restore PR 9661 files & V1 fix

This commit is contained in:
Bob-the-Kuhn
2018-03-10 22:46:32 -06:00
parent 751785fc97
commit 0d8c15c01f
11 changed files with 746 additions and 227 deletions

View File

@ -53,6 +53,7 @@
// --------------------------------------------------------------------------
#if ENABLED(SOFTWARE_SPI)
// --------------------------------------------------------------------------
// software SPI
// --------------------------------------------------------------------------
@ -493,44 +494,77 @@
static pfnSpiTxBlock spiTxBlock = spiTxBlockX;
static pfnSpiRxBlock spiRxBlock = spiRxBlockX;
void spiBegin() {
SET_OUTPUT(SS_PIN);
WRITE(SS_PIN, HIGH);
SET_OUTPUT(SCK_PIN);
SET_INPUT(MISO_PIN);
SET_OUTPUT(MOSI_PIN);
}
#if MB(ALLIGATOR) // control SDSS pin
void spiBegin() {
SET_OUTPUT(SS_PIN);
WRITE(SS_PIN, HIGH);
SET_OUTPUT(SCK_PIN);
SET_INPUT(MISO_PIN);
SET_OUTPUT(MOSI_PIN);
}
uint8_t spiRec() {
WRITE(SS_PIN, LOW);
WRITE(MOSI_PIN, 1); /* Output 1s 1*/
uint8_t b = spiTransferRx(0xFF);
WRITE(SS_PIN, HIGH);
return b;
}
uint8_t spiRec() {
WRITE(SS_PIN, LOW);
WRITE(MOSI_PIN, 1); /* Output 1s 1*/
uint8_t b = spiTransferRx(0xFF);
WRITE(SS_PIN, HIGH);
return b;
}
void spiRead(uint8_t* buf, uint16_t nbyte) {
uint32_t todo = nbyte;
if (todo == 0) return;
void spiRead(uint8_t* buf, uint16_t nbyte) {
uint32_t todo = nbyte;
if (todo == 0) return;
WRITE(SS_PIN, LOW);
WRITE(MOSI_PIN, 1); /* Output 1s 1*/
spiRxBlock(buf,nbyte);
WRITE(SS_PIN, HIGH);
}
WRITE(SS_PIN, LOW);
WRITE(MOSI_PIN, 1); /* Output 1s 1*/
spiRxBlock(buf,nbyte);
WRITE(SS_PIN, HIGH);
}
void spiSend(uint8_t b) {
WRITE(SS_PIN, LOW);
(void) spiTransferTx(b);
WRITE(SS_PIN, HIGH);
}
void spiSend(uint8_t b) {
WRITE(SS_PIN, LOW);
(void) spiTransferTx(b);
WRITE(SS_PIN, HIGH);
}
void spiSendBlock(uint8_t token, const uint8_t* buf) {
void spiSendBlock(uint8_t token, const uint8_t* buf) {
WRITE(SS_PIN, LOW);
(void) spiTransferTx(token);
spiTxBlock(buf,512);
WRITE(SS_PIN, HIGH);
#else // let calling routine control SDSS
void spiBegin() {
SET_OUTPUT(SS_PIN);
SET_OUTPUT(SCK_PIN);
SET_INPUT(MISO_PIN);
SET_OUTPUT(MOSI_PIN);
}
WRITE(SS_PIN, LOW);
(void) spiTransferTx(token);
spiTxBlock(buf,512);
WRITE(SS_PIN, HIGH);
uint8_t spiRec() {
WRITE(MOSI_PIN, 1); /* Output 1s 1*/
uint8_t b = spiTransferRx(0xFF);
return b;
}
void spiRead(uint8_t* buf, uint16_t nbyte) {
uint32_t todo = nbyte;
if (todo == 0) return;
WRITE(MOSI_PIN, 1); /* Output 1s 1*/
spiRxBlock(buf,nbyte);
}
void spiSend(uint8_t b) {
(void) spiTransferTx(b);
}
void spiSendBlock(uint8_t token, const uint8_t* buf) {
(void) spiTransferTx(token);
spiTxBlock(buf,512);
#endif
}
/**
@ -566,7 +600,9 @@
break;
}
WRITE(SS_PIN, HIGH);
#if MB(ALLIGATOR)
WRITE(SS_PIN, HIGH);
#endif
WRITE(MOSI_PIN, HIGH);
WRITE(SCK_PIN, LOW);
}
@ -574,211 +610,296 @@
/** Begin SPI transaction, set clock, bit order, data mode */
void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) {
// TODO: to be implemented
}
#pragma GCC reset_options
#else
// --------------------------------------------------------------------------
// hardware SPI
// --------------------------------------------------------------------------
// 8.4 MHz, 4 MHz, 2 MHz, 1 MHz, 0.5 MHz, 0.329 MHz, 0.329 MHz
int spiDueDividors[] = { 10, 21, 42, 84, 168, 255, 255 };
bool spiInitMaded = false;
void spiBegin() {
if(spiInitMaded == false) {
// Configure SPI pins
PIO_Configure(
g_APinDescription[SCK_PIN].pPort,
g_APinDescription[SCK_PIN].ulPinType,
g_APinDescription[SCK_PIN].ulPin,
g_APinDescription[SCK_PIN].ulPinConfiguration);
PIO_Configure(
g_APinDescription[MOSI_PIN].pPort,
g_APinDescription[MOSI_PIN].ulPinType,
g_APinDescription[MOSI_PIN].ulPin,
g_APinDescription[MOSI_PIN].ulPinConfiguration);
PIO_Configure(
g_APinDescription[MISO_PIN].pPort,
g_APinDescription[MISO_PIN].ulPinType,
g_APinDescription[MISO_PIN].ulPin,
g_APinDescription[MISO_PIN].ulPinConfiguration);
#if MB(ALLIGATOR)
// slave selects controlled by SPI controller
// doesn't support changing SPI speeds for SD card
// --------------------------------------------------------------------------
// hardware SPI
// --------------------------------------------------------------------------
// 8.4 MHz, 4 MHz, 2 MHz, 1 MHz, 0.5 MHz, 0.329 MHz, 0.329 MHz
int spiDueDividors[] = { 10, 21, 42, 84, 168, 255, 255 };
bool spiInitMaded = false;
// set master mode, peripheral select, fault detection
SPI_Configure(SPI0, ID_SPI0, SPI_MR_MSTR | SPI_MR_MODFDIS | SPI_MR_PS);
SPI_Enable(SPI0);
void spiBegin() {
if(spiInitMaded == false) {
// Configure SPI pins
PIO_Configure(
g_APinDescription[SCK_PIN].pPort,
g_APinDescription[SCK_PIN].ulPinType,
g_APinDescription[SCK_PIN].ulPin,
g_APinDescription[SCK_PIN].ulPinConfiguration);
PIO_Configure(
g_APinDescription[MOSI_PIN].pPort,
g_APinDescription[MOSI_PIN].ulPinType,
g_APinDescription[MOSI_PIN].ulPin,
g_APinDescription[MOSI_PIN].ulPinConfiguration);
PIO_Configure(
g_APinDescription[MISO_PIN].pPort,
g_APinDescription[MISO_PIN].ulPinType,
g_APinDescription[MISO_PIN].ulPin,
g_APinDescription[MISO_PIN].ulPinConfiguration);
#if MB(ALLIGATOR)
SET_OUTPUT(DAC0_SYNC);
#if EXTRUDERS > 1
SET_OUTPUT(DAC1_SYNC);
WRITE(DAC1_SYNC, HIGH);
#endif
SET_OUTPUT(SPI_EEPROM1_CS);
SET_OUTPUT(SPI_EEPROM2_CS);
SET_OUTPUT(SPI_FLASH_CS);
WRITE(DAC0_SYNC, HIGH);
WRITE(SPI_EEPROM1_CS, HIGH );
WRITE(SPI_EEPROM2_CS, HIGH );
WRITE(SPI_FLASH_CS, HIGH );
WRITE(SS_PIN, HIGH );
#endif // MB(ALLIGATOR)
// set master mode, peripheral select, fault detection
SPI_Configure(SPI0, ID_SPI0, SPI_MR_MSTR | SPI_MR_MODFDIS | SPI_MR_PS);
SPI_Enable(SPI0);
PIO_Configure(
g_APinDescription[SPI_PIN].pPort,
g_APinDescription[SPI_PIN].ulPinType,
g_APinDescription[SPI_PIN].ulPin,
g_APinDescription[SPI_PIN].ulPinConfiguration);
spiInit(1);
spiInitMaded = true;
#if MB(ALLIGATOR)
SET_OUTPUT(DAC0_SYNC);
#if EXTRUDERS > 1
SET_OUTPUT(DAC1_SYNC);
WRITE(DAC1_SYNC, HIGH);
#endif
SET_OUTPUT(SPI_EEPROM1_CS);
SET_OUTPUT(SPI_EEPROM2_CS);
SET_OUTPUT(SPI_FLASH_CS);
WRITE(DAC0_SYNC, HIGH);
WRITE(SPI_EEPROM1_CS, HIGH );
WRITE(SPI_EEPROM2_CS, HIGH );
WRITE(SPI_FLASH_CS, HIGH );
WRITE(SS_PIN, HIGH );
#endif // MB(ALLIGATOR)
OUT_WRITE(SDSS,0);
PIO_Configure(
g_APinDescription[SPI_PIN].pPort,
g_APinDescription[SPI_PIN].ulPinType,
g_APinDescription[SPI_PIN].ulPin,
g_APinDescription[SPI_PIN].ulPinConfiguration);
spiInit(1);
spiInitMaded = true;
}
}
}
void spiInit(uint8_t spiRate) {
if(spiInitMaded == false) {
if(spiRate > 6) spiRate = 1;
void spiInit(uint8_t spiRate) {
if(spiInitMaded == false) {
if(spiRate > 6) spiRate = 1;
#if MB(ALLIGATOR)
// Set SPI mode 1, clock, select not active after transfer, with delay between transfers
SPI_ConfigureNPCS(SPI0, SPI_CHAN_DAC,
SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDueDividors[spiRate]) |
SPI_CSR_DLYBCT(1));
// Set SPI mode 0, clock, select not active after transfer, with delay between transfers
SPI_ConfigureNPCS(SPI0, SPI_CHAN_EEPROM1, SPI_CSR_NCPHA |
SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDueDividors[spiRate]) |
SPI_CSR_DLYBCT(1));
#endif//MB(ALLIGATOR)
#if MB(ALLIGATOR)
// Set SPI mode 1, clock, select not active after transfer, with delay between transfers
SPI_ConfigureNPCS(SPI0, SPI_CHAN_DAC,
SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDueDividors[spiRate]) |
SPI_CSR_DLYBCT(1));
// Set SPI mode 0, clock, select not active after transfer, with delay between transfers
SPI_ConfigureNPCS(SPI0, SPI_CHAN_EEPROM1, SPI_CSR_NCPHA |
SPI_ConfigureNPCS(SPI0, SPI_CHAN, SPI_CSR_NCPHA |
SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDueDividors[spiRate]) |
SPI_CSR_DLYBCT(1));
#endif//MB(ALLIGATOR)
// Set SPI mode 0, clock, select not active after transfer, with delay between transfers
SPI_ConfigureNPCS(SPI0, SPI_CHAN, SPI_CSR_NCPHA |
SPI_CSR_CSAAT | SPI_CSR_SCBR(spiDueDividors[spiRate]) |
SPI_CSR_DLYBCT(1));
SPI_Enable(SPI0);
spiInitMaded = true;
SPI_Enable(SPI0);
spiInitMaded = true;
}
}
}
// Write single byte to SPI
void spiSend(byte b) {
// write byte with address and end transmission flag
SPI0->SPI_TDR = (uint32_t)b | SPI_PCS(SPI_CHAN) | SPI_TDR_LASTXFER;
// wait for transmit register empty
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
// wait for receive register
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
// clear status
SPI0->SPI_RDR;
//delayMicroseconds(1U);
}
void spiSend(const uint8_t* buf, size_t n) {
if (n == 0) return;
for (size_t i = 0; i < n - 1; i++) {
SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(SPI_CHAN);
// Write single byte to SPI
void spiSend(byte b) {
// write byte with address and end transmission flag
SPI0->SPI_TDR = (uint32_t)b | SPI_PCS(SPI_CHAN) | SPI_TDR_LASTXFER;
// wait for transmit register empty
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
// wait for receive register
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
// clear status
SPI0->SPI_RDR;
//delayMicroseconds(1U);
}
spiSend(buf[n - 1]);
}
void spiSend(uint32_t chan, byte b) {
uint8_t dummy_read = 0;
// wait for transmit register empty
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
// write byte with address and end transmission flag
SPI0->SPI_TDR = (uint32_t)b | SPI_PCS(chan) | SPI_TDR_LASTXFER;
// wait for receive register
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
// clear status
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 1)
dummy_read = SPI0->SPI_RDR;
UNUSED(dummy_read);
}
void spiSend(const uint8_t* buf, size_t n) {
if (n == 0) return;
for (size_t i = 0; i < n - 1; i++) {
SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(SPI_CHAN);
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
SPI0->SPI_RDR;
//delayMicroseconds(1U);
}
spiSend(buf[n - 1]);
}
void spiSend(uint32_t chan, const uint8_t* buf, size_t n) {
uint8_t dummy_read = 0;
if (n == 0) return;
for (int i = 0; i < (int)n - 1; i++) {
void spiSend(uint32_t chan, byte b) {
uint8_t dummy_read = 0;
// wait for transmit register empty
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(chan);
// write byte with address and end transmission flag
SPI0->SPI_TDR = (uint32_t)b | SPI_PCS(chan) | SPI_TDR_LASTXFER;
// wait for receive register
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
// clear status
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 1)
dummy_read = SPI0->SPI_RDR;
UNUSED(dummy_read);
}
spiSend(chan, buf[n - 1]);
}
// Read single byte from SPI
uint8_t spiRec() {
// write dummy byte with address and end transmission flag
SPI0->SPI_TDR = 0x000000FF | SPI_PCS(SPI_CHAN) | SPI_TDR_LASTXFER;
// wait for transmit register empty
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
// wait for receive register
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
// get byte from receive register
//delayMicroseconds(1U);
return SPI0->SPI_RDR;
}
uint8_t spiRec(uint32_t chan) {
uint8_t spirec_tmp;
// wait for transmit register empty
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 1)
spirec_tmp = SPI0->SPI_RDR;
UNUSED(spirec_tmp);
// write dummy byte with address and end transmission flag
SPI0->SPI_TDR = 0x000000FF | SPI_PCS(chan) | SPI_TDR_LASTXFER;
// wait for receive register
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
// get byte from receive register
return SPI0->SPI_RDR;
}
// Read from SPI into buffer
void spiRead(uint8_t*buf, uint16_t nbyte) {
if (nbyte-- == 0) return;
for (int i = 0; i < nbyte; i++) {
//while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
SPI0->SPI_TDR = 0x000000FF | SPI_PCS(SPI_CHAN);
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
buf[i] = SPI0->SPI_RDR;
//delayMicroseconds(1U);
void spiSend(uint32_t chan, const uint8_t* buf, size_t n) {
uint8_t dummy_read = 0;
if (n == 0) return;
for (int i = 0; i < (int)n - 1; i++) {
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(chan);
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 1)
dummy_read = SPI0->SPI_RDR;
UNUSED(dummy_read);
}
spiSend(chan, buf[n - 1]);
}
buf[nbyte] = spiRec();
}
// Write from buffer to SPI
void spiSendBlock(uint8_t token, const uint8_t* buf) {
SPI0->SPI_TDR = (uint32_t)token | SPI_PCS(SPI_CHAN);
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
//while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
//SPI0->SPI_RDR;
for (int i = 0; i < 511; i++) {
SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(SPI_CHAN);
// Read single byte from SPI
uint8_t spiRec() {
// write dummy byte with address and end transmission flag
SPI0->SPI_TDR = 0x000000FF | SPI_PCS(SPI_CHAN) | SPI_TDR_LASTXFER;
// wait for transmit register empty
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
// wait for receive register
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
SPI0->SPI_RDR;
// get byte from receive register
//delayMicroseconds(1U);
return SPI0->SPI_RDR;
}
spiSend(buf[511]);
}
/** Begin SPI transaction, set clock, bit order, data mode */
void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) {
// TODO: to be implemented
}
uint8_t spiRec(uint32_t chan) {
uint8_t spirec_tmp;
// wait for transmit register empty
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 1)
spirec_tmp = SPI0->SPI_RDR;
UNUSED(spirec_tmp);
// write dummy byte with address and end transmission flag
SPI0->SPI_TDR = 0x000000FF | SPI_PCS(chan) | SPI_TDR_LASTXFER;
// wait for receive register
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
// get byte from receive register
return SPI0->SPI_RDR;
}
// Read from SPI into buffer
void spiRead(uint8_t*buf, uint16_t nbyte) {
if (nbyte-- == 0) return;
for (int i = 0; i < nbyte; i++) {
//while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
SPI0->SPI_TDR = 0x000000FF | SPI_PCS(SPI_CHAN);
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
buf[i] = SPI0->SPI_RDR;
//delayMicroseconds(1U);
}
buf[nbyte] = spiRec();
}
// Write from buffer to SPI
void spiSendBlock(uint8_t token, const uint8_t* buf) {
SPI0->SPI_TDR = (uint32_t)token | SPI_PCS(SPI_CHAN);
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
//while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
//SPI0->SPI_RDR;
for (int i = 0; i < 511; i++) {
SPI0->SPI_TDR = (uint32_t)buf[i] | SPI_PCS(SPI_CHAN);
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
SPI0->SPI_RDR;
//delayMicroseconds(1U);
}
spiSend(buf[511]);
}
/** Begin SPI transaction, set clock, bit order, data mode */
void spiBeginTransaction(uint32_t spiClock, uint8_t bitOrder, uint8_t dataMode) {
// TODO: to be implemented
}
#else // U8G compatible hardware SPI
void spiInit(uint8_t spiRate = 6 ) { // default to slowest rate if not specified)
// 8.4 MHz, 4 MHz, 2 MHz, 1 MHz, 0.5 MHz, 0.329 MHz, 0.329 MHz
int spiDueDividors[] = { 10, 21, 42, 84, 168, 255, 255 };
if(spiRate > 6) spiRate = 1;
/* enable PIOA and SPI0 */
REG_PMC_PCER0 = (1UL << ID_PIOA) | (1UL << ID_SPI0);
/* disable PIO on A26 and A27 */
REG_PIOA_PDR = 0x0c000000;
OUT_WRITE(SDSS, 1);
/* reset SPI0 (from sam lib) */
SPI0->SPI_CR = SPI_CR_SPIDIS;
SPI0->SPI_CR = SPI_CR_SWRST;
SPI0->SPI_CR = SPI_CR_SWRST;
SPI0->SPI_CR = SPI_CR_SPIEN;
/* master mode, no fault detection, chip select 0 */
SPI0->SPI_MR = SPI_MR_MSTR | SPI_MR_PCSDEC | SPI_MR_MODFDIS;
/* SPI mode 0, 8 Bit data transfer, baud rate */
SPI0->SPI_CSR[0] = SPI_CSR_SCBR(spiDueDividors[spiRate]) | 1;
}
static uint8_t spiTransfer(uint8_t data) {
/* wait until tx register is empty */
while( (SPI0->SPI_SR & SPI_SR_TDRE) == 0 );
/* send data */
SPI0->SPI_TDR = (uint32_t)data; // | SPI_PCS(0xF);
// wait for transmit register empty
while ((SPI0->SPI_SR & SPI_SR_TDRE) == 0);
// wait for receive register
while ((SPI0->SPI_SR & SPI_SR_RDRF) == 0);
// get byte from receive register
return SPI0->SPI_RDR;
}
void spiBegin() {
spiInit();
}
uint8_t spiRec() {
uint8_t data = spiTransfer(0xff);
return data;
}
void spiRead(uint8_t*buf, uint16_t nbyte) {
if (nbyte == 0) return;
for (int i = 0; i < nbyte; i++) {
buf[i] = spiTransfer(0xff);
}
}
void spiSend(uint8_t data) {
spiTransfer(data);
}
void spiSend(const uint8_t* buf, size_t n) {
if (n == 0) return;
for (uint16_t i = 0; i < n; i++)
spiTransfer(buf[i]);
}
void spiSendBlock(uint8_t token, const uint8_t* buf) {
spiTransfer(token);
for (uint16_t i = 0; i < 512; i++)
spiTransfer(buf[i]);
}
#endif //MB(ALLIGATOR)
#endif // ENABLED(SOFTWARE_SPI)
#endif // ARDUINO_ARCH_SAM