Marlin_Firmware/Marlin/src/HAL/shared/Delay.cpp

177 lines
7.2 KiB
C++
Raw Normal View History

2021-02-05 22:43:51 -06:00
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
2021-09-16 04:36:26 -05:00
2021-02-05 22:43:51 -06:00
#include "Delay.h"
#include "../../inc/MarlinConfig.h"
#if defined(__arm__) || defined(__thumb__)
static uint32_t ASM_CYCLES_PER_ITERATION = 4; // Initial bet which will be adjusted in calibrate_delay_loop
// Simple assembler loop counting down
void delay_asm(uint32_t cy) {
cy = _MAX(cy / ASM_CYCLES_PER_ITERATION, 1U); // Zero is forbidden here
__asm__ __volatile__(
A(".syntax unified") // is to prevent CM0,CM1 non-unified syntax
L("1")
A("subs %[cnt],#1")
A("bne 1b")
: [cnt]"+r"(cy) // output: +r means input+output
: // input:
: "cc" // clobbers:
);
}
// We can't use CMSIS since it's not available on all platform, so fallback to hardcoded register values
#define HW_REG(X) *(volatile uint32_t *)(X)
#define _DWT_CTRL 0xE0001000
#define _DWT_CYCCNT 0xE0001004 // CYCCNT is 32bits, takes 37s or so to wrap.
#define _DEM_CR 0xE000EDFC
#define _LAR 0xE0001FB0
// Use hardware cycle counter instead, it's much safer
void delay_dwt(uint32_t count) {
// Reuse the ASM_CYCLES_PER_ITERATION variable to avoid wasting another useless variable
uint32_t start = HW_REG(_DWT_CYCCNT) - ASM_CYCLES_PER_ITERATION, elapsed;
2021-02-05 22:43:51 -06:00
do {
elapsed = HW_REG(_DWT_CYCCNT) - start;
} while (elapsed < count);
}
// Pointer to asm function, calling the functions has a ~20 cycles overhead
DelayImpl DelayCycleFnc = delay_asm;
void calibrate_delay_loop() {
// Check if we have a working DWT implementation in the CPU (see https://developer.arm.com/documentation/ddi0439/b/Data-Watchpoint-and-Trace-Unit/DWT-Programmers-Model)
if (!HW_REG(_DWT_CTRL)) {
// No DWT present, so fallback to plain old ASM nop counting
// Unfortunately, we don't exactly know how many iteration it'll take to decrement a counter in a loop
// It depends on the CPU architecture, the code current position (flash vs SRAM)
// So, instead of wild guessing and making mistake, instead
// compute it once for all
ASM_CYCLES_PER_ITERATION = 1;
// We need to fetch some reference clock before waiting
cli();
uint32_t start = micros();
delay_asm(1000); // On a typical CPU running in MHz, waiting 1000 "unknown cycles" means it'll take between 1ms to 6ms, that's perfectly acceptable
uint32_t end = micros();
sei();
uint32_t expectedCycles = (end - start) * ((F_CPU) / 1000000UL); // Convert microseconds to cycles
// Finally compute the right scale
ASM_CYCLES_PER_ITERATION = (uint32_t)(expectedCycles / 1000);
// No DWT present, likely a Cortex M0 so NOP counting is our best bet here
DelayCycleFnc = delay_asm;
}
else {
// Enable DWT counter
// From https://stackoverflow.com/a/41188674/1469714
HW_REG(_DEM_CR) = HW_REG(_DEM_CR) | 0x01000000; // Enable trace
#if __CORTEX_M == 7
HW_REG(_LAR) = 0xC5ACCE55; // Unlock access to DWT registers, see https://developer.arm.com/documentation/ihi0029/e/ section B2.3.10
#endif
HW_REG(_DWT_CYCCNT) = 0; // Clear DWT cycle counter
HW_REG(_DWT_CTRL) = HW_REG(_DWT_CTRL) | 1; // Enable DWT cycle counter
// Then calibrate the constant offset from the counter
ASM_CYCLES_PER_ITERATION = 0;
uint32_t s = HW_REG(_DWT_CYCCNT);
uint32_t e = HW_REG(_DWT_CYCCNT); // (e - s) contains the number of cycle required to read the cycle counter
delay_dwt(0);
uint32_t f = HW_REG(_DWT_CYCCNT); // (f - e) contains the delay to call the delay function + the time to read the cycle counter
ASM_CYCLES_PER_ITERATION = (f - e) - (e - s);
// Use safer DWT function
DelayCycleFnc = delay_dwt;
}
}
#if ENABLED(MARLIN_DEV_MODE)
2021-02-12 07:49:07 -06:00
void dump_delay_accuracy_check() {
auto report_call_time = [](PGM_P const name, PGM_P const unit, const uint32_t cycles, const uint32_t total, const bool do_flush=true) {
2021-02-05 22:43:51 -06:00
SERIAL_ECHOPGM("Calling ");
2021-02-28 19:43:46 -06:00
SERIAL_ECHOPGM_P(name);
2021-09-09 04:57:05 -05:00
SERIAL_ECHOLNPGM(" for ", cycles);
2021-02-28 19:43:46 -06:00
SERIAL_ECHOPGM_P(unit);
2021-09-09 04:57:05 -05:00
SERIAL_ECHOLNPGM(" took: ", total);
2021-02-28 19:43:46 -06:00
SERIAL_ECHOPGM_P(unit);
if (do_flush) SERIAL_FLUSHTX();
2021-02-05 22:43:51 -06:00
};
uint32_t s, e;
2021-09-09 04:57:05 -05:00
SERIAL_ECHOLNPGM("Computed delay calibration value: ", ASM_CYCLES_PER_ITERATION);
2021-02-05 22:43:51 -06:00
SERIAL_FLUSH();
// Display the results of the calibration above
constexpr uint32_t testValues[] = { 1, 5, 10, 20, 50, 100, 150, 200, 350, 500, 750, 1000 };
for (auto i : testValues) {
s = micros(); DELAY_US(i); e = micros();
2021-02-12 07:49:07 -06:00
report_call_time(PSTR("delay"), PSTR("us"), i, e - s);
2021-02-05 22:43:51 -06:00
}
if (HW_REG(_DWT_CTRL)) {
for (auto i : testValues) {
s = HW_REG(_DWT_CYCCNT); DELAY_CYCLES(i); e = HW_REG(_DWT_CYCCNT);
2021-02-12 07:49:07 -06:00
report_call_time(PSTR("runtime delay"), PSTR("cycles"), i, e - s);
2021-02-05 22:43:51 -06:00
}
// Measure the delay to call a real function compared to a function pointer
s = HW_REG(_DWT_CYCCNT); delay_dwt(1); e = HW_REG(_DWT_CYCCNT);
2021-02-12 07:49:07 -06:00
report_call_time(PSTR("delay_dwt"), PSTR("cycles"), 1, e - s);
2021-02-05 22:43:51 -06:00
static PGMSTR(dcd, "DELAY_CYCLES directly ");
s = HW_REG(_DWT_CYCCNT); DELAY_CYCLES( 1); e = HW_REG(_DWT_CYCCNT);
2021-02-12 07:49:07 -06:00
report_call_time(dcd, PSTR("cycles"), 1, e - s, false);
2021-02-05 22:43:51 -06:00
s = HW_REG(_DWT_CYCCNT); DELAY_CYCLES( 5); e = HW_REG(_DWT_CYCCNT);
2021-02-12 07:49:07 -06:00
report_call_time(dcd, PSTR("cycles"), 5, e - s, false);
2021-02-05 22:43:51 -06:00
s = HW_REG(_DWT_CYCCNT); DELAY_CYCLES(10); e = HW_REG(_DWT_CYCCNT);
2021-02-12 07:49:07 -06:00
report_call_time(dcd, PSTR("cycles"), 10, e - s, false);
2021-02-05 22:43:51 -06:00
s = HW_REG(_DWT_CYCCNT); DELAY_CYCLES(20); e = HW_REG(_DWT_CYCCNT);
2021-02-12 07:49:07 -06:00
report_call_time(dcd, PSTR("cycles"), 20, e - s, false);
2021-02-05 22:43:51 -06:00
s = HW_REG(_DWT_CYCCNT); DELAY_CYCLES(50); e = HW_REG(_DWT_CYCCNT);
2021-02-12 07:49:07 -06:00
report_call_time(dcd, PSTR("cycles"), 50, e - s, false);
2021-02-05 22:43:51 -06:00
s = HW_REG(_DWT_CYCCNT); DELAY_CYCLES(100); e = HW_REG(_DWT_CYCCNT);
2021-02-12 07:49:07 -06:00
report_call_time(dcd, PSTR("cycles"), 100, e - s, false);
2021-02-05 22:43:51 -06:00
s = HW_REG(_DWT_CYCCNT); DELAY_CYCLES(200); e = HW_REG(_DWT_CYCCNT);
2021-02-12 07:49:07 -06:00
report_call_time(dcd, PSTR("cycles"), 200, e - s, false);
2021-02-05 22:43:51 -06:00
}
}
#endif // MARLIN_DEV_MODE
#else
void calibrate_delay_loop() {}
#if ENABLED(MARLIN_DEV_MODE)
2021-02-28 19:43:46 -06:00
void dump_delay_accuracy_check() { SERIAL_ECHOPGM_P(PSTR("N/A on this platform")); }
2021-02-05 22:43:51 -06:00
#endif
#endif