Marlin_Firmware/Marlin/UBL_line_to_destination.cpp

554 lines
22 KiB
C++
Raw Normal View History

2017-03-18 10:14:31 -05:00
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Marlin.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "UBL.h"
#include "planner.h"
#include <avr/io.h>
#include <math.h>
extern void set_current_to_destination();
extern bool G26_Debug_flag;
void debug_current_and_destination(char *title);
void wait_for_button_press();
void UBL_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) {
int cell_start_xi, cell_start_yi, cell_dest_xi, cell_dest_yi;
int left_flag, down_flag;
int current_xi, current_yi;
int dxi, dyi, xi_cnt, yi_cnt;
bool use_X_dist, inf_normalized_flag, inf_m_flag;
float x_start, y_start;
float x, y, z1, z2, z0 /*, z_optimized */;
float next_mesh_line_x, next_mesh_line_y, a0ma1diva2ma1;
float on_axis_distance, e_normalized_dist, e_position, e_start, z_normalized_dist, z_position, z_start;
float dx, dy, adx, ady, m, c;
//
// Much of the nozzle movement will be within the same cell. So we will do as little computation
// as possible to determine if this is the case. If this move is within the same cell, we will
// just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
//
x_start = current_position[X_AXIS];
y_start = current_position[Y_AXIS];
z_start = current_position[Z_AXIS];
e_start = current_position[E_AXIS];
cell_start_xi = blm.get_cell_index_x(x_start);
cell_start_yi = blm.get_cell_index_y(y_start);
cell_dest_xi = blm.get_cell_index_x(x_end);
cell_dest_yi = blm.get_cell_index_y(y_end);
if (G26_Debug_flag!=0) {
SERIAL_ECHOPGM(" UBL_line_to_destination(xe=");
SERIAL_ECHO(x_end);
SERIAL_ECHOPGM(",ye=");
SERIAL_ECHO(y_end);
SERIAL_ECHOPGM(",ze=");
SERIAL_ECHO(z_end);
SERIAL_ECHOPGM(",ee=");
SERIAL_ECHO(e_end);
SERIAL_ECHOPGM(")\n");
debug_current_and_destination( (char *) "Start of UBL_line_to_destination()");
}
if ((cell_start_xi == cell_dest_xi) && (cell_start_yi == cell_dest_yi)) { // if the whole move is within the same cell,
// we don't need to break up the move
//
// If we are moving off the print bed, we are going to allow the move at this level.
// But we detect it and isolate it. For now, we just pass along the request.
//
if (cell_dest_xi<0 || cell_dest_yi<0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) {
// Note: There is no Z Correction in this case. We are off the grid and don't know what
// a reasonable correction would be.
planner.buffer_line(x_end, y_end, z_end + blm.state.z_offset, e_end, feed_rate, extruder);
set_current_to_destination();
if (G26_Debug_flag!=0) {
debug_current_and_destination( (char *) "out of bounds in UBL_line_to_destination()");
}
return;
}
// we can optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
// generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
// We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
// We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
// instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
// to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
FINAL_MOVE:
a0ma1diva2ma1 = (x_end - mesh_index_to_X_location[cell_dest_xi]) * (float) (1.0 / MESH_X_DIST);
z1 = z_values[cell_dest_xi][cell_dest_yi] +
(z_values[cell_dest_xi + 1][cell_dest_yi] - z_values[cell_dest_xi][cell_dest_yi]) * a0ma1diva2ma1;
z2 = z_values[cell_dest_xi][cell_dest_yi+1] +
(z_values[cell_dest_xi+1][cell_dest_yi+1] - z_values[cell_dest_xi][cell_dest_yi+1]) * a0ma1diva2ma1;
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
a0ma1diva2ma1 = (y_end - mesh_index_to_Y_location[cell_dest_yi]) * (float) (1.0 / MESH_Y_DIST);
z0 = z1 + (z2 - z1) * a0ma1diva2ma1;
// debug code to use non-optimized get_z_correction() and to do a sanity check
// that the correct value is being passed to planner.buffer_line()
//
/*
z_optimized = z0;
z0 = blm.get_z_correction( x_end, y_end);
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
debug_current_and_destination( (char *) "FINAL_MOVE: z_correction()");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" x_end=", x_end);
SERIAL_ECHOPAIR(" y_end=", y_end);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0));
SERIAL_EOL;
}
*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
}
planner.buffer_line(x_end, y_end, z_end + z0 + blm.state.z_offset, e_end, feed_rate, extruder);
if (G26_Debug_flag!=0) {
debug_current_and_destination( (char *) "FINAL_MOVE in UBL_line_to_destination()");
}
set_current_to_destination();
return;
}
//
// If we get here, we are processing a move that crosses at least one Mesh Line. We will check
// for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
// of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
// computation and in fact most lines are of this nature. We will check for that in the following
// blocks of code:
left_flag = 0;
down_flag = 0;
inf_m_flag = false;
inf_normalized_flag = false;
dx = x_end - x_start;
dy = y_end - y_start;
if (dx<0.0) { // figure out which way we need to move to get to the next cell
dxi = -1;
adx = -dx; // absolute value of dx. We already need to check if dx and dy are negative.
}
else { // We may as well generate the appropriate values for adx and ady right now
dxi = 1; // to save setting up the abs() function call and actually doing the call.
adx = dx;
}
if (dy<0.0) {
dyi = -1;
ady = -dy; // absolute value of dy
}
else {
dyi = 1;
ady = dy;
}
if (dx<0.0) left_flag = 1;
if (dy<0.0) down_flag = 1;
if (cell_start_xi == cell_dest_xi) dxi = 0;
if (cell_start_yi == cell_dest_yi) dyi = 0;
//
// Compute the scaling factor for the extruder for each partial move.
// We need to watch out for zero length moves because it will cause us to
// have an infinate scaling factor. We are stuck doing a floating point
// divide to get our scaling factor, but after that, we just multiply by this
// number. We also pick our scaling factor based on whether the X or Y
// component is larger. We use the biggest of the two to preserve precision.
//
if ( adx > ady ) {
use_X_dist = true;
on_axis_distance = x_end-x_start;
}
else {
use_X_dist = false;
on_axis_distance = y_end-y_start;
}
e_position = e_end - e_start;
e_normalized_dist = e_position / on_axis_distance;
z_position = z_end - z_start;
z_normalized_dist = z_position / on_axis_distance;
if (e_normalized_dist==INFINITY || e_normalized_dist==-INFINITY) {
inf_normalized_flag = true;
}
current_xi = cell_start_xi;
current_yi = cell_start_yi;
m = dy / dx;
c = y_start - m*x_start;
if (m == INFINITY || m == -INFINITY) {
inf_m_flag = true;
}
//
// This block handles vertical lines. These are lines that stay within the same
// X Cell column. They do not need to be perfectly vertical. They just can
// not cross into another X Cell column.
//
if (dxi == 0) { // Check for a vertical line
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
while (current_yi != cell_dest_yi + down_flag) {
current_yi += dyi;
next_mesh_line_y = mesh_index_to_Y_location[current_yi];
if (inf_m_flag) {
x = x_start; // if the slope of the line is infinite, we won't do the calculations
}
// we know the next X is the same so we can recover and continue!
else {
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
}
z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi);
//
// debug code to use non-optimized get_z_correction() and to do a sanity check
// that the correct value is being passed to planner.buffer_line()
//
/*
z_optimized = z0;
z0 = blm.get_z_correction( x, next_mesh_line_y);
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
debug_current_and_destination( (char *) "VERTICAL z_correction()");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" x=", x);
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
}
y = mesh_index_to_Y_location[current_yi];
// Without this check, it is possible for the algorythm to generate a zero length move in the case
// where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
// happens, it might be best to remove the check and always 'schedule' the move because
// the planner.buffer_line() routine will filter it if that happens.
if ( y!=y_start) {
if ( inf_normalized_flag == false ) {
on_axis_distance = y - y_start; // we don't need to check if the extruder position
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
z_position = z_start + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
}
planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED ");
}
//
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
//
if (G26_Debug_flag!=0) {
debug_current_and_destination( (char *) "vertical move done in UBL_line_to_destination()");
}
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) {
goto FINAL_MOVE;
}
set_current_to_destination();
return;
}
//
// This block handles horizontal lines. These are lines that stay within the same
// Y Cell row. They do not need to be perfectly horizontal. They just can
// not cross into another Y Cell row.
//
if (dyi == 0) { // Check for a horiziontal line
current_xi += left_flag; // Line is heading left, we just want to go to the left
// edge of this cell for the first move.
while (current_xi != cell_dest_xi + left_flag) {
current_xi += dxi;
next_mesh_line_x = mesh_index_to_X_location[current_xi];
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
//
// debug code to use non-optimized get_z_correction() and to do a sanity check
// that the correct value is being passed to planner.buffer_line()
//
/*
z_optimized = z0;
z0 = blm.get_z_correction( next_mesh_line_x, y);
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
debug_current_and_destination( (char *) "HORIZONTAL z_correction()");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
SERIAL_ECHOPAIR(" y=", y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
}
x = mesh_index_to_X_location[current_xi];
// Without this check, it is possible for the algorythm to generate a zero length move in the case
// where the line is heading left and it is starting right on a Mesh Line boundary. For how often
// that happens, it might be best to remove the check and always 'schedule' the move because
// the planner.buffer_line() routine will filter it if that happens.
if ( x!=x_start) {
if ( inf_normalized_flag == false ) {
on_axis_distance = x - x_start; // we don't need to check if the extruder position
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
z_position = z_start + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
}
planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED ");
}
if (G26_Debug_flag!=0) {
debug_current_and_destination( (char *) "horizontal move done in UBL_line_to_destination()");
}
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) {
goto FINAL_MOVE;
}
set_current_to_destination();
return;
}
//
//
//
//
// This block handles the generic case of a line crossing both X and Y
// Mesh lines.
//
//
//
//
xi_cnt = cell_start_xi - cell_dest_xi;
if ( xi_cnt < 0 ) {
xi_cnt = -xi_cnt;
}
yi_cnt = cell_start_yi - cell_dest_yi;
if ( yi_cnt < 0 ) {
yi_cnt = -yi_cnt;
}
current_xi += left_flag;
current_yi += down_flag;
while ( xi_cnt>0 || yi_cnt>0 ) {
next_mesh_line_x = mesh_index_to_X_location[current_xi + dxi];
next_mesh_line_y = mesh_index_to_Y_location[current_yi + dyi];
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
x = (next_mesh_line_y-c) / m; // Calculate X at the next Y mesh line (we don't have to worry
// about m being equal to 0.0 If this was the case, we would have
// detected this as a vertical line move up above and we wouldn't
// be down here doing a generic type of move.
if ((left_flag && (x>next_mesh_line_x)) || (!left_flag && (x<next_mesh_line_x))) { // Check if we hit the Y line first
//
// Yes! Crossing a Y Mesh Line next
//
z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi-left_flag, current_yi+dyi);
//
// debug code to use non-optimized get_z_correction() and to do a sanity check
// that the correct value is being passed to planner.buffer_line()
//
/*
z_optimized = z0;
z0 = blm.get_z_correction( x, next_mesh_line_y);
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
debug_current_and_destination( (char *) "General_1: z_correction()");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); {
SERIAL_ECHOPAIR(" x=", x);
}
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
}
if ( inf_normalized_flag == false ) {
if ( use_X_dist ) {
on_axis_distance = x - x_start;
}
else {
on_axis_distance = next_mesh_line_y - y_start;
}
e_position = e_start + on_axis_distance * e_normalized_dist;
z_position = z_start + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
}
planner.buffer_line(x, next_mesh_line_y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
current_yi += dyi;
yi_cnt--;
}
else {
//
// Yes! Crossing a X Mesh Line next
//
z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi+dxi, current_yi-down_flag);
//
// debug code to use non-optimized get_z_correction() and to do a sanity check
// that the correct value is being passed to planner.buffer_line()
//
/*
z_optimized = z0;
z0 = blm.get_z_correction( next_mesh_line_x, y);
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
debug_current_and_destination( (char *) "General_2: z_correction()");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
SERIAL_ECHOPAIR(" y=", y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
}
if ( inf_normalized_flag == false ) {
if ( use_X_dist ) {
on_axis_distance = next_mesh_line_x - x_start;
}
else {
on_axis_distance = y - y_start;
}
e_position = e_start + on_axis_distance * e_normalized_dist;
z_position = z_start + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
}
planner.buffer_line(next_mesh_line_x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
current_xi += dxi;
xi_cnt--;
}
}
if (G26_Debug_flag) {
debug_current_and_destination( (char *) "generic move done in UBL_line_to_destination()");
}
if (current_position[0] != x_end || current_position[1] != y_end) {
goto FINAL_MOVE;
}
set_current_to_destination();
return;
}
void wait_for_button_press() {
// if ( !been_to_2_6 )
//return; // bob - I think this should be commented out
SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
SET_OUTPUT(64);
while (READ(66) & 0x01) idle();
delay(50);
while (!(READ(66) & 0x01)) idle();
delay(50);
}
#endif