Merge pull request #976 from cocktailyogi/SCARA_by_Yogi

Implemented SCARA-Maths
This commit is contained in:
Erik van der Zalm
2014-08-28 16:32:52 +02:00
9 changed files with 1714 additions and 96 deletions

View File

@ -172,6 +172,16 @@
// M908 - Control digital trimpot directly.
// M350 - Set microstepping mode.
// M351 - Toggle MS1 MS2 pins directly.
// ************ SCARA Specific - This can change to suit future G-code regulations
// M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
// M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
// M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
// M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
// M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
// M365 - SCARA calibration: Scaling factor, X, Y, Z axis
//************* SCARA End ***************
// M928 - Start SD logging (M928 filename.g) - ended by M29
// M999 - Restart after being stopped by error
@ -214,6 +224,7 @@ float add_homeing[3]={0,0,0};
#ifdef DELTA
float endstop_adj[3]={0,0,0};
#endif
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
bool axis_known_position[3] = {false, false, false};
@ -294,7 +305,11 @@ int EtoPPressure=0;
float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
float delta_diagonal_rod_2= sq(delta_diagonal_rod);
float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
#endif
#endif
#ifdef SCARA // Build size scaling
float axis_scaling[3]={1,1,1}; // Build size scaling, default to 1
#endif
bool cancel_heatup = false ;
@ -303,6 +318,7 @@ bool cancel_heatup = false ;
//===========================================================================
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
static float delta[3] = {0.0, 0.0, 0.0};
static float offset[3] = {0.0, 0.0, 0.0};
static bool home_all_axis = true;
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
@ -876,9 +892,59 @@ static void axis_is_at_home(int axis) {
}
}
#endif
#ifdef SCARA
float homeposition[3];
char i;
if (axis < 2)
{
for (i=0; i<3; i++)
{
homeposition[i] = base_home_pos(i);
}
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
// Works out real Homeposition angles using inverse kinematics,
// and calculates homing offset using forward kinematics
calculate_delta(homeposition);
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
for (i=0; i<2; i++)
{
delta[i] -= add_homeing[i];
}
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(add_homeing[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(add_homeing[Y_AXIS]);
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
calculate_SCARA_forward_Transform(delta);
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
current_position[axis] = delta[axis];
// SCARA home positions are based on configuration since the actual limits are determined by the
// inverse kinematic transform.
min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
}
else
{
current_position[axis] = base_home_pos(axis) + add_homeing[axis];
min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
}
#else
current_position[axis] = base_home_pos(axis) + add_homeing[axis];
min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
#endif
}
#ifdef ENABLE_AUTO_BED_LEVELING
@ -1142,6 +1208,7 @@ static void homeaxis(int axis) {
}
}
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
void refresh_cmd_timeout(void)
{
previous_millis_cmd = millis();
@ -1269,6 +1336,7 @@ void process_commands()
return;
}
break;
#ifndef SCARA //disable arc support
case 2: // G2 - CW ARC
if(Stopped == false) {
get_arc_coordinates();
@ -1283,6 +1351,7 @@ void process_commands()
return;
}
break;
#endif
case 4: // G4 dwell
LCD_MESSAGEPGM(MSG_DWELL);
codenum = 0;
@ -1361,12 +1430,12 @@ void process_commands()
HOMEAXIS(Z);
calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#else // NOT DELTA
home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
HOMEAXIS(Z);
@ -1410,7 +1479,9 @@ void process_commands()
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
#ifndef SCARA
current_position[Z_AXIS] = destination[Z_AXIS];
#endif
}
#endif
@ -1440,13 +1511,21 @@ void process_commands()
if(code_seen(axis_codes[X_AXIS]))
{
if(code_value_long() != 0) {
current_position[X_AXIS]=code_value()+add_homeing[0];
#ifdef SCARA
current_position[X_AXIS]=code_value();
#else
current_position[X_AXIS]=code_value()+add_homeing[0];
#endif
}
}
if(code_seen(axis_codes[Y_AXIS])) {
if(code_value_long() != 0) {
current_position[Y_AXIS]=code_value()+add_homeing[1];
#ifdef SCARA
current_position[Y_AXIS]=code_value();
#else
current_position[Y_AXIS]=code_value()+add_homeing[1];
#endif
}
}
@ -1521,6 +1600,11 @@ void process_commands()
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif // else DELTA
#ifdef SCARA
calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#endif SCARA
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
@ -1729,8 +1813,17 @@ void process_commands()
plan_set_e_position(current_position[E_AXIS]);
}
else {
current_position[i] = code_value()+add_homeing[i];
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#ifdef SCARA
if (i == X_AXIS || i == Y_AXIS) {
current_position[i] = code_value();
}
else {
current_position[i] = code_value()+add_homeing[i];
}
#else
current_position[i] = code_value()+add_homeing[i];
#endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
}
}
@ -2597,6 +2690,26 @@ Sigma_Exit:
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
SERIAL_PROTOCOLLN("");
#ifdef SCARA
SERIAL_PROTOCOLPGM("SCARA Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL(delta[Y_AXIS]);
SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]+add_homeing[0]);
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+add_homeing[1]);
SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLLN("");
#endif
break;
case 120: // M120
enable_endstops(false) ;
@ -2718,6 +2831,16 @@ Sigma_Exit:
{
if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
}
#ifdef SCARA
if(code_seen('T')) // Theta
{
add_homeing[0] = code_value() ;
}
if(code_seen('P')) // Psi
{
add_homeing[1] = code_value() ;
}
#endif
break;
#ifdef DELTA
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
@ -3096,6 +3219,105 @@ Sigma_Exit:
PID_autotune(temp, e, c);
}
break;
#ifdef SCARA
case 360: // M360 SCARA Theta pos1
SERIAL_ECHOLN(" Cal: Theta 0 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 0;
delta[1] = 120;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 361: // SCARA Theta pos2
SERIAL_ECHOLN(" Cal: Theta 90 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 90;
delta[1] = 130;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 362: // SCARA Psi pos1
SERIAL_ECHOLN(" Cal: Psi 0 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 60;
delta[1] = 180;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 363: // SCARA Psi pos2
SERIAL_ECHOLN(" Cal: Psi 90 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 50;
delta[1] = 90;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 364: // SCARA Psi pos3 (90 deg to Theta)
SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
// SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
//get_coordinates(); // For X Y Z E F
delta[0] = 45;
delta[1] = 135;
calculate_SCARA_forward_Transform(delta);
destination[0] = delta[0]/axis_scaling[X_AXIS];
destination[1] = delta[1]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
}
break;
case 365: // M364 Set SCARA scaling for X Y Z
for(int8_t i=0; i < 3; i++)
{
if(code_seen(axis_codes[i]))
{
axis_scaling[i] = code_value();
}
}
break;
#endif
case 400: // M400 finish all moves
{
st_synchronize();
@ -3658,8 +3880,46 @@ void calculate_delta(float cartesian[3])
void prepare_move()
{
clamp_to_software_endstops(destination);
previous_millis_cmd = millis();
#ifdef SCARA //for now same as delta-code
float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) {
difference[i] = destination[i] - current_position[i];
}
float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
sq(difference[Y_AXIS]) +
sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(scara_segments_per_second * seconds));
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i] + difference[i] * fraction;
}
calculate_delta(destination);
//SERIAL_ECHOPGM("destination[0]="); SERIAL_ECHOLN(destination[0]);
//SERIAL_ECHOPGM("destination[1]="); SERIAL_ECHOLN(destination[1]);
//SERIAL_ECHOPGM("destination[2]="); SERIAL_ECHOLN(destination[2]);
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
}
#endif // SCARA
#ifdef DELTA
float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) {
@ -3685,7 +3945,8 @@ void prepare_move()
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
}
#else
#endif // DELTA
#ifdef DUAL_X_CARRIAGE
if (active_extruder_parked)
@ -3728,6 +3989,7 @@ void prepare_move()
}
#endif //DUAL_X_CARRIAGE
#if ! (defined DELTA || defined SCARA)
// Do not use feedmultiply for E or Z only moves
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
@ -3735,7 +3997,8 @@ void prepare_move()
else {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
}
#endif //else DELTA
#endif // !(DELTA || SCARA)
for(int8_t i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
@ -3803,6 +4066,84 @@ void controllerFan()
}
#endif
#ifdef SCARA
void calculate_SCARA_forward_Transform(float f_scara[3])
{
// Perform forward kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float x_sin, x_cos, y_sin, y_cos;
//SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
//SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
// SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
// SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
// SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
// SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
}
void calculate_delta(float cartesian[3]){
//reverse kinematics.
// Perform reversed kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float SCARA_pos[2];
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
#if (Linkage_1 == Linkage_2)
SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
#else
SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
#endif
SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
SCARA_K2 = Linkage_2 * SCARA_S2;
SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
SCARA_psi = atan2(SCARA_S2,SCARA_C2);
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
delta[Z_AXIS] = cartesian[Z_AXIS];
/*
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
SERIAL_ECHOLN(" ");*/
}
#endif
#ifdef TEMP_STAT_LEDS
static bool blue_led = false;
static bool red_led = false;