
 | 
			
		||||
          SERIAL_ECHOPGM("Axis error greater than set threshold, aborting!");
 | 
			
		||||
          SERIAL_ECHOLN(error);
 | 
			
		||||
@@ -174,29 +174,32 @@
 | 
			
		||||
        if (errIdx == 0) {
 | 
			
		||||
          // in order to correct for "error" but avoid correcting for noise and non skips
 | 
			
		||||
          // it must be > threshold and have a difference average of < 10 and be < 2000 steps
 | 
			
		||||
          if (abs(error) > threshold * planner.axis_steps_per_mm[encoderAxis] &&
 | 
			
		||||
              diffSum < 10*(I2CPE_ERR_ARRAY_SIZE-1) && abs(error) < 2000) { //Check for persistent error (skip)
 | 
			
		||||
          if (labs(error) > threshold * planner.axis_steps_per_mm[encoderAxis] &&
 | 
			
		||||
              diffSum < 10 * (I2CPE_ERR_ARRAY_SIZE - 1) && labs(error) < 2000) { //Check for persistent error (skip)
 | 
			
		||||
            SERIAL_ECHO(axis_codes[encoderAxis]);
 | 
			
		||||
            SERIAL_ECHOPAIR(" diffSum: ", diffSum/(I2CPE_ERR_ARRAY_SIZE-1));
 | 
			
		||||
            SERIAL_ECHOPAIR(" diffSum: ", diffSum / (I2CPE_ERR_ARRAY_SIZE - 1));
 | 
			
		||||
            SERIAL_ECHOPAIR(" - err detected: ", error / planner.axis_steps_per_mm[encoderAxis]);
 | 
			
		||||
            SERIAL_ECHOLNPGM("mm; correcting!");
 | 
			
		||||
            thermalManager.babystepsTodo[encoderAxis] = -lround(error);
 | 
			
		||||
            thermalManager.babystepsTodo[encoderAxis] = -LROUND(error);
 | 
			
		||||
          }
 | 
			
		||||
        }
 | 
			
		||||
      #else
 | 
			
		||||
        if (abs(error) > threshold * planner.axis_steps_per_mm[encoderAxis]) {
 | 
			
		||||
        if (labs(error) > threshold * planner.axis_steps_per_mm[encoderAxis]) {
 | 
			
		||||
          //SERIAL_ECHOLN(error);
 | 
			
		||||
          //SERIAL_ECHOLN(position);
 | 
			
		||||
          thermalManager.babystepsTodo[encoderAxis] = -lround(error/2);
 | 
			
		||||
          thermalManager.babystepsTodo[encoderAxis] = -LROUND(error/2);
 | 
			
		||||
        }
 | 
			
		||||
      #endif
 | 
			
		||||
 | 
			
		||||
      if (abs(error) > (I2CPE_ERR_CNT_THRESH * planner.axis_steps_per_mm[encoderAxis]) && millis() - lastErrorCountTime > I2CPE_ERR_CNT_DEBOUNCE_MS) {
 | 
			
		||||
        SERIAL_ECHOPAIR("Large error on ", axis_codes[encoderAxis]);
 | 
			
		||||
        SERIAL_ECHOPAIR(" axis. error: ", (int)error);
 | 
			
		||||
        SERIAL_ECHOLNPAIR("; diffSum: ", diffSum);
 | 
			
		||||
        errorCount++;
 | 
			
		||||
        lastErrorCountTime = millis();
 | 
			
		||||
      if (labs(error) > I2CPE_ERR_CNT_THRESH * planner.axis_steps_per_mm[encoderAxis]) {
 | 
			
		||||
        const millis_t ms = millis();
 | 
			
		||||
        if (ELAPSED(ms, nextErrorCountTime)) {
 | 
			
		||||
          SERIAL_ECHOPAIR("Large error on ", axis_codes[encoderAxis]);
 | 
			
		||||
          SERIAL_ECHOPAIR(" axis. error: ", (int)error);
 | 
			
		||||
          SERIAL_ECHOLNPAIR("; diffSum: ", diffSum);
 | 
			
		||||
          errorCount++;
 | 
			
		||||
          nextErrorCountTime = ms + I2CPE_ERR_CNT_DEBOUNCE_MS;
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
@@ -255,7 +258,7 @@
 | 
			
		||||
    actual = mm_from_count(position);
 | 
			
		||||
    error = actual - target;
 | 
			
		||||
 | 
			
		||||
    if (abs(error) > 10000) error = 0; // ?
 | 
			
		||||
    if (labs(error) > 10000) error = 0; // ?
 | 
			
		||||
 | 
			
		||||
    if (report) {
 | 
			
		||||
      SERIAL_ECHO(axis_codes[encoderAxis]);
 | 
			
		||||
@@ -284,13 +287,13 @@
 | 
			
		||||
    stepperTicksPerUnit = (type == I2CPE_ENC_TYPE_ROTARY) ? stepperTicks : planner.axis_steps_per_mm[encoderAxis];
 | 
			
		||||
 | 
			
		||||
    //convert both 'ticks' into same units / base
 | 
			
		||||
    encoderCountInStepperTicksScaled = lround((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit);
 | 
			
		||||
    encoderCountInStepperTicksScaled = LROUND((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit);
 | 
			
		||||
 | 
			
		||||
    long target = stepper.position(encoderAxis),
 | 
			
		||||
         error = (encoderCountInStepperTicksScaled - target);
 | 
			
		||||
 | 
			
		||||
    //suppress discontinuities (might be caused by bad I2C readings...?)
 | 
			
		||||
    bool suppressOutput = (abs(error - errorPrev) > 100);
 | 
			
		||||
    bool suppressOutput = (labs(error - errorPrev) > 100);
 | 
			
		||||
 | 
			
		||||
    if (report) {
 | 
			
		||||
      SERIAL_ECHO(axis_codes[encoderAxis]);
 | 
			
		||||
 
 | 
			
		||||
@@ -136,7 +136,7 @@
 | 
			
		||||
                    position;
 | 
			
		||||
 | 
			
		||||
    unsigned long   lastPositionTime        = 0,
 | 
			
		||||
                    lastErrorCountTime      = 0,
 | 
			
		||||
                    nextErrorCountTime      = 0,
 | 
			
		||||
                    lastErrorTime;
 | 
			
		||||
 | 
			
		||||
    //double        positionMm; //calculate
 | 
			
		||||
 
 | 
			
		||||
@@ -210,7 +210,7 @@ inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
 | 
			
		||||
/**
 | 
			
		||||
 * Feedrate scaling and conversion
 | 
			
		||||
 */
 | 
			
		||||
extern int feedrate_percentage;
 | 
			
		||||
extern int16_t feedrate_percentage;
 | 
			
		||||
 | 
			
		||||
#define MMM_TO_MMS(MM_M) ((MM_M)/60.0)
 | 
			
		||||
#define MMS_TO_MMM(MM_S) ((MM_S)*60.0)
 | 
			
		||||
@@ -218,7 +218,7 @@ extern int feedrate_percentage;
 | 
			
		||||
 | 
			
		||||
extern bool axis_relative_modes[];
 | 
			
		||||
extern bool volumetric_enabled;
 | 
			
		||||
extern int flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
 | 
			
		||||
extern int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
 | 
			
		||||
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
 | 
			
		||||
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
 | 
			
		||||
extern bool axis_known_position[XYZ];
 | 
			
		||||
 
 | 
			
		||||
@@ -421,7 +421,7 @@ FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&ho
 | 
			
		||||
 | 
			
		||||
float feedrate_mm_s = MMM_TO_MMS(1500.0);
 | 
			
		||||
static float saved_feedrate_mm_s;
 | 
			
		||||
int feedrate_percentage = 100, saved_feedrate_percentage,
 | 
			
		||||
int16_t feedrate_percentage = 100, saved_feedrate_percentage,
 | 
			
		||||
    flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
 | 
			
		||||
 | 
			
		||||
bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
 | 
			
		||||
@@ -2278,7 +2278,7 @@ static void clean_up_after_endstop_or_probe_move() {
 | 
			
		||||
        SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
 | 
			
		||||
      }
 | 
			
		||||
    #endif
 | 
			
		||||
    return current_position[Z_AXIS] + zprobe_zoffset;
 | 
			
		||||
    return RAW_CURRENT_POSITION(Z) + zprobe_zoffset;
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
@@ -2968,7 +2968,7 @@ static void homeaxis(const AxisEnum axis) {
 | 
			
		||||
 | 
			
		||||
  #if ENABLED(Z_DUAL_ENDSTOPS)
 | 
			
		||||
    if (axis == Z_AXIS) {
 | 
			
		||||
      float adj = fabs(z_endstop_adj);
 | 
			
		||||
      float adj = FABS(z_endstop_adj);
 | 
			
		||||
      bool lockZ1;
 | 
			
		||||
      if (axis_home_dir > 0) {
 | 
			
		||||
        adj = -adj;
 | 
			
		||||
@@ -3293,7 +3293,7 @@ inline void gcode_G0_G1(
 | 
			
		||||
          const float e = clockwise ^ (r < 0) ? -1 : 1,           // clockwise -1/1, counterclockwise 1/-1
 | 
			
		||||
                      dx = x2 - x1, dy = y2 - y1,                 // X and Y differences
 | 
			
		||||
                      d = HYPOT(dx, dy),                          // Linear distance between the points
 | 
			
		||||
                      h = sqrt(sq(r) - sq(d * 0.5)),              // Distance to the arc pivot-point
 | 
			
		||||
                      h = SQRT(sq(r) - sq(d * 0.5)),              // Distance to the arc pivot-point
 | 
			
		||||
                      mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
 | 
			
		||||
                      sx = -dy / d, sy = dx / d,                  // Slope of the perpendicular bisector
 | 
			
		||||
                      cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
 | 
			
		||||
@@ -3448,7 +3448,7 @@ inline void gcode_G4() {
 | 
			
		||||
    const float mlx = max_length(X_AXIS),
 | 
			
		||||
                mly = max_length(Y_AXIS),
 | 
			
		||||
                mlratio = mlx > mly ? mly / mlx : mlx / mly,
 | 
			
		||||
                fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * sqrt(sq(mlratio) + 1.0);
 | 
			
		||||
                fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
 | 
			
		||||
 | 
			
		||||
    do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
 | 
			
		||||
    endstops.hit_on_purpose(); // clear endstop hit flags
 | 
			
		||||
@@ -4183,7 +4183,7 @@ void home_all_axes() { gcode_G28(true); }
 | 
			
		||||
   *  W  Write a mesh point. (Ignored during leveling.)
 | 
			
		||||
   *  X  Required X for mesh point
 | 
			
		||||
   *  Y  Required Y for mesh point
 | 
			
		||||
   *  Z  Required Z for mesh point
 | 
			
		||||
   *  Z  Z for mesh point. Otherwise, current Z minus Z probe offset.
 | 
			
		||||
   *
 | 
			
		||||
   * Without PROBE_MANUALLY:
 | 
			
		||||
   *
 | 
			
		||||
@@ -4316,8 +4316,8 @@ void home_all_axes() { gcode_G28(true); }
 | 
			
		||||
            return;
 | 
			
		||||
          }
 | 
			
		||||
 | 
			
		||||
          const float z = parser.seen('Z') && parser.has_value() ? parser.value_float() : NAN;
 | 
			
		||||
          if (!isnan(z) || !WITHIN(z, -10, 10)) {
 | 
			
		||||
          const float z = parser.seen('Z') && parser.has_value() ? parser.value_float() : RAW_CURRENT_POSITION(Z);
 | 
			
		||||
          if (!WITHIN(z, -10, 10)) {
 | 
			
		||||
            SERIAL_ERROR_START();
 | 
			
		||||
            SERIAL_ERRORLNPGM("Bad Z value");
 | 
			
		||||
            return;
 | 
			
		||||
@@ -4605,8 +4605,8 @@ void home_all_axes() { gcode_G28(true); }
 | 
			
		||||
          const float xBase = xCount * xGridSpacing + left_probe_bed_position,
 | 
			
		||||
                      yBase = yCount * yGridSpacing + front_probe_bed_position;
 | 
			
		||||
 | 
			
		||||
          xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
 | 
			
		||||
          yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
 | 
			
		||||
          xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
 | 
			
		||||
          yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
 | 
			
		||||
 | 
			
		||||
          #if ENABLED(AUTO_BED_LEVELING_LINEAR)
 | 
			
		||||
            indexIntoAB[xCount][yCount] = abl_probe_index;
 | 
			
		||||
@@ -4710,8 +4710,8 @@ void home_all_axes() { gcode_G28(true); }
 | 
			
		||||
            float xBase = left_probe_bed_position + xGridSpacing * xCount,
 | 
			
		||||
                  yBase = front_probe_bed_position + yGridSpacing * yCount;
 | 
			
		||||
 | 
			
		||||
            xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
 | 
			
		||||
            yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
 | 
			
		||||
            xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
 | 
			
		||||
            yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
 | 
			
		||||
 | 
			
		||||
            #if ENABLED(AUTO_BED_LEVELING_LINEAR)
 | 
			
		||||
              indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
 | 
			
		||||
@@ -5263,7 +5263,7 @@ void home_all_axes() { gcode_G28(true); }
 | 
			
		||||
            N++;
 | 
			
		||||
          }
 | 
			
		||||
        zero_std_dev_old = zero_std_dev;
 | 
			
		||||
        zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001;
 | 
			
		||||
        zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
 | 
			
		||||
 | 
			
		||||
        if (iterations == 1) home_offset[Z_AXIS] = zh_old; // reset height after 1st probe change
 | 
			
		||||
 | 
			
		||||
@@ -5464,7 +5464,7 @@ void home_all_axes() { gcode_G28(true); }
 | 
			
		||||
    float retract_mm[XYZ];
 | 
			
		||||
    LOOP_XYZ(i) {
 | 
			
		||||
      float dist = destination[i] - current_position[i];
 | 
			
		||||
      retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
 | 
			
		||||
      retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    stepper.synchronize();  // wait until the machine is idle
 | 
			
		||||
@@ -5528,7 +5528,7 @@ void home_all_axes() { gcode_G28(true); }
 | 
			
		||||
 | 
			
		||||
    // If any axis has enough movement, do the move
 | 
			
		||||
    LOOP_XYZ(i)
 | 
			
		||||
      if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
 | 
			
		||||
      if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
 | 
			
		||||
        if (!parser.seen('F')) feedrate_mm_s = homing_feedrate(i);
 | 
			
		||||
        // If G38.2 fails throw an error
 | 
			
		||||
        if (!G38_run_probe() && is_38_2) {
 | 
			
		||||
@@ -6851,7 +6851,7 @@ inline void gcode_M42() {
 | 
			
		||||
      for (uint8_t j = 0; j <= n; j++)
 | 
			
		||||
        sum += sq(sample_set[j] - mean);
 | 
			
		||||
 | 
			
		||||
      sigma = sqrt(sum / (n + 1));
 | 
			
		||||
      sigma = SQRT(sum / (n + 1));
 | 
			
		||||
      if (verbose_level > 0) {
 | 
			
		||||
        if (verbose_level > 1) {
 | 
			
		||||
          SERIAL_PROTOCOL(n + 1);
 | 
			
		||||
@@ -7266,7 +7266,7 @@ inline void gcode_M109() {
 | 
			
		||||
 | 
			
		||||
    #if TEMP_RESIDENCY_TIME > 0
 | 
			
		||||
 | 
			
		||||
      const float temp_diff = fabs(target_temp - temp);
 | 
			
		||||
      const float temp_diff = FABS(target_temp - temp);
 | 
			
		||||
 | 
			
		||||
      if (!residency_start_ms) {
 | 
			
		||||
        // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
 | 
			
		||||
@@ -7395,7 +7395,7 @@ inline void gcode_M109() {
 | 
			
		||||
 | 
			
		||||
      #if TEMP_BED_RESIDENCY_TIME > 0
 | 
			
		||||
 | 
			
		||||
        const float temp_diff = fabs(target_temp - temp);
 | 
			
		||||
        const float temp_diff = FABS(target_temp - temp);
 | 
			
		||||
 | 
			
		||||
        if (!residency_start_ms) {
 | 
			
		||||
          // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
 | 
			
		||||
@@ -9252,7 +9252,7 @@ inline void gcode_M503() {
 | 
			
		||||
 | 
			
		||||
      #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
 | 
			
		||||
        if (!no_babystep && leveling_is_active())
 | 
			
		||||
          thermalManager.babystep_axis(Z_AXIS, -lround(diff * planner.axis_steps_per_mm[Z_AXIS]));
 | 
			
		||||
          thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
 | 
			
		||||
      #else
 | 
			
		||||
        UNUSED(no_babystep);
 | 
			
		||||
      #endif
 | 
			
		||||
@@ -11171,7 +11171,7 @@ void ok_to_send() {
 | 
			
		||||
    if (last_x != x) {
 | 
			
		||||
      last_x = x;
 | 
			
		||||
      ratio_x = x * ABL_BG_FACTOR(X_AXIS);
 | 
			
		||||
      const float gx = constrain(floor(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
 | 
			
		||||
      const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
 | 
			
		||||
      ratio_x -= gx;      // Subtract whole to get the ratio within the grid box
 | 
			
		||||
 | 
			
		||||
      #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
 | 
			
		||||
@@ -11188,7 +11188,7 @@ void ok_to_send() {
 | 
			
		||||
      if (last_y != y) {
 | 
			
		||||
        last_y = y;
 | 
			
		||||
        ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
 | 
			
		||||
        const float gy = constrain(floor(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
 | 
			
		||||
        const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
 | 
			
		||||
        ratio_y -= gy;
 | 
			
		||||
 | 
			
		||||
        #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
 | 
			
		||||
@@ -11221,7 +11221,7 @@ void ok_to_send() {
 | 
			
		||||
 | 
			
		||||
    /*
 | 
			
		||||
    static float last_offset = 0;
 | 
			
		||||
    if (fabs(last_offset - offset) > 0.2) {
 | 
			
		||||
    if (FABS(last_offset - offset) > 0.2) {
 | 
			
		||||
      SERIAL_ECHOPGM("Sudden Shift at ");
 | 
			
		||||
      SERIAL_ECHOPAIR("x=", x);
 | 
			
		||||
      SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
 | 
			
		||||
@@ -11290,7 +11290,7 @@ void ok_to_send() {
 | 
			
		||||
 | 
			
		||||
  #else
 | 
			
		||||
 | 
			
		||||
    #define _SQRT(n) sqrt(n)
 | 
			
		||||
    #define _SQRT(n) SQRT(n)
 | 
			
		||||
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
@@ -11364,7 +11364,7 @@ void ok_to_send() {
 | 
			
		||||
    float distance = delta[A_AXIS];
 | 
			
		||||
    cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
 | 
			
		||||
    inverse_kinematics(cartesian);
 | 
			
		||||
    return abs(distance - delta[A_AXIS]);
 | 
			
		||||
    return FABS(distance - delta[A_AXIS]);
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
@@ -11397,7 +11397,7 @@ void ok_to_send() {
 | 
			
		||||
    float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
 | 
			
		||||
 | 
			
		||||
    // Get the Magnitude of vector.
 | 
			
		||||
    float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
 | 
			
		||||
    float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
 | 
			
		||||
 | 
			
		||||
    // Create unit vector by dividing by magnitude.
 | 
			
		||||
    float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
 | 
			
		||||
@@ -11416,7 +11416,7 @@ void ok_to_send() {
 | 
			
		||||
    float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
 | 
			
		||||
 | 
			
		||||
    // The magnitude of Y component
 | 
			
		||||
    float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
 | 
			
		||||
    float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
 | 
			
		||||
 | 
			
		||||
    // Convert to a unit vector
 | 
			
		||||
    ey[0] /= j; ey[1] /= j;  ey[2] /= j;
 | 
			
		||||
@@ -11433,7 +11433,7 @@ void ok_to_send() {
 | 
			
		||||
    // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
 | 
			
		||||
    float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
 | 
			
		||||
          Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
 | 
			
		||||
          Znew = sqrt(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
 | 
			
		||||
          Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
 | 
			
		||||
 | 
			
		||||
    // Start from the origin of the old coordinates and add vectors in the
 | 
			
		||||
    // old coords that represent the Xnew, Ynew and Znew to find the point
 | 
			
		||||
@@ -11656,10 +11656,10 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    // Get the linear distance in XYZ
 | 
			
		||||
    float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
 | 
			
		||||
    float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
 | 
			
		||||
 | 
			
		||||
    // If the move is very short, check the E move distance
 | 
			
		||||
    if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
 | 
			
		||||
    if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
 | 
			
		||||
 | 
			
		||||
    // No E move either? Game over.
 | 
			
		||||
    if (UNEAR_ZERO(cartesian_mm)) return true;
 | 
			
		||||
@@ -11947,7 +11947,7 @@ void prepare_move_to_destination() {
 | 
			
		||||
                extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
 | 
			
		||||
 | 
			
		||||
    // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
 | 
			
		||||
    float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
 | 
			
		||||
    float angular_travel = ATAN2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
 | 
			
		||||
    if (angular_travel < 0) angular_travel += RADIANS(360);
 | 
			
		||||
    if (clockwise) angular_travel -= RADIANS(360);
 | 
			
		||||
 | 
			
		||||
@@ -11955,10 +11955,10 @@ void prepare_move_to_destination() {
 | 
			
		||||
    if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
 | 
			
		||||
      angular_travel += RADIANS(360);
 | 
			
		||||
 | 
			
		||||
    const float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
 | 
			
		||||
    const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
 | 
			
		||||
    if (mm_of_travel < 0.001) return;
 | 
			
		||||
 | 
			
		||||
    uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
 | 
			
		||||
    uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
 | 
			
		||||
    if (segments == 0) segments = 1;
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
@@ -12155,7 +12155,7 @@ void prepare_move_to_destination() {
 | 
			
		||||
    else
 | 
			
		||||
      C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
 | 
			
		||||
 | 
			
		||||
    S2 = sqrt(1 - sq(C2));
 | 
			
		||||
    S2 = SQRT(1 - sq(C2));
 | 
			
		||||
 | 
			
		||||
    // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
 | 
			
		||||
    SK1 = L1 + L2 * C2;
 | 
			
		||||
@@ -12164,10 +12164,10 @@ void prepare_move_to_destination() {
 | 
			
		||||
    SK2 = L2 * S2;
 | 
			
		||||
 | 
			
		||||
    // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
 | 
			
		||||
    THETA = atan2(SK1, SK2) - atan2(sx, sy);
 | 
			
		||||
    THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
 | 
			
		||||
 | 
			
		||||
    // Angle of Arm2
 | 
			
		||||
    PSI = atan2(S2, C2);
 | 
			
		||||
    PSI = ATAN2(S2, C2);
 | 
			
		||||
 | 
			
		||||
    delta[A_AXIS] = DEGREES(THETA);        // theta is support arm angle
 | 
			
		||||
    delta[B_AXIS] = DEGREES(THETA + PSI);  // equal to sub arm angle (inverted motor)
 | 
			
		||||
 
 | 
			
		||||
@@ -44,7 +44,7 @@
 | 
			
		||||
#define DIGIPOT_A4988_MAX_CURRENT       (DIGIPOT_A4988_Itripmax(DIGIPOT_A4988_Vrefmax) - 0.5)
 | 
			
		||||
 | 
			
		||||
static byte current_to_wiper(const float current) {
 | 
			
		||||
  return byte(ceil(float(DIGIPOT_A4988_FACTOR) * current));
 | 
			
		||||
  return byte(CEIL(float(DIGIPOT_A4988_FACTOR) * current));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
const uint8_t sda_pins[DIGIPOT_I2C_NUM_CHANNELS] = {
 | 
			
		||||
 
 | 
			
		||||
@@ -38,7 +38,7 @@
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
static byte current_to_wiper(const float current) {
 | 
			
		||||
  return byte(ceil(float((DIGIPOT_I2C_FACTOR * current))));
 | 
			
		||||
  return byte(CEIL(float((DIGIPOT_I2C_FACTOR * current))));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
static void i2c_send(const byte addr, const byte a, const byte b) {
 | 
			
		||||
 
 | 
			
		||||
@@ -213,7 +213,7 @@ public:
 | 
			
		||||
          linear_unit_factor = 1.0;
 | 
			
		||||
          break;
 | 
			
		||||
      }
 | 
			
		||||
      volumetric_unit_factor = pow(linear_unit_factor, 3.0);
 | 
			
		||||
      volumetric_unit_factor = POW(linear_unit_factor, 3.0);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    inline static float axis_unit_factor(const AxisEnum axis) {
 | 
			
		||||
 
 | 
			
		||||
@@ -59,7 +59,7 @@ int finish_incremental_LSF(struct linear_fit_data *lsf) {
 | 
			
		||||
  lsf->xzbar = lsf->xzbar / N - lsf->xbar * lsf->zbar;
 | 
			
		||||
  const float DD = lsf->x2bar * lsf->y2bar - sq(lsf->xybar);
 | 
			
		||||
 | 
			
		||||
  if (fabs(DD) <= 1e-10 * (lsf->max_absx + lsf->max_absy))
 | 
			
		||||
  if (FABS(DD) <= 1e-10 * (lsf->max_absx + lsf->max_absy))
 | 
			
		||||
    return 1;
 | 
			
		||||
 | 
			
		||||
  lsf->A = (lsf->yzbar * lsf->xybar - lsf->xzbar * lsf->y2bar) / DD;
 | 
			
		||||
 
 | 
			
		||||
@@ -65,8 +65,8 @@ void inline incremental_WLSF(struct linear_fit_data *lsf, const float &x, const
 | 
			
		||||
  lsf->xzbar += w * x * z;
 | 
			
		||||
  lsf->yzbar += w * y * z;
 | 
			
		||||
  lsf->N     += w;
 | 
			
		||||
  lsf->max_absx = max(fabs(w * x), lsf->max_absx);
 | 
			
		||||
  lsf->max_absy = max(fabs(w * y), lsf->max_absy);
 | 
			
		||||
  lsf->max_absx = max(FABS(w * x), lsf->max_absx);
 | 
			
		||||
  lsf->max_absy = max(FABS(w * y), lsf->max_absy);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void inline incremental_LSF(struct linear_fit_data *lsf, const float &x, const float &y, const float &z) {
 | 
			
		||||
@@ -79,8 +79,8 @@ void inline incremental_LSF(struct linear_fit_data *lsf, const float &x, const f
 | 
			
		||||
  lsf->xybar += x * y;
 | 
			
		||||
  lsf->xzbar += x * z;
 | 
			
		||||
  lsf->yzbar += y * z;
 | 
			
		||||
  lsf->max_absx = max(fabs(x), lsf->max_absx);
 | 
			
		||||
  lsf->max_absy = max(fabs(y), lsf->max_absy);
 | 
			
		||||
  lsf->max_absx = max(FABS(x), lsf->max_absx);
 | 
			
		||||
  lsf->max_absy = max(FABS(y), lsf->max_absy);
 | 
			
		||||
  lsf->N += 1.0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -106,7 +106,6 @@
 | 
			
		||||
#define RADIANS(d) ((d)*M_PI/180.0)
 | 
			
		||||
#define DEGREES(r) ((r)*180.0/M_PI)
 | 
			
		||||
#define HYPOT2(x,y) (sq(x)+sq(y))
 | 
			
		||||
#define HYPOT(x,y) sqrt(HYPOT2(x,y))
 | 
			
		||||
 | 
			
		||||
#define SIGN(a) ((a>0)-(a<0))
 | 
			
		||||
 | 
			
		||||
@@ -193,4 +192,17 @@
 | 
			
		||||
#define RECIPROCAL(x) (NEAR_ZERO(x) ? 0.0 : 1.0 / (x))
 | 
			
		||||
#define FIXFLOAT(f) (f + 0.00001)
 | 
			
		||||
 | 
			
		||||
#endif // __MACROS_H
 | 
			
		||||
//
 | 
			
		||||
// Maths macros that can be overridden by HAL
 | 
			
		||||
//
 | 
			
		||||
#define ATAN2(y, x) atan2(y, x)
 | 
			
		||||
#define FABS(x)     fabs(x)
 | 
			
		||||
#define POW(x, y)   pow(x, y)
 | 
			
		||||
#define SQRT(x)     sqrt(x)
 | 
			
		||||
#define CEIL(x)     ceil(x)
 | 
			
		||||
#define FLOOR(x)    floor(x)
 | 
			
		||||
#define LROUND(x)   lround(x)
 | 
			
		||||
#define FMOD(x, y)  fmod(x, y)
 | 
			
		||||
#define HYPOT(x,y)  SQRT(HYPOT2(x,y))
 | 
			
		||||
 | 
			
		||||
#endif //__MACROS_H
 | 
			
		||||
 
 | 
			
		||||
@@ -80,16 +80,16 @@ void Nozzle::zigzag(
 | 
			
		||||
 | 
			
		||||
    for (uint8_t j = 0; j < strokes; j++) {
 | 
			
		||||
      for (uint8_t i = 0; i < (objects << 1); i++) {
 | 
			
		||||
        float const x = start.x + ( nozzle_clean_horizontal ? i * P : (A/P) * (P - fabs(fmod((i*P), (2*P)) - P)) );
 | 
			
		||||
        float const y = start.y + (!nozzle_clean_horizontal ? i * P : (A/P) * (P - fabs(fmod((i*P), (2*P)) - P)) );
 | 
			
		||||
        float const x = start.x + ( nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) );
 | 
			
		||||
        float const y = start.y + (!nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) );
 | 
			
		||||
 | 
			
		||||
        do_blocking_move_to_xy(x, y);
 | 
			
		||||
        if (i == 0) do_blocking_move_to_z(start.z);
 | 
			
		||||
      }
 | 
			
		||||
 | 
			
		||||
      for (int i = (objects << 1); i > -1; i--) {
 | 
			
		||||
        float const x = start.x + ( nozzle_clean_horizontal ? i * P : (A/P) * (P - fabs(fmod((i*P), (2*P)) - P)) );
 | 
			
		||||
        float const y = start.y + (!nozzle_clean_horizontal ? i * P : (A/P) * (P - fabs(fmod((i*P), (2*P)) - P)) );
 | 
			
		||||
        float const x = start.x + ( nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) );
 | 
			
		||||
        float const y = start.y + (!nozzle_clean_horizontal ? i * P : (A/P) * (P - FABS(FMOD((i*P), (2*P)) - P)) );
 | 
			
		||||
 | 
			
		||||
        do_blocking_move_to_xy(x, y);
 | 
			
		||||
      }
 | 
			
		||||
 
 | 
			
		||||
@@ -29,8 +29,8 @@
 | 
			
		||||
#if ENABLED(NOZZLE_CLEAN_FEATURE)
 | 
			
		||||
  constexpr float nozzle_clean_start_point[4] = NOZZLE_CLEAN_START_POINT,
 | 
			
		||||
                  nozzle_clean_end_point[4] = NOZZLE_CLEAN_END_POINT,
 | 
			
		||||
                  nozzle_clean_length = fabs(nozzle_clean_start_point[X_AXIS] - nozzle_clean_end_point[X_AXIS]), //abs x size of wipe pad
 | 
			
		||||
                  nozzle_clean_height = fabs(nozzle_clean_start_point[Y_AXIS] - nozzle_clean_end_point[Y_AXIS]); //abs y size of wipe pad
 | 
			
		||||
                  nozzle_clean_length = FABS(nozzle_clean_start_point[X_AXIS] - nozzle_clean_end_point[X_AXIS]), //abs x size of wipe pad
 | 
			
		||||
                  nozzle_clean_height = FABS(nozzle_clean_start_point[Y_AXIS] - nozzle_clean_end_point[Y_AXIS]); //abs y size of wipe pad
 | 
			
		||||
  constexpr bool nozzle_clean_horizontal = nozzle_clean_length >= nozzle_clean_height; //whether to zig-zag horizontally or vertically
 | 
			
		||||
#endif // NOZZLE_CLEAN_FEATURE
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -178,23 +178,23 @@ void Planner::init() {
 | 
			
		||||
 * by the provided factors.
 | 
			
		||||
 */
 | 
			
		||||
void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) {
 | 
			
		||||
  uint32_t initial_rate = ceil(block->nominal_rate * entry_factor),
 | 
			
		||||
           final_rate = ceil(block->nominal_rate * exit_factor); // (steps per second)
 | 
			
		||||
  uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor),
 | 
			
		||||
           final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second)
 | 
			
		||||
 | 
			
		||||
  // Limit minimal step rate (Otherwise the timer will overflow.)
 | 
			
		||||
  NOLESS(initial_rate, MINIMAL_STEP_RATE);
 | 
			
		||||
  NOLESS(final_rate, MINIMAL_STEP_RATE);
 | 
			
		||||
 | 
			
		||||
  int32_t accel = block->acceleration_steps_per_s2,
 | 
			
		||||
          accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
 | 
			
		||||
          decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
 | 
			
		||||
          accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)),
 | 
			
		||||
          decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)),
 | 
			
		||||
          plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
 | 
			
		||||
 | 
			
		||||
  // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
 | 
			
		||||
  // have to use intersection_distance() to calculate when to abort accel and start braking
 | 
			
		||||
  // in order to reach the final_rate exactly at the end of this block.
 | 
			
		||||
  if (plateau_steps < 0) {
 | 
			
		||||
    accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
 | 
			
		||||
    accelerate_steps = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count));
 | 
			
		||||
    NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off
 | 
			
		||||
    accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
 | 
			
		||||
    plateau_steps = 0;
 | 
			
		||||
@@ -221,8 +221,8 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e
 | 
			
		||||
// This method will calculate the junction jerk as the euclidean distance between the nominal
 | 
			
		||||
// velocities of the respective blocks.
 | 
			
		||||
//inline float junction_jerk(block_t *before, block_t *after) {
 | 
			
		||||
//  return sqrt(
 | 
			
		||||
//    pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
 | 
			
		||||
//  return SQRT(
 | 
			
		||||
//    POW((before->speed_x-after->speed_x), 2)+POW((before->speed_y-after->speed_y), 2));
 | 
			
		||||
//}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -693,22 +693,22 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
 | 
			
		||||
  // Calculate target position in absolute steps
 | 
			
		||||
  //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
 | 
			
		||||
  const long target[XYZE] = {
 | 
			
		||||
    lround(a * axis_steps_per_mm[X_AXIS]),
 | 
			
		||||
    lround(b * axis_steps_per_mm[Y_AXIS]),
 | 
			
		||||
    lround(c * axis_steps_per_mm[Z_AXIS]),
 | 
			
		||||
    lround(e * axis_steps_per_mm[E_AXIS_N])
 | 
			
		||||
    LROUND(a * axis_steps_per_mm[X_AXIS]),
 | 
			
		||||
    LROUND(b * axis_steps_per_mm[Y_AXIS]),
 | 
			
		||||
    LROUND(c * axis_steps_per_mm[Z_AXIS]),
 | 
			
		||||
    LROUND(e * axis_steps_per_mm[E_AXIS_N])
 | 
			
		||||
  };
 | 
			
		||||
 | 
			
		||||
  // When changing extruders recalculate steps corresponding to the E position
 | 
			
		||||
  #if ENABLED(DISTINCT_E_FACTORS)
 | 
			
		||||
    if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) {
 | 
			
		||||
      position[E_AXIS] = lround(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
 | 
			
		||||
      position[E_AXIS] = LROUND(position[E_AXIS] * axis_steps_per_mm[E_AXIS_N] * steps_to_mm[E_AXIS + last_extruder]);
 | 
			
		||||
      last_extruder = extruder;
 | 
			
		||||
    }
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
  #if ENABLED(LIN_ADVANCE)
 | 
			
		||||
    const float mm_D_float = sqrt(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS]));
 | 
			
		||||
    const float mm_D_float = SQRT(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS]));
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
  const long da = target[X_AXIS] - position[X_AXIS],
 | 
			
		||||
@@ -1036,10 +1036,10 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
 | 
			
		||||
  delta_mm[E_AXIS] = esteps_float * steps_to_mm[E_AXIS_N];
 | 
			
		||||
 | 
			
		||||
  if (block->steps[X_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Y_AXIS] < MIN_STEPS_PER_SEGMENT && block->steps[Z_AXIS] < MIN_STEPS_PER_SEGMENT) {
 | 
			
		||||
    block->millimeters = fabs(delta_mm[E_AXIS]);
 | 
			
		||||
    block->millimeters = FABS(delta_mm[E_AXIS]);
 | 
			
		||||
  }
 | 
			
		||||
  else {
 | 
			
		||||
    block->millimeters = sqrt(
 | 
			
		||||
    block->millimeters = SQRT(
 | 
			
		||||
      #if CORE_IS_XY
 | 
			
		||||
        sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
 | 
			
		||||
      #elif CORE_IS_XZ
 | 
			
		||||
@@ -1061,15 +1061,15 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
 | 
			
		||||
  // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
 | 
			
		||||
  #if ENABLED(SLOWDOWN) || ENABLED(ULTRA_LCD) || defined(XY_FREQUENCY_LIMIT)
 | 
			
		||||
    // Segment time im micro seconds
 | 
			
		||||
    unsigned long segment_time = lround(1000000.0 / inverse_mm_s);
 | 
			
		||||
    unsigned long segment_time = LROUND(1000000.0 / inverse_mm_s);
 | 
			
		||||
  #endif
 | 
			
		||||
  #if ENABLED(SLOWDOWN)
 | 
			
		||||
    if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
 | 
			
		||||
      if (segment_time < min_segment_time) {
 | 
			
		||||
        // buffer is draining, add extra time.  The amount of time added increases if the buffer is still emptied more.
 | 
			
		||||
        inverse_mm_s = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
 | 
			
		||||
        inverse_mm_s = 1000000.0 / (segment_time + LROUND(2 * (min_segment_time - segment_time) / moves_queued));
 | 
			
		||||
        #if defined(XY_FREQUENCY_LIMIT) || ENABLED(ULTRA_LCD)
 | 
			
		||||
          segment_time = lround(1000000.0 / inverse_mm_s);
 | 
			
		||||
          segment_time = LROUND(1000000.0 / inverse_mm_s);
 | 
			
		||||
        #endif
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
@@ -1082,7 +1082,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
 | 
			
		||||
  #endif
 | 
			
		||||
 | 
			
		||||
  block->nominal_speed = block->millimeters * inverse_mm_s; // (mm/sec) Always > 0
 | 
			
		||||
  block->nominal_rate = ceil(block->step_event_count * inverse_mm_s); // (step/sec) Always > 0
 | 
			
		||||
  block->nominal_rate = CEIL(block->step_event_count * inverse_mm_s); // (step/sec) Always > 0
 | 
			
		||||
 | 
			
		||||
  #if ENABLED(FILAMENT_WIDTH_SENSOR)
 | 
			
		||||
    static float filwidth_e_count = 0, filwidth_delay_dist = 0;
 | 
			
		||||
@@ -1121,7 +1121,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
 | 
			
		||||
  // Calculate and limit speed in mm/sec for each axis
 | 
			
		||||
  float current_speed[NUM_AXIS], speed_factor = 1.0; // factor <1 decreases speed
 | 
			
		||||
  LOOP_XYZE(i) {
 | 
			
		||||
    const float cs = fabs(current_speed[i] = delta_mm[i] * inverse_mm_s);
 | 
			
		||||
    const float cs = FABS(current_speed[i] = delta_mm[i] * inverse_mm_s);
 | 
			
		||||
    #if ENABLED(DISTINCT_E_FACTORS)
 | 
			
		||||
      if (i == E_AXIS) i += extruder;
 | 
			
		||||
    #endif
 | 
			
		||||
@@ -1134,7 +1134,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
 | 
			
		||||
    // Check and limit the xy direction change frequency
 | 
			
		||||
    const unsigned char direction_change = block->direction_bits ^ old_direction_bits;
 | 
			
		||||
    old_direction_bits = block->direction_bits;
 | 
			
		||||
    segment_time = lround((float)segment_time / speed_factor);
 | 
			
		||||
    segment_time = LROUND((float)segment_time / speed_factor);
 | 
			
		||||
 | 
			
		||||
    long xs0 = axis_segment_time[X_AXIS][0],
 | 
			
		||||
         xs1 = axis_segment_time[X_AXIS][1],
 | 
			
		||||
@@ -1178,7 +1178,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
 | 
			
		||||
  uint32_t accel;
 | 
			
		||||
  if (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS]) {
 | 
			
		||||
    // convert to: acceleration steps/sec^2
 | 
			
		||||
    accel = ceil(retract_acceleration * steps_per_mm);
 | 
			
		||||
    accel = CEIL(retract_acceleration * steps_per_mm);
 | 
			
		||||
  }
 | 
			
		||||
  else {
 | 
			
		||||
    #define LIMIT_ACCEL_LONG(AXIS,INDX) do{ \
 | 
			
		||||
@@ -1196,7 +1196,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
 | 
			
		||||
    }while(0)
 | 
			
		||||
 | 
			
		||||
    // Start with print or travel acceleration
 | 
			
		||||
    accel = ceil((esteps ? acceleration : travel_acceleration) * steps_per_mm);
 | 
			
		||||
    accel = CEIL((esteps ? acceleration : travel_acceleration) * steps_per_mm);
 | 
			
		||||
 | 
			
		||||
    #if ENABLED(DISTINCT_E_FACTORS)
 | 
			
		||||
      #define ACCEL_IDX extruder
 | 
			
		||||
@@ -1267,8 +1267,8 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
 | 
			
		||||
        // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
 | 
			
		||||
        if (cos_theta > -0.95) {
 | 
			
		||||
          // Compute maximum junction velocity based on maximum acceleration and junction deviation
 | 
			
		||||
          float sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
 | 
			
		||||
          NOMORE(vmax_junction, sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
 | 
			
		||||
          float sin_theta_d2 = SQRT(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive.
 | 
			
		||||
          NOMORE(vmax_junction, SQRT(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2)));
 | 
			
		||||
        }
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
@@ -1286,7 +1286,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
 | 
			
		||||
  float safe_speed = block->nominal_speed;
 | 
			
		||||
  uint8_t limited = 0;
 | 
			
		||||
  LOOP_XYZE(i) {
 | 
			
		||||
    const float jerk = fabs(current_speed[i]), maxj = max_jerk[i];
 | 
			
		||||
    const float jerk = FABS(current_speed[i]), maxj = max_jerk[i];
 | 
			
		||||
    if (jerk > maxj) {
 | 
			
		||||
      if (limited) {
 | 
			
		||||
        const float mjerk = maxj * block->nominal_speed;
 | 
			
		||||
@@ -1395,7 +1395,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
 | 
			
		||||
                            && (uint32_t)esteps != block->step_event_count
 | 
			
		||||
                            && de_float > 0.0;
 | 
			
		||||
    if (block->use_advance_lead)
 | 
			
		||||
      block->abs_adv_steps_multiplier8 = lround(
 | 
			
		||||
      block->abs_adv_steps_multiplier8 = LROUND(
 | 
			
		||||
        extruder_advance_k
 | 
			
		||||
        * (UNEAR_ZERO(advance_ed_ratio) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set
 | 
			
		||||
        * (block->nominal_speed / (float)block->nominal_rate)
 | 
			
		||||
@@ -1458,10 +1458,10 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
 | 
			
		||||
  #else
 | 
			
		||||
    #define _EINDEX E_AXIS
 | 
			
		||||
  #endif
 | 
			
		||||
  long na = position[X_AXIS] = lround(a * axis_steps_per_mm[X_AXIS]),
 | 
			
		||||
       nb = position[Y_AXIS] = lround(b * axis_steps_per_mm[Y_AXIS]),
 | 
			
		||||
       nc = position[Z_AXIS] = lround(c * axis_steps_per_mm[Z_AXIS]),
 | 
			
		||||
       ne = position[E_AXIS] = lround(e * axis_steps_per_mm[_EINDEX]);
 | 
			
		||||
  long na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
 | 
			
		||||
       nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
 | 
			
		||||
       nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
 | 
			
		||||
       ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
 | 
			
		||||
  #if ENABLED(LIN_ADVANCE)
 | 
			
		||||
    position_float[X_AXIS] = a;
 | 
			
		||||
    position_float[Y_AXIS] = b;
 | 
			
		||||
@@ -1514,7 +1514,7 @@ void Planner::set_position_mm(const AxisEnum axis, const float &v) {
 | 
			
		||||
  #else
 | 
			
		||||
    const uint8_t axis_index = axis;
 | 
			
		||||
  #endif
 | 
			
		||||
  position[axis] = lround(v * axis_steps_per_mm[axis_index]);
 | 
			
		||||
  position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
 | 
			
		||||
  #if ENABLED(LIN_ADVANCE)
 | 
			
		||||
    position_float[axis] = v;
 | 
			
		||||
  #endif
 | 
			
		||||
 
 | 
			
		||||
@@ -454,7 +454,7 @@ class Planner {
 | 
			
		||||
     * 'distance'.
 | 
			
		||||
     */
 | 
			
		||||
    static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
 | 
			
		||||
      return sqrt(sq(target_velocity) - 2 * accel * distance);
 | 
			
		||||
      return SQRT(sq(target_velocity) - 2 * accel * distance);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
 | 
			
		||||
 
 | 
			
		||||
@@ -64,7 +64,7 @@ inline static float eval_bezier(float a, float b, float c, float d, float t) {
 | 
			
		||||
 * We approximate Euclidean distance with the sum of the coordinates
 | 
			
		||||
 * offset (so-called "norm 1"), which is quicker to compute.
 | 
			
		||||
 */
 | 
			
		||||
inline static float dist1(float x1, float y1, float x2, float y2) { return fabs(x1 - x2) + fabs(y1 - y2); }
 | 
			
		||||
inline static float dist1(float x1, float y1, float x2, float y2) { return FABS(x1 - x2) + FABS(y1 - y2); }
 | 
			
		||||
 | 
			
		||||
/**
 | 
			
		||||
 * The algorithm for computing the step is loosely based on the one in Kig
 | 
			
		||||
 
 | 
			
		||||
@@ -521,7 +521,7 @@ float dnrm2(int n, float x[], int incx)
 | 
			
		||||
      }
 | 
			
		||||
      ix += incx;
 | 
			
		||||
    }
 | 
			
		||||
    norm = scale * sqrt(ssq);
 | 
			
		||||
    norm = scale * SQRT(ssq);
 | 
			
		||||
  }
 | 
			
		||||
  return norm;
 | 
			
		||||
}
 | 
			
		||||
@@ -791,12 +791,12 @@ void dqrdc(float a[], int lda, int n, int p, float qraux[], int jpvt[],
 | 
			
		||||
          daxpy(n - l + 1, t, a + l - 1 + (l - 1)*lda, 1, a + l - 1 + (j - 1)*lda, 1);
 | 
			
		||||
          if (pl <= j && j <= pu) {
 | 
			
		||||
            if (qraux[j - 1] != 0.0) {
 | 
			
		||||
              tt = 1.0 - pow(r8_abs(a[l - 1 + (j - 1) * lda]) / qraux[j - 1], 2);
 | 
			
		||||
              tt = 1.0 - POW(r8_abs(a[l - 1 + (j - 1) * lda]) / qraux[j - 1], 2);
 | 
			
		||||
              tt = r8_max(tt, 0.0);
 | 
			
		||||
              t = tt;
 | 
			
		||||
              tt = 1.0 + 0.05 * tt * pow(qraux[j - 1] / work[j - 1], 2);
 | 
			
		||||
              tt = 1.0 + 0.05 * tt * POW(qraux[j - 1] / work[j - 1], 2);
 | 
			
		||||
              if (tt != 1.0)
 | 
			
		||||
                qraux[j - 1] = qraux[j - 1] * sqrt(t);
 | 
			
		||||
                qraux[j - 1] = qraux[j - 1] * SQRT(t);
 | 
			
		||||
              else {
 | 
			
		||||
                qraux[j - 1] = dnrm2(n - l, a + l + (j - 1) * lda, 1);
 | 
			
		||||
                work[j - 1] = qraux[j - 1];
 | 
			
		||||
 
 | 
			
		||||
@@ -40,7 +40,7 @@
 | 
			
		||||
extern const char echomagic[] PROGMEM;
 | 
			
		||||
extern const char errormagic[] PROGMEM;
 | 
			
		||||
 | 
			
		||||
#define SERIAL_CHAR(x) (MYSERIAL.write(x))
 | 
			
		||||
#define SERIAL_CHAR(x) ((void)MYSERIAL.write(x))
 | 
			
		||||
#define SERIAL_EOL() SERIAL_CHAR('\n')
 | 
			
		||||
 | 
			
		||||
#define SERIAL_PROTOCOLCHAR(x)              SERIAL_CHAR(x)
 | 
			
		||||
 
 | 
			
		||||
@@ -749,7 +749,7 @@ void Temperature::manage_heater() {
 | 
			
		||||
 | 
			
		||||
    #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
 | 
			
		||||
      // Make sure measured temperatures are close together
 | 
			
		||||
      if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
 | 
			
		||||
      if (FABS(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF)
 | 
			
		||||
        _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -498,7 +498,7 @@
 | 
			
		||||
 | 
			
		||||
            if (parser.seen('B')) {
 | 
			
		||||
              g29_card_thickness = parser.has_value() ? parser.value_float() : measure_business_card_thickness(height);
 | 
			
		||||
              if (fabs(g29_card_thickness) > 1.5) {
 | 
			
		||||
              if (FABS(g29_card_thickness) > 1.5) {
 | 
			
		||||
                SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
 | 
			
		||||
                return;
 | 
			
		||||
              }
 | 
			
		||||
@@ -562,7 +562,7 @@
 | 
			
		||||
                  // P3.13 1000X distance weighting, approaches simple average of nearest points
 | 
			
		||||
 | 
			
		||||
                  const float weight_power  = (cvf - 3.10) * 100.0,  // 3.12345 -> 2.345
 | 
			
		||||
                              weight_factor = weight_power ? pow(10.0, weight_power) : 0;
 | 
			
		||||
                              weight_factor = weight_power ? POW(10.0, weight_power) : 0;
 | 
			
		||||
                  smart_fill_wlsf(weight_factor);
 | 
			
		||||
                }
 | 
			
		||||
                break;
 | 
			
		||||
@@ -774,7 +774,7 @@
 | 
			
		||||
    SERIAL_ECHO_F(mean, 6);
 | 
			
		||||
    SERIAL_EOL();
 | 
			
		||||
 | 
			
		||||
    const float sigma = sqrt(sum_of_diff_squared / (n + 1));
 | 
			
		||||
    const float sigma = SQRT(sum_of_diff_squared / (n + 1));
 | 
			
		||||
    SERIAL_ECHOPGM("Standard Deviation: ");
 | 
			
		||||
    SERIAL_ECHO_F(sigma, 6);
 | 
			
		||||
    SERIAL_EOL();
 | 
			
		||||
@@ -1508,7 +1508,7 @@
 | 
			
		||||
        do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);    // Move the nozzle to where we are going to edit
 | 
			
		||||
        do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
 | 
			
		||||
 | 
			
		||||
        new_z = floor(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
 | 
			
		||||
        new_z = FLOOR(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
 | 
			
		||||
 | 
			
		||||
        KEEPALIVE_STATE(PAUSED_FOR_USER);
 | 
			
		||||
        has_control_of_lcd_panel = true;
 | 
			
		||||
 
 | 
			
		||||
@@ -492,15 +492,15 @@
 | 
			
		||||
 | 
			
		||||
      #if ENABLED(DELTA)  // apply delta inverse_kinematics
 | 
			
		||||
 | 
			
		||||
        const float delta_A = rz + sqrt( delta_diagonal_rod_2_tower[A_AXIS]
 | 
			
		||||
        const float delta_A = rz + SQRT( delta_diagonal_rod_2_tower[A_AXIS]
 | 
			
		||||
                                         - HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx,
 | 
			
		||||
                                                   delta_tower[A_AXIS][Y_AXIS] - ry ));
 | 
			
		||||
 | 
			
		||||
        const float delta_B = rz + sqrt( delta_diagonal_rod_2_tower[B_AXIS]
 | 
			
		||||
        const float delta_B = rz + SQRT( delta_diagonal_rod_2_tower[B_AXIS]
 | 
			
		||||
                                         - HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx,
 | 
			
		||||
                                                   delta_tower[B_AXIS][Y_AXIS] - ry ));
 | 
			
		||||
 | 
			
		||||
        const float delta_C = rz + sqrt( delta_diagonal_rod_2_tower[C_AXIS]
 | 
			
		||||
        const float delta_C = rz + SQRT( delta_diagonal_rod_2_tower[C_AXIS]
 | 
			
		||||
                                         - HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx,
 | 
			
		||||
                                                   delta_tower[C_AXIS][Y_AXIS] - ry ));
 | 
			
		||||
 | 
			
		||||
@@ -516,8 +516,8 @@
 | 
			
		||||
        inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ]
 | 
			
		||||
                                  // should move the feedrate scaling to scara inverse_kinematics
 | 
			
		||||
 | 
			
		||||
        float adiff = abs(delta[A_AXIS] - scara_oldA),
 | 
			
		||||
              bdiff = abs(delta[B_AXIS] - scara_oldB);
 | 
			
		||||
        const float adiff = FABS(delta[A_AXIS] - scara_oldA),
 | 
			
		||||
                    bdiff = FABS(delta[B_AXIS] - scara_oldB);
 | 
			
		||||
        scara_oldA = delta[A_AXIS];
 | 
			
		||||
        scara_oldB = delta[B_AXIS];
 | 
			
		||||
        float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
 | 
			
		||||
 
 | 
			
		||||
@@ -49,7 +49,7 @@
 | 
			
		||||
  bool ubl_lcd_map_control = false;
 | 
			
		||||
#endif
 | 
			
		||||
 | 
			
		||||
int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
 | 
			
		||||
int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
 | 
			
		||||
 | 
			
		||||
#if ENABLED(FILAMENT_LCD_DISPLAY) && ENABLED(SDSUPPORT)
 | 
			
		||||
  millis_t previous_lcd_status_ms = 0;
 | 
			
		||||
@@ -184,7 +184,7 @@ uint16_t max_display_update_time = 0;
 | 
			
		||||
    void menu_action_setting_edit_callback_ ## _name(const char * const pstr, _type * const ptr, const _type minValue, const _type maxValue, const screenFunc_t callback, const bool live=false); \
 | 
			
		||||
    typedef void _name##_void
 | 
			
		||||
 | 
			
		||||
  DECLARE_MENU_EDIT_TYPE(int, int3);
 | 
			
		||||
  DECLARE_MENU_EDIT_TYPE(int16_t, int3);
 | 
			
		||||
  DECLARE_MENU_EDIT_TYPE(uint8_t, int8);
 | 
			
		||||
  DECLARE_MENU_EDIT_TYPE(float, float3);
 | 
			
		||||
  DECLARE_MENU_EDIT_TYPE(float, float32);
 | 
			
		||||
@@ -193,7 +193,7 @@ uint16_t max_display_update_time = 0;
 | 
			
		||||
  DECLARE_MENU_EDIT_TYPE(float, float51);
 | 
			
		||||
  DECLARE_MENU_EDIT_TYPE(float, float52);
 | 
			
		||||
  DECLARE_MENU_EDIT_TYPE(float, float62);
 | 
			
		||||
  DECLARE_MENU_EDIT_TYPE(unsigned long, long5);
 | 
			
		||||
  DECLARE_MENU_EDIT_TYPE(uint32_t, long5);
 | 
			
		||||
 | 
			
		||||
  void menu_action_setting_edit_bool(const char* pstr, bool* ptr);
 | 
			
		||||
  void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, screenFunc_t callbackFunc);
 | 
			
		||||
@@ -602,7 +602,7 @@ void lcd_status_screen() {
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    #if ENABLED(ULTIPANEL_FEEDMULTIPLY)
 | 
			
		||||
      const int new_frm = feedrate_percentage + (int32_t)encoderPosition;
 | 
			
		||||
      const int16_t new_frm = feedrate_percentage + (int32_t)encoderPosition;
 | 
			
		||||
      // Dead zone at 100% feedrate
 | 
			
		||||
      if ((feedrate_percentage < 100 && new_frm > 100) || (feedrate_percentage > 100 && new_frm < 100)) {
 | 
			
		||||
        feedrate_percentage = 100;
 | 
			
		||||
@@ -966,7 +966,7 @@ void kill_screen(const char* lcd_msg) {
 | 
			
		||||
      if (lcd_clicked) { defer_return_to_status = false; return lcd_goto_previous_menu(); }
 | 
			
		||||
      ENCODER_DIRECTION_NORMAL();
 | 
			
		||||
      if (encoderPosition) {
 | 
			
		||||
        const int babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
 | 
			
		||||
        const int16_t babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
 | 
			
		||||
        encoderPosition = 0;
 | 
			
		||||
        lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
 | 
			
		||||
        thermalManager.babystep_axis(axis, babystep_increment);
 | 
			
		||||
@@ -990,7 +990,7 @@ void kill_screen(const char* lcd_msg) {
 | 
			
		||||
        defer_return_to_status = true;
 | 
			
		||||
        ENCODER_DIRECTION_NORMAL();
 | 
			
		||||
        if (encoderPosition) {
 | 
			
		||||
          const int babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
 | 
			
		||||
          const int16_t babystep_increment = (int32_t)encoderPosition * (BABYSTEP_MULTIPLICATOR);
 | 
			
		||||
          encoderPosition = 0;
 | 
			
		||||
 | 
			
		||||
          const float new_zoffset = zprobe_zoffset + planner.steps_to_mm[Z_AXIS] * babystep_increment;
 | 
			
		||||
@@ -1021,7 +1021,7 @@ void kill_screen(const char* lcd_msg) {
 | 
			
		||||
 | 
			
		||||
    float mesh_edit_value, mesh_edit_accumulator; // We round mesh_edit_value to 2.5 decimal places. So we keep a
 | 
			
		||||
                                                  // separate value that doesn't lose precision.
 | 
			
		||||
    static int ubl_encoderPosition = 0;
 | 
			
		||||
    static int16_t ubl_encoderPosition = 0;
 | 
			
		||||
 | 
			
		||||
    static void _lcd_mesh_fine_tune(const char* msg) {
 | 
			
		||||
      defer_return_to_status = true;
 | 
			
		||||
@@ -1275,7 +1275,7 @@ void kill_screen(const char* lcd_msg) {
 | 
			
		||||
   * "Prepare" submenu items
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
  void _lcd_preheat(const int endnum, const int16_t temph, const int16_t tempb, const int16_t fan) {
 | 
			
		||||
  void _lcd_preheat(const int16_t endnum, const int16_t temph, const int16_t tempb, const int16_t fan) {
 | 
			
		||||
    if (temph > 0) thermalManager.setTargetHotend(min(heater_maxtemp[endnum], temph), endnum);
 | 
			
		||||
    #if TEMP_SENSOR_BED != 0
 | 
			
		||||
      if (tempb >= 0) thermalManager.setTargetBed(tempb);
 | 
			
		||||
@@ -1807,7 +1807,7 @@ void kill_screen(const char* lcd_msg) {
 | 
			
		||||
 | 
			
		||||
    void _lcd_ubl_level_bed();
 | 
			
		||||
 | 
			
		||||
    static int ubl_storage_slot = 0,
 | 
			
		||||
    static int16_t ubl_storage_slot = 0,
 | 
			
		||||
               custom_bed_temp = 50,
 | 
			
		||||
               custom_hotend_temp = 190,
 | 
			
		||||
               side_points = 3,
 | 
			
		||||
@@ -2672,7 +2672,7 @@ void kill_screen(const char* lcd_msg) {
 | 
			
		||||
      // This assumes the center is 0,0
 | 
			
		||||
      #if ENABLED(DELTA)
 | 
			
		||||
        if (axis != Z_AXIS) {
 | 
			
		||||
          max = sqrt(sq((float)(DELTA_PRINTABLE_RADIUS)) - sq(current_position[Y_AXIS - axis]));
 | 
			
		||||
          max = SQRT(sq((float)(DELTA_PRINTABLE_RADIUS)) - sq(current_position[Y_AXIS - axis]));
 | 
			
		||||
          min = -max;
 | 
			
		||||
        }
 | 
			
		||||
      #endif
 | 
			
		||||
@@ -2920,14 +2920,14 @@ void kill_screen(const char* lcd_msg) {
 | 
			
		||||
  #if ENABLED(PID_AUTOTUNE_MENU)
 | 
			
		||||
 | 
			
		||||
    #if ENABLED(PIDTEMP)
 | 
			
		||||
      int autotune_temp[HOTENDS] = ARRAY_BY_HOTENDS1(150);
 | 
			
		||||
      int16_t autotune_temp[HOTENDS] = ARRAY_BY_HOTENDS1(150);
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
    #if ENABLED(PIDTEMPBED)
 | 
			
		||||
      int autotune_temp_bed = 70;
 | 
			
		||||
      int16_t autotune_temp_bed = 70;
 | 
			
		||||
    #endif
 | 
			
		||||
 | 
			
		||||
    void _lcd_autotune(int e) {
 | 
			
		||||
    void _lcd_autotune(int16_t e) {
 | 
			
		||||
      char cmd[30];
 | 
			
		||||
      sprintf_P(cmd, PSTR("M303 U1 E%i S%i"), e,
 | 
			
		||||
        #if HAS_PID_FOR_BOTH
 | 
			
		||||
@@ -2947,14 +2947,14 @@ void kill_screen(const char* lcd_msg) {
 | 
			
		||||
 | 
			
		||||
    // Helpers for editing PID Ki & Kd values
 | 
			
		||||
    // grab the PID value out of the temp variable; scale it; then update the PID driver
 | 
			
		||||
    void copy_and_scalePID_i(int e) {
 | 
			
		||||
    void copy_and_scalePID_i(int16_t e) {
 | 
			
		||||
      #if DISABLED(PID_PARAMS_PER_HOTEND) || HOTENDS == 1
 | 
			
		||||
        UNUSED(e);
 | 
			
		||||
      #endif
 | 
			
		||||
      PID_PARAM(Ki, e) = scalePID_i(raw_Ki);
 | 
			
		||||
      thermalManager.updatePID();
 | 
			
		||||
    }
 | 
			
		||||
    void copy_and_scalePID_d(int e) {
 | 
			
		||||
    void copy_and_scalePID_d(int16_t e) {
 | 
			
		||||
      #if DISABLED(PID_PARAMS_PER_HOTEND) || HOTENDS == 1
 | 
			
		||||
        UNUSED(e);
 | 
			
		||||
      #endif
 | 
			
		||||
@@ -3523,7 +3523,7 @@ void kill_screen(const char* lcd_msg) {
 | 
			
		||||
        STATIC_ITEM(MSG_INFO_PRINT_LONGEST ": ", false, false);                                        // Longest job time:
 | 
			
		||||
        STATIC_ITEM("", false, false, buffer);                                                         // 99y 364d 23h 59m 59s
 | 
			
		||||
 | 
			
		||||
        sprintf_P(buffer, PSTR("%ld.%im"), long(stats.filamentUsed / 1000), int(stats.filamentUsed / 100) % 10);
 | 
			
		||||
        sprintf_P(buffer, PSTR("%ld.%im"), long(stats.filamentUsed / 1000), int16_t(stats.filamentUsed / 100) % 10);
 | 
			
		||||
        STATIC_ITEM(MSG_INFO_PRINT_FILAMENT ": ", false, false);                                       // Extruded total:
 | 
			
		||||
        STATIC_ITEM("", false, false, buffer);                                                         // 125m
 | 
			
		||||
        END_SCREEN();
 | 
			
		||||
@@ -3926,14 +3926,14 @@ void kill_screen(const char* lcd_msg) {
 | 
			
		||||
   *
 | 
			
		||||
   * The "DEFINE_MENU_EDIT_TYPE" macro generates the functions needed to edit a numerical value.
 | 
			
		||||
   *
 | 
			
		||||
   * For example, DEFINE_MENU_EDIT_TYPE(int, int3, itostr3, 1) expands into these functions:
 | 
			
		||||
   * For example, DEFINE_MENU_EDIT_TYPE(int16_t, int3, itostr3, 1) expands into these functions:
 | 
			
		||||
   *
 | 
			
		||||
   *   bool _menu_edit_int3();
 | 
			
		||||
   *   void menu_edit_int3(); // edit int (interactively)
 | 
			
		||||
   *   void menu_edit_callback_int3(); // edit int (interactively) with callback on completion
 | 
			
		||||
   *   void _menu_action_setting_edit_int3(const char * const pstr, int * const ptr, const int minValue, const int maxValue);
 | 
			
		||||
   *   void menu_action_setting_edit_int3(const char * const pstr, int * const ptr, const int minValue, const int maxValue);
 | 
			
		||||
   *   void menu_action_setting_edit_callback_int3(const char * const pstr, int * const ptr, const int minValue, const int maxValue, const screenFunc_t callback, const bool live); // edit int with callback
 | 
			
		||||
   *   void menu_edit_int3(); // edit int16_t (interactively)
 | 
			
		||||
   *   void menu_edit_callback_int3(); // edit int16_t (interactively) with callback on completion
 | 
			
		||||
   *   void _menu_action_setting_edit_int3(const char * const pstr, int16_t * const ptr, const int16_t minValue, const int16_t maxValue);
 | 
			
		||||
   *   void menu_action_setting_edit_int3(const char * const pstr, int16_t * const ptr, const int16_t minValue, const int16_t maxValue);
 | 
			
		||||
   *   void menu_action_setting_edit_callback_int3(const char * const pstr, int16_t * const ptr, const int16_t minValue, const int16_t maxValue, const screenFunc_t callback, const bool live); // edit int16_t with callback
 | 
			
		||||
   *
 | 
			
		||||
   * You can then use one of the menu macros to present the edit interface:
 | 
			
		||||
   *   MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999)
 | 
			
		||||
@@ -3984,7 +3984,7 @@ void kill_screen(const char* lcd_msg) {
 | 
			
		||||
    } \
 | 
			
		||||
    typedef void _name
 | 
			
		||||
 | 
			
		||||
  DEFINE_MENU_EDIT_TYPE(int, int3, itostr3, 1);
 | 
			
		||||
  DEFINE_MENU_EDIT_TYPE(int16_t, int3, itostr3, 1);
 | 
			
		||||
  DEFINE_MENU_EDIT_TYPE(uint8_t, int8, i8tostr3, 1);
 | 
			
		||||
  DEFINE_MENU_EDIT_TYPE(float, float3, ftostr3, 1.0);
 | 
			
		||||
  DEFINE_MENU_EDIT_TYPE(float, float32, ftostr32, 100.0);
 | 
			
		||||
@@ -3993,7 +3993,7 @@ void kill_screen(const char* lcd_msg) {
 | 
			
		||||
  DEFINE_MENU_EDIT_TYPE(float, float51, ftostr51sign, 10.0);
 | 
			
		||||
  DEFINE_MENU_EDIT_TYPE(float, float52, ftostr52sign, 100.0);
 | 
			
		||||
  DEFINE_MENU_EDIT_TYPE(float, float62, ftostr62rj, 100.0);
 | 
			
		||||
  DEFINE_MENU_EDIT_TYPE(unsigned long, long5, ftostr5rj, 0.01);
 | 
			
		||||
  DEFINE_MENU_EDIT_TYPE(uint32_t, long5, ftostr5rj, 0.01);
 | 
			
		||||
 | 
			
		||||
  /**
 | 
			
		||||
   *
 | 
			
		||||
@@ -4001,7 +4001,7 @@ void kill_screen(const char* lcd_msg) {
 | 
			
		||||
   *
 | 
			
		||||
   */
 | 
			
		||||
  #if ENABLED(REPRAPWORLD_KEYPAD)
 | 
			
		||||
    void _reprapworld_keypad_move(AxisEnum axis, int dir) {
 | 
			
		||||
    void _reprapworld_keypad_move(AxisEnum axis, int16_t dir) {
 | 
			
		||||
      move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
 | 
			
		||||
      encoderPosition = dir;
 | 
			
		||||
      switch (axis) {
 | 
			
		||||
@@ -4160,8 +4160,8 @@ void lcd_init() {
 | 
			
		||||
  #endif
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int lcd_strlen(const char* s) {
 | 
			
		||||
  int i = 0, j = 0;
 | 
			
		||||
int16_t lcd_strlen(const char* s) {
 | 
			
		||||
  int16_t i = 0, j = 0;
 | 
			
		||||
  while (s[i]) {
 | 
			
		||||
    if (PRINTABLE(s[i])) j++;
 | 
			
		||||
    i++;
 | 
			
		||||
@@ -4169,8 +4169,8 @@ int lcd_strlen(const char* s) {
 | 
			
		||||
  return j;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int lcd_strlen_P(const char* s) {
 | 
			
		||||
  int j = 0;
 | 
			
		||||
int16_t lcd_strlen_P(const char* s) {
 | 
			
		||||
  int16_t j = 0;
 | 
			
		||||
  while (pgm_read_byte(s)) {
 | 
			
		||||
    if (PRINTABLE(pgm_read_byte(s))) j++;
 | 
			
		||||
    s++;
 | 
			
		||||
 
 | 
			
		||||
@@ -30,10 +30,10 @@
 | 
			
		||||
  #define BUTTON_EXISTS(BN) (defined(BTN_## BN) && BTN_## BN >= 0)
 | 
			
		||||
  #define BUTTON_PRESSED(BN) !READ(BTN_## BN)
 | 
			
		||||
 | 
			
		||||
  extern int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
 | 
			
		||||
  extern int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
 | 
			
		||||
 | 
			
		||||
  int lcd_strlen(const char* s);
 | 
			
		||||
  int lcd_strlen_P(const char* s);
 | 
			
		||||
  int16_t lcd_strlen(const char* s);
 | 
			
		||||
  int16_t lcd_strlen_P(const char* s);
 | 
			
		||||
  void lcd_update();
 | 
			
		||||
  void lcd_init();
 | 
			
		||||
  bool lcd_hasstatus();
 | 
			
		||||
 
 | 
			
		||||
@@ -346,7 +346,7 @@ void lcd_implementation_clear() { } // Automatically cleared by Picture Loop
 | 
			
		||||
// Status Screen
 | 
			
		||||
//
 | 
			
		||||
 | 
			
		||||
FORCE_INLINE void _draw_centered_temp(const int temp, const uint8_t x, const uint8_t y) {
 | 
			
		||||
FORCE_INLINE void _draw_centered_temp(const int16_t temp, const uint8_t x, const uint8_t y) {
 | 
			
		||||
  const uint8_t degsize = 6 * (temp >= 100 ? 3 : temp >= 10 ? 2 : 1); // number's pixel width
 | 
			
		||||
  u8g.setPrintPos(x - (18 - degsize) / 2, y); // move left if shorter
 | 
			
		||||
  lcd_print(itostr3(temp));
 | 
			
		||||
@@ -484,7 +484,7 @@ static void lcd_implementation_status_screen() {
 | 
			
		||||
    #if HAS_FAN0
 | 
			
		||||
      if (PAGE_CONTAINS(20, 27)) {
 | 
			
		||||
        // Fan
 | 
			
		||||
        const int per = ((fanSpeeds[0] + 1) * 100) / 256;
 | 
			
		||||
        const int16_t per = ((fanSpeeds[0] + 1) * 100) / 256;
 | 
			
		||||
        if (per) {
 | 
			
		||||
          u8g.setPrintPos(104, 27);
 | 
			
		||||
          lcd_print(itostr3(per));
 | 
			
		||||
@@ -533,7 +533,7 @@ static void lcd_implementation_status_screen() {
 | 
			
		||||
      if (PAGE_CONTAINS(50, 51 - (TALL_FONT_CORRECTION)))     // 50-51 (or just 50)
 | 
			
		||||
        u8g.drawBox(
 | 
			
		||||
          PROGRESS_BAR_X + 1, 50,
 | 
			
		||||
          (unsigned int)((PROGRESS_BAR_WIDTH - 2) * card.percentDone() * 0.01), 2 - (TALL_FONT_CORRECTION)
 | 
			
		||||
          (uint16_t)((PROGRESS_BAR_WIDTH - 2) * card.percentDone() * 0.01), 2 - (TALL_FONT_CORRECTION)
 | 
			
		||||
        );
 | 
			
		||||
 | 
			
		||||
      //
 | 
			
		||||
@@ -847,7 +847,7 @@ static void lcd_implementation_status_screen() {
 | 
			
		||||
    } \
 | 
			
		||||
    typedef void _name##_void
 | 
			
		||||
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(int, int3, itostr3);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(int16_t, int3, itostr3);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(uint8_t, int8, i8tostr3);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float3, ftostr3);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float32, ftostr32);
 | 
			
		||||
@@ -856,7 +856,7 @@ static void lcd_implementation_status_screen() {
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float51, ftostr51sign);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float52, ftostr52sign);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float62, ftostr62rj);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(unsigned long, long5, ftostr5rj);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(uint32_t, long5, ftostr5rj);
 | 
			
		||||
 | 
			
		||||
  #define lcd_implementation_drawmenu_setting_edit_bool(sel, row, pstr, pstr2, data) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))
 | 
			
		||||
  #define lcd_implementation_drawmenu_setting_edit_callback_bool(sel, row, pstr, pstr2, data, callback) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))
 | 
			
		||||
 
 | 
			
		||||
@@ -337,7 +337,7 @@ static void lcd_set_custom_characters(
 | 
			
		||||
      if (info_screen_charset != char_mode) {
 | 
			
		||||
        char_mode = info_screen_charset;
 | 
			
		||||
        if (info_screen_charset) { // Progress bar characters for info screen
 | 
			
		||||
          for (int i = 3; i--;) createChar_P(LCD_STR_PROGRESS[i], progress[i]);
 | 
			
		||||
          for (int16_t i = 3; i--;) createChar_P(LCD_STR_PROGRESS[i], progress[i]);
 | 
			
		||||
        }
 | 
			
		||||
        else { // Custom characters for submenus
 | 
			
		||||
          createChar_P(LCD_UPLEVEL_CHAR, uplevel);
 | 
			
		||||
@@ -414,17 +414,17 @@ void lcd_printPGM_utf(const char *str, uint8_t n=LCD_WIDTH) {
 | 
			
		||||
 | 
			
		||||
#if ENABLED(SHOW_BOOTSCREEN)
 | 
			
		||||
 | 
			
		||||
  void lcd_erase_line(const int line) {
 | 
			
		||||
  void lcd_erase_line(const int16_t line) {
 | 
			
		||||
    lcd.setCursor(0, line);
 | 
			
		||||
    for (uint8_t i = LCD_WIDTH + 1; --i;)
 | 
			
		||||
      lcd.print(' ');
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  // Scroll the PSTR 'text' in a 'len' wide field for 'time' milliseconds at position col,line
 | 
			
		||||
  void lcd_scroll(const int col, const int line, const char* const text, const int len, const int time) {
 | 
			
		||||
  void lcd_scroll(const int16_t col, const int16_t line, const char* const text, const int16_t len, const int16_t time) {
 | 
			
		||||
    char tmp[LCD_WIDTH + 1] = {0};
 | 
			
		||||
    int n = max(lcd_strlen_P(text) - len, 0);
 | 
			
		||||
    for (int i = 0; i <= n; i++) {
 | 
			
		||||
    int16_t n = max(lcd_strlen_P(text) - len, 0);
 | 
			
		||||
    for (int16_t i = 0; i <= n; i++) {
 | 
			
		||||
      strncpy_P(tmp, text + i, min(len, LCD_WIDTH));
 | 
			
		||||
      lcd.setCursor(col, line);
 | 
			
		||||
      lcd_print(tmp);
 | 
			
		||||
@@ -433,7 +433,7 @@ void lcd_printPGM_utf(const char *str, uint8_t n=LCD_WIDTH) {
 | 
			
		||||
  }
 | 
			
		||||
 | 
			
		||||
  static void logo_lines(const char* const extra) {
 | 
			
		||||
    int indent = (LCD_WIDTH - 8 - lcd_strlen_P(extra)) / 2;
 | 
			
		||||
    int16_t indent = (LCD_WIDTH - 8 - lcd_strlen_P(extra)) / 2;
 | 
			
		||||
    lcd.setCursor(indent, 0); lcd.print('\x00'); lcd_printPGM(PSTR( "------" ));  lcd.print('\x01');
 | 
			
		||||
    lcd.setCursor(indent, 1);                    lcd_printPGM(PSTR("|Marlin|"));  lcd_printPGM(extra);
 | 
			
		||||
    lcd.setCursor(indent, 2); lcd.print('\x02'); lcd_printPGM(PSTR( "------" ));  lcd.print('\x03');
 | 
			
		||||
@@ -628,7 +628,7 @@ FORCE_INLINE void _draw_heater_status(const int8_t heater, const char prefix, co
 | 
			
		||||
#if ENABLED(LCD_PROGRESS_BAR)
 | 
			
		||||
 | 
			
		||||
  inline void lcd_draw_progress_bar(const uint8_t percent) {
 | 
			
		||||
    const int tix = (int)(percent * (LCD_WIDTH) * 3) / 100,
 | 
			
		||||
    const int16_t tix = (int16_t)(percent * (LCD_WIDTH) * 3) / 100,
 | 
			
		||||
              cel = tix / 3,
 | 
			
		||||
              rem = tix % 3;
 | 
			
		||||
    uint8_t i = LCD_WIDTH;
 | 
			
		||||
@@ -958,7 +958,7 @@ static void lcd_implementation_status_screen() {
 | 
			
		||||
    } \
 | 
			
		||||
    typedef void _name##_void
 | 
			
		||||
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(int, int3, itostr3);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(int16_t, int3, itostr3);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(uint8_t, int8, i8tostr3);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float3, ftostr3);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float32, ftostr32);
 | 
			
		||||
@@ -967,7 +967,7 @@ static void lcd_implementation_status_screen() {
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float51, ftostr51sign);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float52, ftostr52sign);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(float, float62, ftostr62rj);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(unsigned long, long5, ftostr5rj);
 | 
			
		||||
  DEFINE_LCD_IMPLEMENTATION_DRAWMENU_SETTING_EDIT_TYPE(uint32_t, long5, ftostr5rj);
 | 
			
		||||
 | 
			
		||||
  #define lcd_implementation_drawmenu_setting_edit_bool(sel, row, pstr, pstr2, data) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, '>', (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))
 | 
			
		||||
  #define lcd_implementation_drawmenu_setting_edit_callback_bool(sel, row, pstr, pstr2, data, callback) lcd_implementation_drawmenu_setting_edit_generic_P(sel, row, pstr, '>', (*(data))?PSTR(MSG_ON):PSTR(MSG_OFF))
 | 
			
		||||
 
 | 
			
		||||
@@ -63,7 +63,7 @@ vector_3 vector_3::get_normal() {
 | 
			
		||||
  return normalized;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float vector_3::get_length() { return sqrt(sq(x) + sq(y) + sq(z)); }
 | 
			
		||||
float vector_3::get_length() { return SQRT(sq(x) + sq(y) + sq(z)); }
 | 
			
		||||
 | 
			
		||||
void vector_3::normalize() {
 | 
			
		||||
  const float inv_length = 1.0 / get_length();
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user