Merge pull request #1700 from thinkyhead/fixup_leveling
Fixup leveling and other issues
This commit is contained in:
commit
1aec2f437c
@ -532,9 +532,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||||||
// Custom M code points
|
// Custom M code points
|
||||||
#define CUSTOM_M_CODES
|
#define CUSTOM_M_CODES
|
||||||
#ifdef CUSTOM_M_CODES
|
#ifdef CUSTOM_M_CODES
|
||||||
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
||||||
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
#define Z_PROBE_OFFSET_RANGE_MIN -20
|
||||||
|
#define Z_PROBE_OFFSET_RANGE_MAX 20
|
||||||
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
@ -11,7 +11,7 @@
|
|||||||
* max_acceleration_units_per_sq_second (x4)
|
* max_acceleration_units_per_sq_second (x4)
|
||||||
* acceleration
|
* acceleration
|
||||||
* retract_acceleration
|
* retract_acceleration
|
||||||
* travel_aceeleration
|
* travel_acceleration
|
||||||
* minimumfeedrate
|
* minimumfeedrate
|
||||||
* mintravelfeedrate
|
* mintravelfeedrate
|
||||||
* minsegmenttime
|
* minsegmenttime
|
||||||
@ -25,6 +25,7 @@
|
|||||||
* mesh_num_x
|
* mesh_num_x
|
||||||
* mesh_num_y
|
* mesh_num_y
|
||||||
* z_values[][]
|
* z_values[][]
|
||||||
|
* zprobe_zoffset
|
||||||
*
|
*
|
||||||
* DELTA:
|
* DELTA:
|
||||||
* endstop_adj (x3)
|
* endstop_adj (x3)
|
||||||
@ -39,7 +40,6 @@
|
|||||||
* absPreheatHotendTemp
|
* absPreheatHotendTemp
|
||||||
* absPreheatHPBTemp
|
* absPreheatHPBTemp
|
||||||
* absPreheatFanSpeed
|
* absPreheatFanSpeed
|
||||||
* zprobe_zoffset
|
|
||||||
*
|
*
|
||||||
* PIDTEMP:
|
* PIDTEMP:
|
||||||
* Kp[0], Ki[0], Kd[0], Kc[0]
|
* Kp[0], Ki[0], Kd[0], Kc[0]
|
||||||
@ -118,7 +118,7 @@ void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
|
|||||||
// wrong data being written to the variables.
|
// wrong data being written to the variables.
|
||||||
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
|
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
|
||||||
|
|
||||||
#define EEPROM_VERSION "V17"
|
#define EEPROM_VERSION "V18"
|
||||||
|
|
||||||
#ifdef EEPROM_SETTINGS
|
#ifdef EEPROM_SETTINGS
|
||||||
|
|
||||||
@ -143,7 +143,7 @@ void Config_StoreSettings() {
|
|||||||
|
|
||||||
uint8_t mesh_num_x = 3;
|
uint8_t mesh_num_x = 3;
|
||||||
uint8_t mesh_num_y = 3;
|
uint8_t mesh_num_y = 3;
|
||||||
#if defined(MESH_BED_LEVELING)
|
#ifdef MESH_BED_LEVELING
|
||||||
// Compile time test that sizeof(mbl.z_values) is as expected
|
// Compile time test that sizeof(mbl.z_values) is as expected
|
||||||
typedef char c_assert[(sizeof(mbl.z_values) == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS*sizeof(dummy)) ? 1 : -1];
|
typedef char c_assert[(sizeof(mbl.z_values) == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS*sizeof(dummy)) ? 1 : -1];
|
||||||
mesh_num_x = MESH_NUM_X_POINTS;
|
mesh_num_x = MESH_NUM_X_POINTS;
|
||||||
@ -161,7 +161,12 @@ void Config_StoreSettings() {
|
|||||||
for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
|
for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
|
||||||
EEPROM_WRITE_VAR(i, dummy);
|
EEPROM_WRITE_VAR(i, dummy);
|
||||||
}
|
}
|
||||||
#endif // MESH_BED_LEVELING
|
#endif // MESH_BED_LEVELING
|
||||||
|
|
||||||
|
#ifndef ENABLE_AUTO_BED_LEVELING
|
||||||
|
float zprobe_zoffset = 0;
|
||||||
|
#endif
|
||||||
|
EEPROM_WRITE_VAR(i, zprobe_zoffset);
|
||||||
|
|
||||||
#ifdef DELTA
|
#ifdef DELTA
|
||||||
EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
|
EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
|
||||||
@ -188,7 +193,7 @@ void Config_StoreSettings() {
|
|||||||
EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
|
EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
|
||||||
EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
|
EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
|
||||||
EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
|
EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
|
||||||
EEPROM_WRITE_VAR(i, zprobe_zoffset);
|
|
||||||
|
|
||||||
for (int e = 0; e < 4; e++) {
|
for (int e = 0; e < 4; e++) {
|
||||||
|
|
||||||
@ -328,6 +333,11 @@ void Config_RetrieveSettings() {
|
|||||||
}
|
}
|
||||||
#endif // MESH_BED_LEVELING
|
#endif // MESH_BED_LEVELING
|
||||||
|
|
||||||
|
#ifndef ENABLE_AUTO_BED_LEVELING
|
||||||
|
float zprobe_zoffset = 0;
|
||||||
|
#endif
|
||||||
|
EEPROM_READ_VAR(i, zprobe_zoffset);
|
||||||
|
|
||||||
#ifdef DELTA
|
#ifdef DELTA
|
||||||
EEPROM_READ_VAR(i, endstop_adj); // 3 floats
|
EEPROM_READ_VAR(i, endstop_adj); // 3 floats
|
||||||
EEPROM_READ_VAR(i, delta_radius); // 1 float
|
EEPROM_READ_VAR(i, delta_radius); // 1 float
|
||||||
@ -353,7 +363,6 @@ void Config_RetrieveSettings() {
|
|||||||
EEPROM_READ_VAR(i, absPreheatHotendTemp);
|
EEPROM_READ_VAR(i, absPreheatHotendTemp);
|
||||||
EEPROM_READ_VAR(i, absPreheatHPBTemp);
|
EEPROM_READ_VAR(i, absPreheatHPBTemp);
|
||||||
EEPROM_READ_VAR(i, absPreheatFanSpeed);
|
EEPROM_READ_VAR(i, absPreheatFanSpeed);
|
||||||
EEPROM_READ_VAR(i, zprobe_zoffset);
|
|
||||||
|
|
||||||
#ifdef PIDTEMP
|
#ifdef PIDTEMP
|
||||||
for (int e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
|
for (int e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
|
||||||
@ -461,9 +470,13 @@ void Config_ResetDefault() {
|
|||||||
max_e_jerk = DEFAULT_EJERK;
|
max_e_jerk = DEFAULT_EJERK;
|
||||||
home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
|
home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
|
||||||
|
|
||||||
#if defined(MESH_BED_LEVELING)
|
#ifdef MESH_BED_LEVELING
|
||||||
mbl.active = 0;
|
mbl.active = 0;
|
||||||
#endif // MESH_BED_LEVELING
|
#endif
|
||||||
|
|
||||||
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
|
zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
|
||||||
|
#endif
|
||||||
|
|
||||||
#ifdef DELTA
|
#ifdef DELTA
|
||||||
endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
|
endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
|
||||||
@ -484,10 +497,6 @@ void Config_ResetDefault() {
|
|||||||
absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
|
absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
||||||
zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef DOGLCD
|
#ifdef DOGLCD
|
||||||
lcd_contrast = DEFAULT_LCD_CONTRAST;
|
lcd_contrast = DEFAULT_LCD_CONTRAST;
|
||||||
#endif
|
#endif
|
||||||
@ -738,15 +747,20 @@ void Config_PrintSettings(bool forReplay) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef CUSTOM_M_CODES
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
SERIAL_ECHO_START;
|
SERIAL_ECHO_START;
|
||||||
if (!forReplay) {
|
#ifdef CUSTOM_M_CODES
|
||||||
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
|
if (!forReplay) {
|
||||||
SERIAL_ECHO_START;
|
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
|
||||||
}
|
SERIAL_ECHO_START;
|
||||||
SERIAL_ECHO(" M");
|
}
|
||||||
SERIAL_ECHO(CUSTOM_M_CODE_SET_Z_PROBE_OFFSET);
|
SERIAL_ECHOPAIR(" M", (unsigned long)CUSTOM_M_CODE_SET_Z_PROBE_OFFSET);
|
||||||
SERIAL_ECHOPAIR(" Z", -zprobe_zoffset);
|
SERIAL_ECHOPAIR(" Z", -zprobe_zoffset);
|
||||||
|
#else
|
||||||
|
if (!forReplay) {
|
||||||
|
SERIAL_ECHOPAIR("Z-Probe Offset (mm):", -zprobe_zoffset);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
SERIAL_EOL;
|
SERIAL_EOL;
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
@ -251,7 +251,9 @@ extern float z_endstop_adj;
|
|||||||
extern float min_pos[3];
|
extern float min_pos[3];
|
||||||
extern float max_pos[3];
|
extern float max_pos[3];
|
||||||
extern bool axis_known_position[3];
|
extern bool axis_known_position[3];
|
||||||
extern float zprobe_zoffset;
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
|
extern float zprobe_zoffset;
|
||||||
|
#endif
|
||||||
extern int fanSpeed;
|
extern int fanSpeed;
|
||||||
#ifdef BARICUDA
|
#ifdef BARICUDA
|
||||||
extern int ValvePressure;
|
extern int ValvePressure;
|
||||||
|
@ -203,7 +203,8 @@
|
|||||||
|
|
||||||
float homing_feedrate[] = HOMING_FEEDRATE;
|
float homing_feedrate[] = HOMING_FEEDRATE;
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
int xy_travel_speed = XY_TRAVEL_SPEED;
|
int xy_travel_speed = XY_TRAVEL_SPEED;
|
||||||
|
float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
|
||||||
#endif
|
#endif
|
||||||
int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
|
int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
|
||||||
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
||||||
@ -255,7 +256,6 @@ float home_offset[3] = { 0, 0, 0 };
|
|||||||
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
|
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
|
||||||
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
|
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
|
||||||
bool axis_known_position[3] = { false, false, false };
|
bool axis_known_position[3] = { false, false, false };
|
||||||
float zprobe_zoffset;
|
|
||||||
|
|
||||||
// Extruder offset
|
// Extruder offset
|
||||||
#if EXTRUDERS > 1
|
#if EXTRUDERS > 1
|
||||||
@ -1097,9 +1097,6 @@ static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
|
|||||||
current_position[Y_AXIS] = corrected_position.y;
|
current_position[Y_AXIS] = corrected_position.y;
|
||||||
current_position[Z_AXIS] = corrected_position.z;
|
current_position[Z_AXIS] = corrected_position.z;
|
||||||
|
|
||||||
// put the bed at 0 so we don't go below it.
|
|
||||||
current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
|
|
||||||
|
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
@ -1113,11 +1110,13 @@ static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float
|
|||||||
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
||||||
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
||||||
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
||||||
|
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
|
||||||
|
|
||||||
vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
|
if (planeNormal.z < 0) {
|
||||||
vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
|
planeNormal.x = -planeNormal.x;
|
||||||
vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
|
planeNormal.y = -planeNormal.y;
|
||||||
planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
|
planeNormal.z = -planeNormal.z;
|
||||||
|
}
|
||||||
|
|
||||||
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
||||||
|
|
||||||
@ -1126,11 +1125,7 @@ static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float
|
|||||||
current_position[Y_AXIS] = corrected_position.y;
|
current_position[Y_AXIS] = corrected_position.y;
|
||||||
current_position[Z_AXIS] = corrected_position.z;
|
current_position[Z_AXIS] = corrected_position.z;
|
||||||
|
|
||||||
// put the bed at 0 so we don't go below it.
|
|
||||||
current_position[Z_AXIS] = zprobe_zoffset;
|
|
||||||
|
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif // AUTO_BED_LEVELING_GRID
|
#endif // AUTO_BED_LEVELING_GRID
|
||||||
@ -2017,8 +2012,19 @@ inline void gcode_G28() {
|
|||||||
endstops_hit_on_purpose();
|
endstops_hit_on_purpose();
|
||||||
}
|
}
|
||||||
|
|
||||||
#if defined(MESH_BED_LEVELING)
|
#ifdef MESH_BED_LEVELING
|
||||||
|
|
||||||
|
/**
|
||||||
|
* G29: Mesh-based Z-Probe, probes a grid and produces a
|
||||||
|
* mesh to compensate for variable bed height
|
||||||
|
*
|
||||||
|
* Parameters With MESH_BED_LEVELING:
|
||||||
|
*
|
||||||
|
* S0 Produce a mesh report
|
||||||
|
* S1 Start probing mesh points
|
||||||
|
* S2 Probe the next mesh point
|
||||||
|
*
|
||||||
|
*/
|
||||||
inline void gcode_G29() {
|
inline void gcode_G29() {
|
||||||
static int probe_point = -1;
|
static int probe_point = -1;
|
||||||
int state = 0;
|
int state = 0;
|
||||||
@ -2060,7 +2066,7 @@ inline void gcode_G28() {
|
|||||||
} else if (state == 2) { // Goto next point
|
} else if (state == 2) { // Goto next point
|
||||||
|
|
||||||
if (probe_point < 0) {
|
if (probe_point < 0) {
|
||||||
SERIAL_PROTOCOLPGM("Mesh probing not started.\n");
|
SERIAL_PROTOCOLPGM("Start mesh probing with \"G29 S1\" first.\n");
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
int ix, iy;
|
int ix, iy;
|
||||||
@ -2070,16 +2076,14 @@ inline void gcode_G28() {
|
|||||||
} else {
|
} else {
|
||||||
ix = (probe_point-1) % MESH_NUM_X_POINTS;
|
ix = (probe_point-1) % MESH_NUM_X_POINTS;
|
||||||
iy = (probe_point-1) / MESH_NUM_X_POINTS;
|
iy = (probe_point-1) / MESH_NUM_X_POINTS;
|
||||||
if (iy&1) { // Zig zag
|
if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
|
||||||
ix = (MESH_NUM_X_POINTS - 1) - ix;
|
|
||||||
}
|
|
||||||
mbl.set_z(ix, iy, current_position[Z_AXIS]);
|
mbl.set_z(ix, iy, current_position[Z_AXIS]);
|
||||||
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
||||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
}
|
}
|
||||||
if (probe_point == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS) {
|
if (probe_point == MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
|
||||||
SERIAL_PROTOCOLPGM("Mesh done.\n");
|
SERIAL_PROTOCOLPGM("Mesh probing done.\n");
|
||||||
probe_point = -1;
|
probe_point = -1;
|
||||||
mbl.active = 1;
|
mbl.active = 1;
|
||||||
enquecommands_P(PSTR("G28"));
|
enquecommands_P(PSTR("G28"));
|
||||||
@ -2087,9 +2091,7 @@ inline void gcode_G28() {
|
|||||||
}
|
}
|
||||||
ix = probe_point % MESH_NUM_X_POINTS;
|
ix = probe_point % MESH_NUM_X_POINTS;
|
||||||
iy = probe_point / MESH_NUM_X_POINTS;
|
iy = probe_point / MESH_NUM_X_POINTS;
|
||||||
if (iy&1) { // Zig zag
|
if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
|
||||||
ix = (MESH_NUM_X_POINTS - 1) - ix;
|
|
||||||
}
|
|
||||||
current_position[X_AXIS] = mbl.get_x(ix);
|
current_position[X_AXIS] = mbl.get_x(ix);
|
||||||
current_position[Y_AXIS] = mbl.get_y(iy);
|
current_position[Y_AXIS] = mbl.get_y(iy);
|
||||||
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
|
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
|
||||||
@ -2098,9 +2100,7 @@ inline void gcode_G28() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#elif defined(ENABLE_AUTO_BED_LEVELING)
|
||||||
|
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* G29: Detailed Z-Probe, probes the bed at 3 or more points.
|
* G29: Detailed Z-Probe, probes the bed at 3 or more points.
|
||||||
@ -2116,8 +2116,9 @@ inline void gcode_G28() {
|
|||||||
*
|
*
|
||||||
* S Set the XY travel speed between probe points (in mm/min)
|
* S Set the XY travel speed between probe points (in mm/min)
|
||||||
*
|
*
|
||||||
* D Dry-Run mode. Just evaluate the bed Topology - It does not apply or clean the rotation Matrix
|
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
|
||||||
* Useful to check the topology after a first run of G29.
|
* or clean the rotation Matrix. Useful to check the topology
|
||||||
|
* after a first run of G29.
|
||||||
*
|
*
|
||||||
* V Set the verbose level (0-4). Example: "G29 V3"
|
* V Set the verbose level (0-4). Example: "G29 V3"
|
||||||
*
|
*
|
||||||
@ -2165,9 +2166,9 @@ inline void gcode_G28() {
|
|||||||
|
|
||||||
#ifdef AUTO_BED_LEVELING_GRID
|
#ifdef AUTO_BED_LEVELING_GRID
|
||||||
|
|
||||||
#ifndef DELTA
|
#ifndef DELTA
|
||||||
bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
|
bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
if (verbose_level > 0)
|
if (verbose_level > 0)
|
||||||
{
|
{
|
||||||
@ -2224,7 +2225,7 @@ inline void gcode_G28() {
|
|||||||
|
|
||||||
#ifdef Z_PROBE_SLED
|
#ifdef Z_PROBE_SLED
|
||||||
dock_sled(false); // engage (un-dock) the probe
|
dock_sled(false); // engage (un-dock) the probe
|
||||||
#elif defined(Z_PROBE_ALLEN_KEY)
|
#elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
|
||||||
engage_z_probe();
|
engage_z_probe();
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
@ -2234,19 +2235,18 @@ inline void gcode_G28() {
|
|||||||
{
|
{
|
||||||
#ifdef DELTA
|
#ifdef DELTA
|
||||||
reset_bed_level();
|
reset_bed_level();
|
||||||
#else
|
#else //!DELTA
|
||||||
|
|
||||||
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
|
||||||
//vector_3 corrected_position = plan_get_position_mm();
|
//vector_3 corrected_position = plan_get_position_mm();
|
||||||
//corrected_position.debug("position before G29");
|
//corrected_position.debug("position before G29");
|
||||||
plan_bed_level_matrix.set_to_identity();
|
plan_bed_level_matrix.set_to_identity();
|
||||||
vector_3 uncorrected_position = plan_get_position();
|
vector_3 uncorrected_position = plan_get_position();
|
||||||
// uncorrected_position.debug("position during G29");
|
//uncorrected_position.debug("position during G29");
|
||||||
|
current_position[X_AXIS] = uncorrected_position.x;
|
||||||
current_position[X_AXIS] = uncorrected_position.x;
|
current_position[Y_AXIS] = uncorrected_position.y;
|
||||||
current_position[Y_AXIS] = uncorrected_position.y;
|
current_position[Z_AXIS] = uncorrected_position.z;
|
||||||
current_position[Z_AXIS] = uncorrected_position.z;
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
@ -2261,26 +2261,24 @@ inline void gcode_G28() {
|
|||||||
const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
|
const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
|
||||||
const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
|
const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
|
||||||
|
|
||||||
#ifndef DELTA
|
#ifdef DELTA
|
||||||
// solve the plane equation ax + by + d = z
|
delta_grid_spacing[0] = xGridSpacing;
|
||||||
// A is the matrix with rows [x y 1] for all the probed points
|
delta_grid_spacing[1] = yGridSpacing;
|
||||||
// B is the vector of the Z positions
|
float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
|
||||||
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
|
||||||
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
#else // !DELTA
|
||||||
|
// solve the plane equation ax + by + d = z
|
||||||
|
// A is the matrix with rows [x y 1] for all the probed points
|
||||||
|
// B is the vector of the Z positions
|
||||||
|
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
||||||
|
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
||||||
|
|
||||||
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
|
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
|
||||||
|
|
||||||
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
|
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
|
||||||
eqnBVector[abl2], // "B" vector of Z points
|
eqnBVector[abl2], // "B" vector of Z points
|
||||||
mean = 0.0;
|
mean = 0.0;
|
||||||
|
#endif // !DELTA
|
||||||
#else
|
|
||||||
delta_grid_spacing[0] = xGridSpacing;
|
|
||||||
delta_grid_spacing[1] = yGridSpacing;
|
|
||||||
|
|
||||||
float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
||||||
if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
int probePointCounter = 0;
|
int probePointCounter = 0;
|
||||||
bool zig = true;
|
bool zig = true;
|
||||||
@ -2313,12 +2311,12 @@ inline void gcode_G28() {
|
|||||||
float measured_z,
|
float measured_z,
|
||||||
z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
|
z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
|
||||||
|
|
||||||
#ifdef DELTA
|
#ifdef DELTA
|
||||||
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
|
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
|
||||||
float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
|
float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
|
||||||
if (distance_from_center > DELTA_PROBABLE_RADIUS)
|
if (distance_from_center > DELTA_PROBABLE_RADIUS)
|
||||||
continue;
|
continue;
|
||||||
#endif //DELTA
|
#endif //DELTA
|
||||||
|
|
||||||
// Enhanced G29 - Do not retract servo between probes
|
// Enhanced G29 - Do not retract servo between probes
|
||||||
ProbeAction act;
|
ProbeAction act;
|
||||||
@ -2335,16 +2333,16 @@ inline void gcode_G28() {
|
|||||||
|
|
||||||
measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
|
measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
|
||||||
|
|
||||||
#ifndef DELTA
|
#ifndef DELTA
|
||||||
mean += measured_z;
|
mean += measured_z;
|
||||||
|
|
||||||
eqnBVector[probePointCounter] = measured_z;
|
eqnBVector[probePointCounter] = measured_z;
|
||||||
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
|
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
|
||||||
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
|
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
|
||||||
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
|
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
|
||||||
#else
|
#else
|
||||||
bed_level[xCount][yCount] = measured_z + z_offset;
|
bed_level[xCount][yCount] = measured_z + z_offset;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
probePointCounter++;
|
probePointCounter++;
|
||||||
} //xProbe
|
} //xProbe
|
||||||
@ -2352,60 +2350,64 @@ inline void gcode_G28() {
|
|||||||
|
|
||||||
clean_up_after_endstop_move();
|
clean_up_after_endstop_move();
|
||||||
|
|
||||||
#ifndef DELTA
|
#ifdef DELTA
|
||||||
// solve lsq problem
|
|
||||||
double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
|
|
||||||
|
|
||||||
mean /= abl2;
|
if (!dryrun) extrapolate_unprobed_bed_level();
|
||||||
|
print_bed_level();
|
||||||
|
|
||||||
if (verbose_level) {
|
#else // !DELTA
|
||||||
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
|
||||||
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
|
// solve lsq problem
|
||||||
SERIAL_PROTOCOLPGM(" b: ");
|
double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
|
||||||
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
|
|
||||||
SERIAL_PROTOCOLPGM(" d: ");
|
mean /= abl2;
|
||||||
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
|
|
||||||
SERIAL_EOL;
|
if (verbose_level) {
|
||||||
if (verbose_level > 2) {
|
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
||||||
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
|
||||||
SERIAL_PROTOCOL_F(mean, 8);
|
SERIAL_PROTOCOLPGM(" b: ");
|
||||||
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
|
||||||
|
SERIAL_PROTOCOLPGM(" d: ");
|
||||||
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
|
||||||
SERIAL_EOL;
|
SERIAL_EOL;
|
||||||
|
if (verbose_level > 2) {
|
||||||
|
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
||||||
|
SERIAL_PROTOCOL_F(mean, 8);
|
||||||
|
SERIAL_EOL;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
|
||||||
|
|
||||||
// Show the Topography map if enabled
|
// Show the Topography map if enabled
|
||||||
if (do_topography_map) {
|
if (do_topography_map) {
|
||||||
|
|
||||||
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
|
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
|
||||||
SERIAL_PROTOCOLPGM("+-----------+\n");
|
SERIAL_PROTOCOLPGM("+-----------+\n");
|
||||||
SERIAL_PROTOCOLPGM("|...Back....|\n");
|
SERIAL_PROTOCOLPGM("|...Back....|\n");
|
||||||
SERIAL_PROTOCOLPGM("|Left..Right|\n");
|
SERIAL_PROTOCOLPGM("|Left..Right|\n");
|
||||||
SERIAL_PROTOCOLPGM("|...Front...|\n");
|
SERIAL_PROTOCOLPGM("|...Front...|\n");
|
||||||
SERIAL_PROTOCOLPGM("+-----------+\n");
|
SERIAL_PROTOCOLPGM("+-----------+\n");
|
||||||
|
|
||||||
for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
|
for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
|
||||||
for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
|
for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
|
||||||
int ind = yy * auto_bed_leveling_grid_points + xx;
|
int ind = yy * auto_bed_leveling_grid_points + xx;
|
||||||
float diff = eqnBVector[ind] - mean;
|
float diff = eqnBVector[ind] - mean;
|
||||||
if (diff >= 0.0)
|
if (diff >= 0.0)
|
||||||
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
|
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
|
||||||
else
|
else
|
||||||
SERIAL_PROTOCOLPGM(" ");
|
SERIAL_PROTOCOLPGM(" ");
|
||||||
SERIAL_PROTOCOL_F(diff, 5);
|
SERIAL_PROTOCOL_F(diff, 5);
|
||||||
} // xx
|
} // xx
|
||||||
|
SERIAL_EOL;
|
||||||
|
} // yy
|
||||||
SERIAL_EOL;
|
SERIAL_EOL;
|
||||||
} // yy
|
|
||||||
SERIAL_EOL;
|
|
||||||
|
|
||||||
} //do_topography_map
|
} //do_topography_map
|
||||||
|
|
||||||
|
|
||||||
if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
|
if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
|
||||||
free(plane_equation_coefficients);
|
free(plane_equation_coefficients);
|
||||||
#else //Delta
|
|
||||||
if (!dryrun) extrapolate_unprobed_bed_level();
|
#endif //!DELTA
|
||||||
print_bed_level();
|
|
||||||
#endif //Delta
|
|
||||||
|
|
||||||
#else // !AUTO_BED_LEVELING_GRID
|
#else // !AUTO_BED_LEVELING_GRID
|
||||||
|
|
||||||
@ -2428,35 +2430,36 @@ inline void gcode_G28() {
|
|||||||
|
|
||||||
#endif // !AUTO_BED_LEVELING_GRID
|
#endif // !AUTO_BED_LEVELING_GRID
|
||||||
|
|
||||||
#ifndef DELTA
|
#ifndef DELTA
|
||||||
if (verbose_level > 0) plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
|
if (verbose_level > 0)
|
||||||
|
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
|
||||||
|
|
||||||
// Correct the Z height difference from z-probe position and hotend tip position.
|
// Correct the Z height difference from z-probe position and hotend tip position.
|
||||||
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
|
||||||
// When the bed is uneven, this height must be corrected.
|
// When the bed is uneven, this height must be corrected.
|
||||||
if (!dryrun)
|
if (!dryrun)
|
||||||
{
|
{
|
||||||
real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
|
||||||
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
|
||||||
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
|
||||||
z_tmp = current_position[Z_AXIS];
|
z_tmp = current_position[Z_AXIS];
|
||||||
|
|
||||||
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
|
||||||
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
}
|
}
|
||||||
#endif
|
#endif // !DELTA
|
||||||
|
|
||||||
#ifdef Z_PROBE_SLED
|
#ifdef Z_PROBE_SLED
|
||||||
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
|
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
|
||||||
#elif defined(Z_PROBE_ALLEN_KEY)
|
#elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
|
||||||
retract_z_probe();
|
retract_z_probe();
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef Z_PROBE_END_SCRIPT
|
#ifdef Z_PROBE_END_SCRIPT
|
||||||
enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
|
enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifndef Z_PROBE_SLED
|
#ifndef Z_PROBE_SLED
|
||||||
@ -2919,7 +2922,7 @@ inline void gcode_M42() {
|
|||||||
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
|
||||||
|
|
||||||
if (n_legs) {
|
if (n_legs) {
|
||||||
double radius=0.0, theta=0.0, x_sweep, y_sweep;
|
double radius=0.0, theta=0.0;
|
||||||
int l;
|
int l;
|
||||||
int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
|
int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
|
||||||
radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
|
radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
|
||||||
@ -3545,7 +3548,6 @@ inline void gcode_M200() {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
float area = .0;
|
|
||||||
if (code_seen('D')) {
|
if (code_seen('D')) {
|
||||||
float diameter = code_value();
|
float diameter = code_value();
|
||||||
// setting any extruder filament size disables volumetric on the assumption that
|
// setting any extruder filament size disables volumetric on the assumption that
|
||||||
@ -4283,7 +4285,7 @@ inline void gcode_M502() {
|
|||||||
* M503: print settings currently in memory
|
* M503: print settings currently in memory
|
||||||
*/
|
*/
|
||||||
inline void gcode_M503() {
|
inline void gcode_M503() {
|
||||||
Config_PrintSettings(code_seen('S') && code_value == 0);
|
Config_PrintSettings(code_seen('S') && code_value() == 0);
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
||||||
@ -4580,9 +4582,14 @@ inline void gcode_T() {
|
|||||||
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
boolean make_move = false;
|
#if EXTRUDERS > 1
|
||||||
|
bool make_move = false;
|
||||||
|
#endif
|
||||||
|
|
||||||
if (code_seen('F')) {
|
if (code_seen('F')) {
|
||||||
make_move = true;
|
#if EXTRUDERS > 1
|
||||||
|
make_move = true;
|
||||||
|
#endif
|
||||||
next_feedrate = code_value();
|
next_feedrate = code_value();
|
||||||
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
||||||
}
|
}
|
||||||
@ -5179,20 +5186,22 @@ void ClearToSend()
|
|||||||
SERIAL_PROTOCOLLNPGM(MSG_OK);
|
SERIAL_PROTOCOLLNPGM(MSG_OK);
|
||||||
}
|
}
|
||||||
|
|
||||||
void get_coordinates()
|
void get_coordinates() {
|
||||||
{
|
for (int i = 0; i < NUM_AXIS; i++) {
|
||||||
bool seen[4]={false,false,false,false};
|
float dest;
|
||||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
if (code_seen(axis_codes[i])) {
|
||||||
if(code_seen(axis_codes[i]))
|
dest = code_value();
|
||||||
{
|
if (axis_relative_modes[i] || relative_mode)
|
||||||
destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
|
dest += current_position[i];
|
||||||
seen[i]=true;
|
|
||||||
}
|
}
|
||||||
else destination[i] = current_position[i]; //Are these else lines really needed?
|
else
|
||||||
|
dest = current_position[i];
|
||||||
|
|
||||||
|
destination[i] = dest;
|
||||||
}
|
}
|
||||||
if(code_seen('F')) {
|
if (code_seen('F')) {
|
||||||
next_feedrate = code_value();
|
next_feedrate = code_value();
|
||||||
if(next_feedrate > 0.0) feedrate = next_feedrate;
|
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -104,13 +104,13 @@
|
|||||||
|
|
||||||
// Make sure probing points are reachable
|
// Make sure probing points are reachable
|
||||||
#if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
|
#if LEFT_PROBE_BED_POSITION < MIN_PROBE_X
|
||||||
#error The given LEFT_PROBE_BED_POSITION can not be reached by the probe.
|
#error "The given LEFT_PROBE_BED_POSITION can't be reached by the probe."
|
||||||
#elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
|
#elif RIGHT_PROBE_BED_POSITION > MAX_PROBE_X
|
||||||
#error The given RIGHT_PROBE_BED_POSITION can not be reached by the probe.
|
#error "The given RIGHT_PROBE_BED_POSITION can't be reached by the probe."
|
||||||
#elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
|
#elif FRONT_PROBE_BED_POSITION < MIN_PROBE_Y
|
||||||
#error The given FRONT_PROBE_BED_POSITION can not be reached by the probe.
|
#error "The given FRONT_PROBE_BED_POSITION can't be reached by the probe."
|
||||||
#elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
|
#elif BACK_PROBE_BED_POSITION > MAX_PROBE_Y
|
||||||
#error The given BACK_PROBE_BED_POSITION can not be reached by the probe.
|
#error "The given BACK_PROBE_BED_POSITION can't be reached by the probe."
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define PROBE_SIZE_X (X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1))
|
#define PROBE_SIZE_X (X_PROBE_OFFSET_FROM_EXTRUDER * (AUTO_BED_LEVELING_GRID_POINTS-1))
|
||||||
|
@ -569,9 +569,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||||||
// Custom M code points
|
// Custom M code points
|
||||||
#define CUSTOM_M_CODES
|
#define CUSTOM_M_CODES
|
||||||
#ifdef CUSTOM_M_CODES
|
#ifdef CUSTOM_M_CODES
|
||||||
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
||||||
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
||||||
|
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
||||||
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// @section extras
|
// @section extras
|
||||||
|
@ -511,9 +511,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||||||
// Custom M code points
|
// Custom M code points
|
||||||
#define CUSTOM_M_CODES
|
#define CUSTOM_M_CODES
|
||||||
#ifdef CUSTOM_M_CODES
|
#ifdef CUSTOM_M_CODES
|
||||||
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
||||||
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
||||||
|
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
||||||
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
@ -511,9 +511,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||||||
// Custom M code points
|
// Custom M code points
|
||||||
#define CUSTOM_M_CODES
|
#define CUSTOM_M_CODES
|
||||||
#ifdef CUSTOM_M_CODES
|
#ifdef CUSTOM_M_CODES
|
||||||
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
||||||
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
||||||
|
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
||||||
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
@ -539,9 +539,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||||||
// Custom M code points
|
// Custom M code points
|
||||||
#define CUSTOM_M_CODES
|
#define CUSTOM_M_CODES
|
||||||
#ifdef CUSTOM_M_CODES
|
#ifdef CUSTOM_M_CODES
|
||||||
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
||||||
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
||||||
|
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
||||||
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
@ -543,9 +543,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||||||
// Custom M code points
|
// Custom M code points
|
||||||
#define CUSTOM_M_CODES
|
#define CUSTOM_M_CODES
|
||||||
#ifdef CUSTOM_M_CODES
|
#ifdef CUSTOM_M_CODES
|
||||||
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
||||||
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
||||||
|
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
||||||
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
@ -569,9 +569,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||||||
// Custom M code points
|
// Custom M code points
|
||||||
//#define CUSTOM_M_CODES
|
//#define CUSTOM_M_CODES
|
||||||
#ifdef CUSTOM_M_CODES
|
#ifdef CUSTOM_M_CODES
|
||||||
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
||||||
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
||||||
|
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
||||||
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
@ -536,9 +536,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||||||
// Custom M code points
|
// Custom M code points
|
||||||
#define CUSTOM_M_CODES
|
#define CUSTOM_M_CODES
|
||||||
#ifdef CUSTOM_M_CODES
|
#ifdef CUSTOM_M_CODES
|
||||||
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
||||||
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
||||||
|
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
||||||
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
@ -552,9 +552,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||||||
// Custom M code points
|
// Custom M code points
|
||||||
#define CUSTOM_M_CODES
|
#define CUSTOM_M_CODES
|
||||||
#ifdef CUSTOM_M_CODES
|
#ifdef CUSTOM_M_CODES
|
||||||
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
||||||
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
||||||
|
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
||||||
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
@ -554,9 +554,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||||||
// Custom M code points
|
// Custom M code points
|
||||||
#define CUSTOM_M_CODES
|
#define CUSTOM_M_CODES
|
||||||
#ifdef CUSTOM_M_CODES
|
#ifdef CUSTOM_M_CODES
|
||||||
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
||||||
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
||||||
|
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
||||||
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
@ -534,9 +534,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||||||
// Custom M code points
|
// Custom M code points
|
||||||
#define CUSTOM_M_CODES
|
#define CUSTOM_M_CODES
|
||||||
#ifdef CUSTOM_M_CODES
|
#ifdef CUSTOM_M_CODES
|
||||||
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
||||||
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
||||||
|
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
||||||
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
@ -541,9 +541,11 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
|
|||||||
// Custom M code points
|
// Custom M code points
|
||||||
#define CUSTOM_M_CODES
|
#define CUSTOM_M_CODES
|
||||||
#ifdef CUSTOM_M_CODES
|
#ifdef CUSTOM_M_CODES
|
||||||
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
#define CUSTOM_M_CODE_SET_Z_PROBE_OFFSET 851
|
||||||
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
#define Z_PROBE_OFFSET_RANGE_MIN -15
|
||||||
|
#define Z_PROBE_OFFSET_RANGE_MAX -5
|
||||||
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,20 +1,16 @@
|
|||||||
#include "mesh_bed_leveling.h"
|
#include "mesh_bed_leveling.h"
|
||||||
|
|
||||||
#if defined(MESH_BED_LEVELING)
|
#ifdef MESH_BED_LEVELING
|
||||||
|
|
||||||
mesh_bed_leveling mbl;
|
mesh_bed_leveling mbl;
|
||||||
|
|
||||||
mesh_bed_leveling::mesh_bed_leveling() {
|
mesh_bed_leveling::mesh_bed_leveling() { reset(); }
|
||||||
reset();
|
|
||||||
}
|
|
||||||
|
|
||||||
void mesh_bed_leveling::reset() {
|
void mesh_bed_leveling::reset() {
|
||||||
for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
|
|
||||||
for (int x=0; x<MESH_NUM_X_POINTS; x++) {
|
|
||||||
z_values[y][x] = 0;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
active = 0;
|
active = 0;
|
||||||
}
|
for (int y = 0; y < MESH_NUM_Y_POINTS; y++)
|
||||||
|
for (int x = 0; x < MESH_NUM_X_POINTS; x++)
|
||||||
|
z_values[y][x] = 0;
|
||||||
|
}
|
||||||
|
|
||||||
#endif // MESH_BED_LEVELING
|
#endif // MESH_BED_LEVELING
|
||||||
|
@ -2,11 +2,11 @@
|
|||||||
|
|
||||||
#if defined(MESH_BED_LEVELING)
|
#if defined(MESH_BED_LEVELING)
|
||||||
|
|
||||||
#define MESH_X_DIST ((MESH_MAX_X - MESH_MIN_X)/(MESH_NUM_X_POINTS - 1))
|
#define MESH_X_DIST ((MESH_MAX_X - MESH_MIN_X)/(MESH_NUM_X_POINTS - 1))
|
||||||
#define MESH_Y_DIST ((MESH_MAX_Y - MESH_MIN_Y)/(MESH_NUM_Y_POINTS - 1))
|
#define MESH_Y_DIST ((MESH_MAX_Y - MESH_MIN_Y)/(MESH_NUM_Y_POINTS - 1))
|
||||||
|
|
||||||
class mesh_bed_leveling {
|
class mesh_bed_leveling {
|
||||||
public:
|
public:
|
||||||
uint8_t active;
|
uint8_t active;
|
||||||
float z_values[MESH_NUM_Y_POINTS][MESH_NUM_X_POINTS];
|
float z_values[MESH_NUM_Y_POINTS][MESH_NUM_X_POINTS];
|
||||||
|
|
||||||
@ -14,48 +14,44 @@ public:
|
|||||||
|
|
||||||
void reset();
|
void reset();
|
||||||
|
|
||||||
float get_x(int i) { return MESH_MIN_X + MESH_X_DIST*i; }
|
float get_x(int i) { return MESH_MIN_X + MESH_X_DIST * i; }
|
||||||
float get_y(int i) { return MESH_MIN_Y + MESH_Y_DIST*i; }
|
float get_y(int i) { return MESH_MIN_Y + MESH_Y_DIST * i; }
|
||||||
void set_z(int ix, int iy, float z) { z_values[iy][ix] = z; }
|
void set_z(int ix, int iy, float z) { z_values[iy][ix] = z; }
|
||||||
|
|
||||||
int select_x_index(float x) {
|
int select_x_index(float x) {
|
||||||
int i = 1;
|
int i = 1;
|
||||||
while (x > get_x(i) && i < MESH_NUM_X_POINTS-1) {
|
while (x > get_x(i) && i < MESH_NUM_X_POINTS-1) i++;
|
||||||
i++;
|
return i - 1;
|
||||||
}
|
|
||||||
return i-1;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
int select_y_index(float y) {
|
int select_y_index(float y) {
|
||||||
int i = 1;
|
int i = 1;
|
||||||
while (y > get_y(i) && i < MESH_NUM_Y_POINTS-1) {
|
while (y > get_y(i) && i < MESH_NUM_Y_POINTS - 1) i++;
|
||||||
i++;
|
return i - 1;
|
||||||
}
|
|
||||||
return i-1;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
float calc_z0(float a0, float a1, float z1, float a2, float z2) {
|
float calc_z0(float a0, float a1, float z1, float a2, float z2) {
|
||||||
float delta_z = (z2 - z1)/(a2 - a1);
|
float delta_z = (z2 - z1)/(a2 - a1);
|
||||||
float delta_a = a0 - a1;
|
float delta_a = a0 - a1;
|
||||||
return z1 + delta_a * delta_z;
|
return z1 + delta_a * delta_z;
|
||||||
}
|
}
|
||||||
|
|
||||||
float get_z(float x0, float y0) {
|
float get_z(float x0, float y0) {
|
||||||
int x_index = select_x_index(x0);
|
int x_index = select_x_index(x0);
|
||||||
int y_index = select_y_index(y0);
|
int y_index = select_y_index(y0);
|
||||||
float z1 = calc_z0(x0,
|
float z1 = calc_z0(x0,
|
||||||
get_x(x_index), z_values[y_index][x_index],
|
get_x(x_index), z_values[y_index][x_index],
|
||||||
get_x(x_index+1), z_values[y_index][x_index+1]);
|
get_x(x_index+1), z_values[y_index][x_index+1]);
|
||||||
float z2 = calc_z0(x0,
|
float z2 = calc_z0(x0,
|
||||||
get_x(x_index), z_values[y_index+1][x_index],
|
get_x(x_index), z_values[y_index+1][x_index],
|
||||||
get_x(x_index+1), z_values[y_index+1][x_index+1]);
|
get_x(x_index+1), z_values[y_index+1][x_index+1]);
|
||||||
float z0 = calc_z0(y0,
|
float z0 = calc_z0(y0,
|
||||||
get_y(y_index), z1,
|
get_y(y_index), z1,
|
||||||
get_y(y_index+1), z2);
|
get_y(y_index+1), z2);
|
||||||
return z0;
|
return z0;
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
extern mesh_bed_leveling mbl;
|
extern mesh_bed_leveling mbl;
|
||||||
|
|
||||||
#endif // MESH_BED_LEVELING
|
#endif // MESH_BED_LEVELING
|
||||||
|
@ -1176,8 +1176,6 @@ void digipot_current(uint8_t driver, int current) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
void microstep_init() {
|
void microstep_init() {
|
||||||
const uint8_t microstep_modes[] = MICROSTEP_MODES;
|
|
||||||
|
|
||||||
#if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
|
#if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
|
||||||
pinMode(E1_MS1_PIN,OUTPUT);
|
pinMode(E1_MS1_PIN,OUTPUT);
|
||||||
pinMode(E1_MS2_PIN,OUTPUT);
|
pinMode(E1_MS2_PIN,OUTPUT);
|
||||||
@ -1192,7 +1190,9 @@ void microstep_init() {
|
|||||||
pinMode(Z_MS2_PIN,OUTPUT);
|
pinMode(Z_MS2_PIN,OUTPUT);
|
||||||
pinMode(E0_MS1_PIN,OUTPUT);
|
pinMode(E0_MS1_PIN,OUTPUT);
|
||||||
pinMode(E0_MS2_PIN,OUTPUT);
|
pinMode(E0_MS2_PIN,OUTPUT);
|
||||||
for (int i = 0; i <= 4; i++) microstep_mode(i, microstep_modes[i]);
|
const uint8_t microstep_modes[] = MICROSTEP_MODES;
|
||||||
|
for (int i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
|
||||||
|
microstep_mode(i, microstep_modes[i]);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1181,9 +1181,10 @@ static void set_current_temp_raw() {
|
|||||||
#endif
|
#endif
|
||||||
#if HAS_TEMP_1
|
#if HAS_TEMP_1
|
||||||
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
||||||
redundant_temperature_raw =
|
redundant_temperature_raw = raw_temp_value[1];
|
||||||
|
#else
|
||||||
|
current_temperature_raw[1] = raw_temp_value[1];
|
||||||
#endif
|
#endif
|
||||||
current_temperature_raw[1] = raw_temp_value[1];
|
|
||||||
#if HAS_TEMP_2
|
#if HAS_TEMP_2
|
||||||
current_temperature_raw[2] = raw_temp_value[2];
|
current_temperature_raw[2] = raw_temp_value[2];
|
||||||
#if HAS_TEMP_3
|
#if HAS_TEMP_3
|
||||||
|
@ -41,10 +41,10 @@ void manage_heater(); //it is critical that this is called periodically.
|
|||||||
|
|
||||||
// low level conversion routines
|
// low level conversion routines
|
||||||
// do not use these routines and variables outside of temperature.cpp
|
// do not use these routines and variables outside of temperature.cpp
|
||||||
extern int target_temperature[EXTRUDERS];
|
extern int target_temperature[4];
|
||||||
extern float current_temperature[EXTRUDERS];
|
extern float current_temperature[4];
|
||||||
#ifdef SHOW_TEMP_ADC_VALUES
|
#ifdef SHOW_TEMP_ADC_VALUES
|
||||||
extern int current_temperature_raw[EXTRUDERS];
|
extern int current_temperature_raw[4];
|
||||||
extern int current_temperature_bed_raw;
|
extern int current_temperature_bed_raw;
|
||||||
#endif
|
#endif
|
||||||
extern int target_temperature_bed;
|
extern int target_temperature_bed;
|
||||||
|
@ -911,7 +911,7 @@ static void lcd_control_motion_menu() {
|
|||||||
START_MENU();
|
START_MENU();
|
||||||
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
|
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
MENU_ITEM_EDIT(float32, MSG_ZPROBE_ZOFFSET, &zprobe_zoffset, 0.0, 50);
|
MENU_ITEM_EDIT(float32, MSG_ZPROBE_ZOFFSET, &zprobe_zoffset, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX);
|
||||||
#endif
|
#endif
|
||||||
MENU_ITEM_EDIT(float5, MSG_ACC, &acceleration, 10, 99000);
|
MENU_ITEM_EDIT(float5, MSG_ACC, &acceleration, 10, 99000);
|
||||||
MENU_ITEM_EDIT(float3, MSG_VXY_JERK, &max_xy_jerk, 1, 990);
|
MENU_ITEM_EDIT(float3, MSG_VXY_JERK, &max_xy_jerk, 1, 990);
|
||||||
|
@ -26,57 +26,40 @@ vector_3::vector_3() : x(0), y(0), z(0) { }
|
|||||||
|
|
||||||
vector_3::vector_3(float x_, float y_, float z_) : x(x_), y(y_), z(z_) { }
|
vector_3::vector_3(float x_, float y_, float z_) : x(x_), y(y_), z(z_) { }
|
||||||
|
|
||||||
vector_3 vector_3::cross(vector_3 left, vector_3 right)
|
vector_3 vector_3::cross(vector_3 left, vector_3 right) {
|
||||||
{
|
|
||||||
return vector_3(left.y * right.z - left.z * right.y,
|
return vector_3(left.y * right.z - left.z * right.y,
|
||||||
left.z * right.x - left.x * right.z,
|
left.z * right.x - left.x * right.z,
|
||||||
left.x * right.y - left.y * right.x);
|
left.x * right.y - left.y * right.x);
|
||||||
}
|
}
|
||||||
|
|
||||||
vector_3 vector_3::operator+(vector_3 v)
|
vector_3 vector_3::operator+(vector_3 v) { return vector_3((x + v.x), (y + v.y), (z + v.z)); }
|
||||||
{
|
vector_3 vector_3::operator-(vector_3 v) { return vector_3((x - v.x), (y - v.y), (z - v.z)); }
|
||||||
return vector_3((x + v.x), (y + v.y), (z + v.z));
|
|
||||||
}
|
|
||||||
|
|
||||||
vector_3 vector_3::operator-(vector_3 v)
|
vector_3 vector_3::get_normal() {
|
||||||
{
|
|
||||||
return vector_3((x - v.x), (y - v.y), (z - v.z));
|
|
||||||
}
|
|
||||||
|
|
||||||
vector_3 vector_3::get_normal()
|
|
||||||
{
|
|
||||||
vector_3 normalized = vector_3(x, y, z);
|
vector_3 normalized = vector_3(x, y, z);
|
||||||
normalized.normalize();
|
normalized.normalize();
|
||||||
return normalized;
|
return normalized;
|
||||||
}
|
}
|
||||||
|
|
||||||
float vector_3::get_length()
|
float vector_3::get_length() { return sqrt((x * x) + (y * y) + (z * z)); }
|
||||||
{
|
|
||||||
float length = sqrt((x * x) + (y * y) + (z * z));
|
|
||||||
return length;
|
|
||||||
}
|
|
||||||
|
|
||||||
void vector_3::normalize()
|
void vector_3::normalize() {
|
||||||
{
|
|
||||||
float length = get_length();
|
float length = get_length();
|
||||||
x /= length;
|
x /= length;
|
||||||
y /= length;
|
y /= length;
|
||||||
z /= length;
|
z /= length;
|
||||||
}
|
}
|
||||||
|
|
||||||
void vector_3::apply_rotation(matrix_3x3 matrix)
|
void vector_3::apply_rotation(matrix_3x3 matrix) {
|
||||||
{
|
|
||||||
float resultX = x * matrix.matrix[3*0+0] + y * matrix.matrix[3*1+0] + z * matrix.matrix[3*2+0];
|
float resultX = x * matrix.matrix[3*0+0] + y * matrix.matrix[3*1+0] + z * matrix.matrix[3*2+0];
|
||||||
float resultY = x * matrix.matrix[3*0+1] + y * matrix.matrix[3*1+1] + z * matrix.matrix[3*2+1];
|
float resultY = x * matrix.matrix[3*0+1] + y * matrix.matrix[3*1+1] + z * matrix.matrix[3*2+1];
|
||||||
float resultZ = x * matrix.matrix[3*0+2] + y * matrix.matrix[3*1+2] + z * matrix.matrix[3*2+2];
|
float resultZ = x * matrix.matrix[3*0+2] + y * matrix.matrix[3*1+2] + z * matrix.matrix[3*2+2];
|
||||||
|
|
||||||
x = resultX;
|
x = resultX;
|
||||||
y = resultY;
|
y = resultY;
|
||||||
z = resultZ;
|
z = resultZ;
|
||||||
}
|
}
|
||||||
|
|
||||||
void vector_3::debug(char* title)
|
void vector_3::debug(const char title[]) {
|
||||||
{
|
|
||||||
SERIAL_PROTOCOL(title);
|
SERIAL_PROTOCOL(title);
|
||||||
SERIAL_PROTOCOLPGM(" x: ");
|
SERIAL_PROTOCOLPGM(" x: ");
|
||||||
SERIAL_PROTOCOL_F(x, 6);
|
SERIAL_PROTOCOL_F(x, 6);
|
||||||
@ -87,8 +70,7 @@ void vector_3::debug(char* title)
|
|||||||
SERIAL_EOL;
|
SERIAL_EOL;
|
||||||
}
|
}
|
||||||
|
|
||||||
void apply_rotation_xyz(matrix_3x3 matrix, float &x, float& y, float& z)
|
void apply_rotation_xyz(matrix_3x3 matrix, float &x, float& y, float& z) {
|
||||||
{
|
|
||||||
vector_3 vector = vector_3(x, y, z);
|
vector_3 vector = vector_3(x, y, z);
|
||||||
vector.apply_rotation(matrix);
|
vector.apply_rotation(matrix);
|
||||||
x = vector.x;
|
x = vector.x;
|
||||||
@ -96,48 +78,41 @@ void apply_rotation_xyz(matrix_3x3 matrix, float &x, float& y, float& z)
|
|||||||
z = vector.z;
|
z = vector.z;
|
||||||
}
|
}
|
||||||
|
|
||||||
matrix_3x3 matrix_3x3::create_from_rows(vector_3 row_0, vector_3 row_1, vector_3 row_2)
|
matrix_3x3 matrix_3x3::create_from_rows(vector_3 row_0, vector_3 row_1, vector_3 row_2) {
|
||||||
{
|
//row_0.debug("row_0");
|
||||||
//row_0.debug("row_0");
|
//row_1.debug("row_1");
|
||||||
//row_1.debug("row_1");
|
//row_2.debug("row_2");
|
||||||
//row_2.debug("row_2");
|
|
||||||
matrix_3x3 new_matrix;
|
matrix_3x3 new_matrix;
|
||||||
new_matrix.matrix[0] = row_0.x; new_matrix.matrix[1] = row_0.y; new_matrix.matrix[2] = row_0.z;
|
new_matrix.matrix[0] = row_0.x; new_matrix.matrix[1] = row_0.y; new_matrix.matrix[2] = row_0.z;
|
||||||
new_matrix.matrix[3] = row_1.x; new_matrix.matrix[4] = row_1.y; new_matrix.matrix[5] = row_1.z;
|
new_matrix.matrix[3] = row_1.x; new_matrix.matrix[4] = row_1.y; new_matrix.matrix[5] = row_1.z;
|
||||||
new_matrix.matrix[6] = row_2.x; new_matrix.matrix[7] = row_2.y; new_matrix.matrix[8] = row_2.z;
|
new_matrix.matrix[6] = row_2.x; new_matrix.matrix[7] = row_2.y; new_matrix.matrix[8] = row_2.z;
|
||||||
//new_matrix.debug("new_matrix");
|
//new_matrix.debug("new_matrix");
|
||||||
|
|
||||||
return new_matrix;
|
return new_matrix;
|
||||||
}
|
}
|
||||||
|
|
||||||
void matrix_3x3::set_to_identity()
|
void matrix_3x3::set_to_identity() {
|
||||||
{
|
|
||||||
matrix[0] = 1; matrix[1] = 0; matrix[2] = 0;
|
matrix[0] = 1; matrix[1] = 0; matrix[2] = 0;
|
||||||
matrix[3] = 0; matrix[4] = 1; matrix[5] = 0;
|
matrix[3] = 0; matrix[4] = 1; matrix[5] = 0;
|
||||||
matrix[6] = 0; matrix[7] = 0; matrix[8] = 1;
|
matrix[6] = 0; matrix[7] = 0; matrix[8] = 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
matrix_3x3 matrix_3x3::create_look_at(vector_3 target)
|
matrix_3x3 matrix_3x3::create_look_at(vector_3 target) {
|
||||||
{
|
vector_3 z_row = target.get_normal();
|
||||||
vector_3 z_row = target.get_normal();
|
vector_3 x_row = vector_3(1, 0, -target.x/target.z).get_normal();
|
||||||
vector_3 x_row = vector_3(1, 0, -target.x/target.z).get_normal();
|
vector_3 y_row = vector_3::cross(z_row, x_row).get_normal();
|
||||||
vector_3 y_row = vector_3::cross(z_row, x_row).get_normal();
|
|
||||||
|
|
||||||
// x_row.debug("x_row");
|
// x_row.debug("x_row");
|
||||||
// y_row.debug("y_row");
|
// y_row.debug("y_row");
|
||||||
// z_row.debug("z_row");
|
// z_row.debug("z_row");
|
||||||
|
|
||||||
|
// create the matrix already correctly transposed
|
||||||
|
matrix_3x3 rot = matrix_3x3::create_from_rows(x_row, y_row, z_row);
|
||||||
|
|
||||||
// create the matrix already correctly transposed
|
// rot.debug("rot");
|
||||||
matrix_3x3 rot = matrix_3x3::create_from_rows(x_row, y_row, z_row);
|
return rot;
|
||||||
|
|
||||||
// rot.debug("rot");
|
|
||||||
return rot;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
matrix_3x3 matrix_3x3::transpose(matrix_3x3 original) {
|
||||||
matrix_3x3 matrix_3x3::transpose(matrix_3x3 original)
|
|
||||||
{
|
|
||||||
matrix_3x3 new_matrix;
|
matrix_3x3 new_matrix;
|
||||||
new_matrix.matrix[0] = original.matrix[0]; new_matrix.matrix[1] = original.matrix[3]; new_matrix.matrix[2] = original.matrix[6];
|
new_matrix.matrix[0] = original.matrix[0]; new_matrix.matrix[1] = original.matrix[3]; new_matrix.matrix[2] = original.matrix[6];
|
||||||
new_matrix.matrix[3] = original.matrix[1]; new_matrix.matrix[4] = original.matrix[4]; new_matrix.matrix[5] = original.matrix[7];
|
new_matrix.matrix[3] = original.matrix[1]; new_matrix.matrix[4] = original.matrix[4]; new_matrix.matrix[5] = original.matrix[7];
|
||||||
@ -145,11 +120,12 @@ matrix_3x3 matrix_3x3::transpose(matrix_3x3 original)
|
|||||||
return new_matrix;
|
return new_matrix;
|
||||||
}
|
}
|
||||||
|
|
||||||
void matrix_3x3::debug(char* title) {
|
void matrix_3x3::debug(const char title[]) {
|
||||||
SERIAL_PROTOCOLLN(title);
|
SERIAL_PROTOCOLLN(title);
|
||||||
int count = 0;
|
int count = 0;
|
||||||
for(int i=0; i<3; i++) {
|
for(int i=0; i<3; i++) {
|
||||||
for(int j=0; j<3; j++) {
|
for(int j=0; j<3; j++) {
|
||||||
|
if (matrix[count] >= 0.0) SERIAL_PROTOCOLPGM("+");
|
||||||
SERIAL_PROTOCOL_F(matrix[count], 6);
|
SERIAL_PROTOCOL_F(matrix[count], 6);
|
||||||
SERIAL_PROTOCOLPGM(" ");
|
SERIAL_PROTOCOLPGM(" ");
|
||||||
count++;
|
count++;
|
||||||
@ -158,5 +134,5 @@ void matrix_3x3::debug(char* title) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
#endif // ENABLE_AUTO_BED_LEVELING
|
||||||
|
|
||||||
|
@ -37,7 +37,7 @@ struct vector_3
|
|||||||
float get_length();
|
float get_length();
|
||||||
vector_3 get_normal();
|
vector_3 get_normal();
|
||||||
|
|
||||||
void debug(char* title);
|
void debug(const char title[]);
|
||||||
|
|
||||||
void apply_rotation(matrix_3x3 matrix);
|
void apply_rotation(matrix_3x3 matrix);
|
||||||
};
|
};
|
||||||
@ -52,7 +52,7 @@ struct matrix_3x3
|
|||||||
|
|
||||||
void set_to_identity();
|
void set_to_identity();
|
||||||
|
|
||||||
void debug(char* title);
|
void debug(const char title[]);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user