UBL's Grid Based Leveling code
Pretty much... The code is in place. Still more work to do. But it has a lot of hooks and variables in other code, so commit and merge before I pick up a million 'Conflicts'.
This commit is contained in:
@ -40,6 +40,7 @@
|
||||
bool lcd_clicked();
|
||||
void lcd_implementation_clear();
|
||||
void lcd_mesh_edit_setup(float initial);
|
||||
void tilt_mesh_based_on_probed_grid( const bool );
|
||||
float lcd_mesh_edit();
|
||||
void lcd_z_offset_edit_setup(float);
|
||||
float lcd_z_offset_edit();
|
||||
@ -50,8 +51,7 @@
|
||||
extern bool code_has_value();
|
||||
extern float probe_pt(float x, float y, bool, int);
|
||||
extern bool set_probe_deployed(bool);
|
||||
#define DEPLOY_PROBE() set_probe_deployed(true)
|
||||
#define STOW_PROBE() set_probe_deployed(false)
|
||||
|
||||
bool ProbeStay = true;
|
||||
|
||||
constexpr float ubl_3_point_1_X = UBL_PROBE_PT_1_X,
|
||||
@ -302,7 +302,7 @@
|
||||
|
||||
// The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
|
||||
static int g29_verbose_level, phase_value = -1, repetition_cnt,
|
||||
storage_slot = 0, map_type; //unlevel_value = -1;
|
||||
storage_slot = 0, map_type, grid_size_G ; //unlevel_value = -1;
|
||||
static bool repeat_flag, c_flag, x_flag, y_flag;
|
||||
static float x_pos, y_pos, measured_z, card_thickness = 0.0, ubl_constant = 0.0;
|
||||
|
||||
@ -385,7 +385,20 @@
|
||||
// return;
|
||||
//}
|
||||
}
|
||||
//*/
|
||||
*/
|
||||
|
||||
if (code_seen('G')) {
|
||||
uint8_t grid_size_G = code_has_value() ? code_value_int() : 3;
|
||||
if (grid_size_G < 2) {
|
||||
SERIAL_PROTOCOLLNPGM("ERROR - grid size must be 2 or more");
|
||||
return;
|
||||
}
|
||||
if (grid_size_G > GRID_MAX_POINTS_X || grid_size_G > GRID_MAX_POINTS_Y ) {
|
||||
SERIAL_PROTOCOLLNPGM("ERROR - grid size can NOT exceed GRID_MAX_POINTS_X nor GRID_MAX_POINTS_Y");
|
||||
return;
|
||||
}
|
||||
tilt_mesh_based_on_probed_grid( code_seen('O')||code_seen('M'));
|
||||
}
|
||||
|
||||
if (code_seen('P')) {
|
||||
phase_value = code_value_int();
|
||||
@ -488,7 +501,7 @@
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
|
||||
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
||||
ubl.has_control_of_lcd_panel++;
|
||||
ubl.has_control_of_lcd_panel = true;
|
||||
while (!ubl_lcd_clicked()) {
|
||||
safe_delay(250);
|
||||
if (ubl.encoder_diff) {
|
||||
@ -630,7 +643,7 @@
|
||||
save_ubl_active_state_and_disable();
|
||||
//measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
|
||||
|
||||
ubl.has_control_of_lcd_panel++; // Grab the LCD Hardware
|
||||
ubl.has_control_of_lcd_panel = true; // Grab the LCD Hardware
|
||||
measured_z = 1.5;
|
||||
do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
|
||||
// The user is not going to be locking in a new Z-Offset very often so
|
||||
@ -646,7 +659,7 @@
|
||||
do_blocking_move_to_z(measured_z);
|
||||
} while (!ubl_lcd_clicked());
|
||||
|
||||
ubl.has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked.
|
||||
ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
|
||||
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
|
||||
// or here. So, until we are done looking for a long Encoder Wheel Press,
|
||||
// we need to take control of the panel
|
||||
@ -744,7 +757,7 @@
|
||||
void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
|
||||
mesh_index_pair location;
|
||||
|
||||
ubl.has_control_of_lcd_panel++;
|
||||
ubl.has_control_of_lcd_panel = true;
|
||||
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
||||
DEPLOY_PROBE();
|
||||
|
||||
@ -872,7 +885,7 @@
|
||||
|
||||
float measure_business_card_thickness(const float &in_height) {
|
||||
|
||||
ubl.has_control_of_lcd_panel++;
|
||||
ubl.has_control_of_lcd_panel = true;
|
||||
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
||||
|
||||
SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
|
||||
@ -899,7 +912,7 @@
|
||||
|
||||
void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
|
||||
|
||||
ubl.has_control_of_lcd_panel++;
|
||||
ubl.has_control_of_lcd_panel = true;
|
||||
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
||||
do_blocking_move_to_z(z_clearance);
|
||||
do_blocking_move_to_xy(lx, ly);
|
||||
@ -994,6 +1007,16 @@
|
||||
return UBL_ERR;
|
||||
}
|
||||
|
||||
if (code_seen('G')) {
|
||||
grid_size_G = 3;
|
||||
if (code_has_value())
|
||||
grid_size_G = code_value_int();
|
||||
if (!WITHIN(grid_size_G, 2, 10)) {
|
||||
SERIAL_PROTOCOLLNPGM("Invalid grid probe points specified.\n");
|
||||
return UBL_ERR;
|
||||
}
|
||||
}
|
||||
|
||||
x_flag = code_seen('X') && code_has_value();
|
||||
x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
|
||||
if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
|
||||
@ -1053,7 +1076,6 @@
|
||||
return UBL_ERR;
|
||||
}
|
||||
|
||||
/*
|
||||
if (code_seen('M')) { // Check if a map type was specified
|
||||
map_type = code_has_value() ? code_value_int() : 0;
|
||||
if (!WITHIN(map_type, 0, 1)) {
|
||||
@ -1061,7 +1083,6 @@
|
||||
return UBL_ERR;
|
||||
}
|
||||
}
|
||||
//*/
|
||||
|
||||
return UBL_OK;
|
||||
}
|
||||
@ -1070,6 +1091,7 @@
|
||||
* This function goes away after G29 debug is complete. But for right now, it is a handy
|
||||
* routine to dump binary data structures.
|
||||
*/
|
||||
/*
|
||||
void dump(char * const str, const float &f) {
|
||||
char *ptr;
|
||||
|
||||
@ -1087,6 +1109,7 @@
|
||||
|
||||
SERIAL_EOL;
|
||||
}
|
||||
*/
|
||||
|
||||
static int ubl_state_at_invocation = 0,
|
||||
ubl_state_recursion_chk = 0;
|
||||
@ -1438,4 +1461,178 @@
|
||||
SERIAL_ECHOLNPGM("Done Editing Mesh");
|
||||
}
|
||||
|
||||
|
||||
void tilt_mesh_based_on_probed_grid( const bool do_ubl_mesh_map) {
|
||||
int8_t grid_G_index_to_xpos[grid_size_G]; // UBL MESH X index to be probed
|
||||
int8_t grid_G_index_to_ypos[grid_size_G]; // UBL MESH Y index to be probed
|
||||
int8_t i, j ,k, xCount, yCount, G_X_index, G_Y_index; // counter variables
|
||||
float z_values_G[grid_size_G][grid_size_G];
|
||||
|
||||
struct linear_fit *results;
|
||||
|
||||
for (G_Y_index = 0; G_Y_index < grid_size_G; G_Y_index++)
|
||||
for (G_X_index = 0; G_X_index < grid_size_G; G_X_index++)
|
||||
z_values_G[G_X_index][G_Y_index] = NAN;
|
||||
|
||||
uint8_t x_min = GRID_MAX_POINTS_X - 1;
|
||||
uint8_t x_max = 0;
|
||||
uint8_t y_min = GRID_MAX_POINTS_Y - 1;
|
||||
uint8_t y_max = 0;
|
||||
|
||||
//find min & max probeable points in the mesh
|
||||
for (xCount = 0; xCount < GRID_MAX_POINTS_X ; xCount++) {
|
||||
for (yCount = 0; yCount < GRID_MAX_POINTS_Y ; yCount++) {
|
||||
if (WITHIN(ubl.mesh_index_to_xpos[xCount], MIN_PROBE_X, MAX_PROBE_X) && WITHIN(ubl.mesh_index_to_ypos[yCount], MIN_PROBE_Y, MAX_PROBE_Y)) {
|
||||
if (x_min > xCount) x_min = xCount;
|
||||
if (x_max < xCount) x_max = xCount;
|
||||
if (y_min > yCount) y_min = yCount;
|
||||
if (y_max < yCount) y_max = yCount;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if ((x_max - x_min + 1) < (grid_size_G) || (y_max - y_min + 1) < (grid_size_G)) {
|
||||
SERIAL_PROTOCOLPAIR("ERROR - probeable UBL MESH smaller than grid - X points: ", x_max - x_min + 1);
|
||||
SERIAL_PROTOCOLPAIR(" Y points: ", y_max - y_min + 1);
|
||||
SERIAL_PROTOCOLLNPAIR(" grid: ", grid_size_G);
|
||||
return;
|
||||
}
|
||||
|
||||
// populate X matrix
|
||||
for (G_X_index = 0; G_X_index < grid_size_G; G_X_index++) {
|
||||
grid_G_index_to_xpos[G_X_index] = x_min + G_X_index * (x_max - x_min)/(grid_size_G - 1);
|
||||
if (G_X_index > 0 && grid_G_index_to_xpos[G_X_index - 1] == grid_G_index_to_xpos[G_X_index] ) {
|
||||
grid_G_index_to_xpos[G_X_index] = grid_G_index_to_xpos[G_X_index - 1] + 1;
|
||||
}
|
||||
}
|
||||
|
||||
// populate Y matrix
|
||||
for (G_Y_index = 0; G_Y_index < grid_size_G; G_Y_index++) {
|
||||
grid_G_index_to_ypos[G_Y_index] = y_min + G_Y_index * (y_max - y_min)/(grid_size_G - 1);
|
||||
if (G_Y_index > 0 && grid_G_index_to_ypos[G_Y_index -1] == grid_G_index_to_ypos[G_Y_index] ) {
|
||||
grid_G_index_to_ypos[G_Y_index] = grid_G_index_to_ypos[G_Y_index - 1] + 1;
|
||||
}
|
||||
}
|
||||
|
||||
ubl.has_control_of_lcd_panel = true;
|
||||
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
||||
|
||||
DEPLOY_PROBE();
|
||||
|
||||
// this is a copy of the G29 AUTO_BED_LEVELING_BILINEAR method/code
|
||||
#undef PROBE_Y_FIRST
|
||||
#if ENABLED(PROBE_Y_FIRST)
|
||||
#define PR_OUTER_VAR xCount
|
||||
#define PR_OUTER_NUM grid_size_G
|
||||
#define PR_INNER_VAR yCount
|
||||
#define PR_INNER_NUM grid_size_G
|
||||
#else
|
||||
#define PR_OUTER_VAR yCount
|
||||
#define PR_OUTER_NUM grid_size_G
|
||||
#define PR_INNER_VAR xCount
|
||||
#define PR_INNER_NUM grid_size_G
|
||||
#endif
|
||||
|
||||
bool zig = PR_OUTER_NUM & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
|
||||
|
||||
// Outer loop is Y with PROBE_Y_FIRST disabled
|
||||
for (PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_NUM; PR_OUTER_VAR++) {
|
||||
|
||||
int8_t inStart, inStop, inInc;
|
||||
|
||||
SERIAL_PROTOCOLPAIR("\nPR_OUTER_VAR: ", PR_OUTER_VAR);
|
||||
|
||||
if (zig) { // away from origin
|
||||
inStart = 0;
|
||||
inStop = PR_INNER_NUM;
|
||||
inInc = 1;
|
||||
}
|
||||
else { // towards origin
|
||||
inStart = PR_INNER_NUM - 1;
|
||||
inStop = -1;
|
||||
inInc = -1;
|
||||
}
|
||||
|
||||
zig = !zig; // zag
|
||||
|
||||
// Inner loop is Y with PROBE_Y_FIRST enabled
|
||||
for (PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
|
||||
SERIAL_PROTOCOLPAIR("\nPR_INNER_VAR: ", PR_INNER_VAR);
|
||||
|
||||
SERIAL_PROTOCOLPAIR("\nCheckpoint: ", 1);
|
||||
|
||||
// end of G29 AUTO_BED_LEVELING_BILINEAR method/code
|
||||
if (ubl_lcd_clicked()) {
|
||||
SERIAL_PROTOCOLPAIR("\nCheckpoint: ", 2);
|
||||
SERIAL_PROTOCOLLNPGM("\nGrid only partially populated.\n");
|
||||
lcd_quick_feedback();
|
||||
STOW_PROBE();
|
||||
SERIAL_PROTOCOLPAIR("\nCheckpoint: ", 3);
|
||||
while (ubl_lcd_clicked()) idle();
|
||||
SERIAL_PROTOCOLPAIR("\nCheckpoint: ", 4);
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
restore_ubl_active_state_and_leave();
|
||||
safe_delay(50); // Debounce the Encoder wheel
|
||||
return;
|
||||
}
|
||||
SERIAL_PROTOCOLPAIR("\nCheckpoint: ", 5);
|
||||
|
||||
const float probeX = ubl.mesh_index_to_xpos[grid_G_index_to_xpos[xCount]], //where we want the probe to be
|
||||
probeY = ubl.mesh_index_to_ypos[grid_G_index_to_ypos[yCount]];
|
||||
SERIAL_PROTOCOLPAIR("\nCheckpoint: ", 6);
|
||||
|
||||
const float measured_z = probe_pt(LOGICAL_X_POSITION(probeX), LOGICAL_Y_POSITION(probeY), code_seen('E'), (code_seen('V') && code_has_value()) ? code_value_int() : 0 ); // takes into account the offsets
|
||||
|
||||
SERIAL_PROTOCOLPAIR("\nmeasured_z: ", measured_z );
|
||||
|
||||
z_values_G[xCount][yCount] = measured_z;
|
||||
//SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
|
||||
}
|
||||
}
|
||||
|
||||
SERIAL_PROTOCOL("\nDone probing...\n");
|
||||
|
||||
STOW_PROBE();
|
||||
restore_ubl_active_state_and_leave();
|
||||
|
||||
// ?? ubl.has_control_of_lcd_panel = true;
|
||||
// do_blocking_move_to_xy(ubl.mesh_index_to_xpos[grid_G_index_to_xpos[0]], ubl.mesh_index_to_ypos[grid_G_index_to_ypos[0]]);
|
||||
|
||||
// least squares code
|
||||
double xxx9[] = { 0,50,100,150,200, 20,70,120,165,195, 0,50,100,150,200, 0,55,100,150,200, 0,65,100,150,205 };
|
||||
double yyy9[] = { 0, 1, 2, 3, 4, 50, 51, 52, 53, 54, 100, 101,102,103,104, 150,151,152,153,154, 200,201,202,203,204 };
|
||||
double zzz9[] = { 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.02,0, 0.01,.002,-.01,-.012,0.01};
|
||||
int nine_size = sizeof(xxx9) / sizeof(double);
|
||||
|
||||
double xxx0[] = { 0.0, 0.0, 1.0 }; // Expect [0,0,0.1,0]
|
||||
double yyy0[] = { 0.0, 1.0, 0.0 };
|
||||
double zzz0[] = { 0.1, 0.1, 0.1 };
|
||||
int zero_size = sizeof(xxx0) / sizeof(double);
|
||||
|
||||
double xxx[] = { 0.0, 0.0, 1.0, 1.0 }; // Expect [0.1,0,0.05,0]
|
||||
double yyy[] = { 0.0, 1.0, 0.0, 1.0 };
|
||||
double zzz[] = { 0.05, 0.05, 0.15, 0.15 };
|
||||
int three_size = sizeof(xxx) / sizeof(double);
|
||||
|
||||
results = lsf_linear_fit(xxx9, yyy9, zzz9, nine_size);
|
||||
SERIAL_PROTOCOLPAIR("\nxxx9->A =", results->A);
|
||||
SERIAL_PROTOCOLPAIR("\nxxx9->B =", results->B);
|
||||
SERIAL_PROTOCOLPAIR("\nxxx9->D =", results->D);
|
||||
SERIAL_PROTOCOL("\n");
|
||||
|
||||
results = lsf_linear_fit(xxx0, yyy0, zzz0, zero_size);
|
||||
SERIAL_PROTOCOLPAIR("\nxxx0->A =", results->A);
|
||||
SERIAL_PROTOCOLPAIR("\nxxx0->B =", results->B);
|
||||
SERIAL_PROTOCOLPAIR("\nxxx0->D =", results->D);
|
||||
SERIAL_PROTOCOL("\n");
|
||||
|
||||
results = lsf_linear_fit(xxx, yyy, zzz, three_size);
|
||||
SERIAL_PROTOCOLPAIR("\nxxx->A =", results->A);
|
||||
SERIAL_PROTOCOLPAIR("\nxxx->B =", results->B);
|
||||
SERIAL_PROTOCOLPAIR("\nxxx->D =", results->D);
|
||||
SERIAL_PROTOCOL("\n");
|
||||
|
||||
return;
|
||||
} // end of tilt_mesh_based_on_probed_grid()
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
|
Reference in New Issue
Block a user