@ -135,9 +135,9 @@
|
||||
* a subsequent G or T leveling operation for backward compatibility.
|
||||
*
|
||||
* P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
|
||||
* the Z-Probe. Usually the probe can not reach all areas that the nozzle can reach.
|
||||
* In Cartesian printers, mesh points within the X_OFFSET_FROM_EXTRUDER and Y_OFFSET_FROM_EXTRUDER
|
||||
* area can not be automatically probed. For Delta printers the area in which DELTA_PROBEABLE_RADIUS
|
||||
* the Z-Probe. Usually the probe can't reach all areas that the nozzle can reach. On
|
||||
* Cartesian printers, points within the X_PROBE_OFFSET_FROM_EXTRUDER and Y_PROBE_OFFSET_FROM_EXTRUDER
|
||||
* area cannot be automatically probed. For Delta printers the area in which DELTA_PROBEABLE_RADIUS
|
||||
* and DELTA_PRINTABLE_RADIUS do not overlap will not be automatically probed.
|
||||
*
|
||||
* These points will be handled in Phase 2 and Phase 3. If the Phase 1 command is given the
|
||||
@ -186,20 +186,20 @@
|
||||
* of the Mesh being built.
|
||||
*
|
||||
* P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. There are two different paths the
|
||||
* user can go down. If the user specifies the value using the C parameter, the closest invalid
|
||||
* mesh points to the nozzle will be filled. The user can specify a repeat count using the R
|
||||
* user can go down. If the user specifies the value using the C parameter, the closest invalid
|
||||
* mesh points to the nozzle will be filled. The user can specify a repeat count using the R
|
||||
* parameter with the C version of the command.
|
||||
*
|
||||
* A second version of the fill command is available if no C constant is specified. Not
|
||||
* specifying a C constant will invoke the 'Smart Fill' algorithm. The G29 P3 command will search
|
||||
* from the edges of the mesh inward looking for invalid mesh points. It will look at the next
|
||||
* several mesh points to determine if the print bed is sloped up or down. If the bed is sloped
|
||||
* A second version of the fill command is available if no C constant is specified. Not
|
||||
* specifying a C constant will invoke the 'Smart Fill' algorithm. The G29 P3 command will search
|
||||
* from the edges of the mesh inward looking for invalid mesh points. It will look at the next
|
||||
* several mesh points to determine if the print bed is sloped up or down. If the bed is sloped
|
||||
* upward from the invalid mesh point, it will be replaced with the value of the nearest mesh point.
|
||||
* If the bed is sloped downward from the invalid mesh point, it will be replaced with a value that
|
||||
* puts all three points in a line. The second version of the G29 P3 command is a quick, easy and
|
||||
* puts all three points in a line. The second version of the G29 P3 command is a quick, easy and
|
||||
* usually safe way to populate the unprobed regions of your mesh so you can continue to the G26
|
||||
* Mesh Validation Pattern phase. Please note that you are populating your mesh with unverified
|
||||
* numbers. You should use some scrutiny and caution.
|
||||
* Mesh Validation Pattern phase. Please note that you are populating your mesh with unverified
|
||||
* numbers. You should use some scrutiny and caution.
|
||||
*
|
||||
* P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existence of
|
||||
* an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
|
||||
@ -242,7 +242,7 @@
|
||||
* command is not anticipated to be of much value to the typical user. It is intended
|
||||
* for developers to help them verify correct operation of the Unified Bed Leveling System.
|
||||
*
|
||||
* R # Repeat Repeat this command the specified number of times. If no number is specified the
|
||||
* R # Repeat Repeat this command the specified number of times. If no number is specified the
|
||||
* command will be repeated GRID_MAX_POINTS_X * GRID_MAX_POINTS_Y times.
|
||||
*
|
||||
* S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
|
||||
@ -497,7 +497,7 @@
|
||||
|
||||
if (code_seen('H') && code_has_value()) height = code_value_float();
|
||||
|
||||
if ( !position_is_reachable_xy( x_pos, y_pos )) {
|
||||
if (!position_is_reachable_xy(x_pos, y_pos)) {
|
||||
SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
|
||||
return;
|
||||
}
|
||||
@ -635,7 +635,7 @@
|
||||
ubl.display_map(code_has_value() ? code_value_int() : 0);
|
||||
|
||||
/*
|
||||
* This code may not be needed... Prepare for its removal...
|
||||
* This code may not be needed... Prepare for its removal...
|
||||
*
|
||||
if (code_seen('Z')) {
|
||||
if (code_has_value())
|
||||
@ -660,9 +660,9 @@
|
||||
do_blocking_move_to_z(measured_z);
|
||||
} while (!ubl_lcd_clicked());
|
||||
|
||||
ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
|
||||
ubl.has_control_of_lcd_panel = true; // There is a race condition for the encoder click.
|
||||
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
|
||||
// or here. So, until we are done looking for a long Encoder Wheel Press,
|
||||
// or here. So, until we are done looking for a long encoder press,
|
||||
// we need to take control of the panel
|
||||
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
@ -1346,10 +1346,10 @@
|
||||
my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
|
||||
|
||||
// If using the probe as the reference there are some unreachable locations.
|
||||
// Also for round beds, there are grid points outside the bed that nozzle can't reach.
|
||||
// Also for round beds, there are grid points outside the bed the nozzle can't reach.
|
||||
// Prune them from the list and ignore them till the next Phase (manual nozzle probing).
|
||||
|
||||
if ( ! (probe_as_reference ? position_is_reachable_by_probe_raw_xy(mx, my) : position_is_reachable_raw_xy(mx, my)) )
|
||||
if (probe_as_reference ? !position_is_reachable_by_probe_raw_xy(mx, my) : !position_is_reachable_raw_xy(mx, my))
|
||||
continue;
|
||||
|
||||
// Reachable. Check if it's the closest location to the nozzle.
|
||||
@ -1390,14 +1390,14 @@
|
||||
}
|
||||
|
||||
void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
|
||||
if (!code_seen('R')) // fine_tune_mesh() is special. If no repetion count flag is specified
|
||||
repetition_cnt = 1; // we know to do exactly one mesh location. Otherwise we use what the parser decided.
|
||||
if (!code_seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
|
||||
repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
|
||||
|
||||
mesh_index_pair location;
|
||||
uint16_t not_done[16];
|
||||
int32_t round_off;
|
||||
|
||||
if ( ! position_is_reachable_xy( lx, ly )) {
|
||||
if (!position_is_reachable_xy(lx, ly)) {
|
||||
SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
|
||||
return;
|
||||
}
|
||||
@ -1413,7 +1413,7 @@
|
||||
do {
|
||||
location = find_closest_mesh_point_of_type(SET_IN_BITMAP, lx, ly, USE_NOZZLE_AS_REFERENCE, not_done, false);
|
||||
|
||||
if (location.x_index < 0 ) break; // stop when we can't find any more reachable points.
|
||||
if (location.x_index < 0) break; // stop when we can't find any more reachable points.
|
||||
|
||||
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
|
||||
// different location the next time through the loop
|
||||
@ -1421,9 +1421,8 @@
|
||||
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
|
||||
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
|
||||
|
||||
if ( ! position_is_reachable_raw_xy( rawx, rawy )) { // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
|
||||
if (!position_is_reachable_raw_xy(rawx, rawy)) // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
|
||||
break;
|
||||
}
|
||||
|
||||
float new_z = ubl.z_values[location.x_index][location.y_index];
|
||||
|
||||
@ -1432,8 +1431,7 @@
|
||||
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
|
||||
do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
|
||||
|
||||
round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
|
||||
new_z = float(round_off) / 1000.0;
|
||||
new_z = floor(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
|
||||
|
||||
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
||||
ubl.has_control_of_lcd_panel = true;
|
||||
@ -1451,9 +1449,9 @@
|
||||
|
||||
lcd_return_to_status();
|
||||
|
||||
// There is a race condition for the Encoder Wheel getting clicked.
|
||||
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
|
||||
// or here.
|
||||
// The technique used here generates a race condition for the encoder click.
|
||||
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here.
|
||||
// Let's work on specifying a proper API for the LCD ASAP, OK?
|
||||
ubl.has_control_of_lcd_panel = true;
|
||||
}
|
||||
|
||||
@ -1478,7 +1476,7 @@
|
||||
|
||||
lcd_implementation_clear();
|
||||
|
||||
} while (( location.x_index >= 0 ) && (--repetition_cnt>0));
|
||||
} while (location.x_index >= 0 && --repetition_cnt > 0);
|
||||
|
||||
FINE_TUNE_EXIT:
|
||||
|
||||
|
Reference in New Issue
Block a user