Marlin_Firmware/buildroot/share/PlatformIO/scripts/signature.py

177 lines
5.7 KiB
Python
Raw Normal View History

#
# signature.py
#
import os,subprocess,re,json,hashlib
#
# The dumbest preprocessor in the world
# Extract macro name from an header file and store them in an array
# No processing is done here, so they are raw values here and it does not match what actually enabled
# in the file (since you can have #if SOMETHING_UNDEFINED / #define BOB / #endif)
# But it's useful to filter the useful macro spit out by the preprocessor from noise from the system
# headers.
#
def extract_defines(filepath):
f = open(filepath, encoding="utf8").read().split("\n")
a = []
for line in f:
sline = line.strip(" \t\n\r")
if sline[:7] == "#define":
# Extract the key here (we don't care about the value)
kv = sline[8:].strip().split(' ')
a.append(kv[0])
return a
# Compute the SHA256 hash of a file
def get_file_sha256sum(filepath):
sha256_hash = hashlib.sha256()
with open(filepath,"rb") as f:
# Read and update hash string value in blocks of 4K
for byte_block in iter(lambda: f.read(4096),b""):
sha256_hash.update(byte_block)
return sha256_hash.hexdigest()
#
# Compress a JSON file into a zip file
#
import zipfile
def compress_file(filepath, outputbase):
with zipfile.ZipFile(outputbase + '.zip', 'w', compression=zipfile.ZIP_BZIP2, compresslevel=9) as zipf:
zipf.write(filepath, compress_type=zipfile.ZIP_BZIP2, compresslevel=9)
#
# Compute the build signature. The idea is to extract all defines in the configuration headers
# to build a unique reversible signature from this build so it can be included in the binary
# We can reverse the signature to get a 1:1 equivalent configuration file
#
def compute_build_signature(env):
if 'BUILD_SIGNATURE' in env:
return
# Definitions from these files will be kept
files_to_keep = [ 'Marlin/Configuration.h', 'Marlin/Configuration_adv.h' ]
build_dir=os.path.join(env['PROJECT_BUILD_DIR'], env['PIOENV'])
# Check if we can skip processing
hashes = ''
for header in files_to_keep:
hashes += get_file_sha256sum(header)[0:10]
marlin_json = os.path.join(build_dir, 'marlin_config.json')
marlin_zip = os.path.join(build_dir, 'mc')
# Read existing config file
try:
with open(marlin_json, 'r') as infile:
conf = json.load(infile)
if conf['__INITIAL_HASH'] == hashes:
# Same configuration, skip recomputing the building signature
compress_file(marlin_json, marlin_zip)
return
except:
pass
# Get enabled config options based on preprocessor
from preprocessor import run_preprocessor
complete_cfg = run_preprocessor(env)
# Dumb #define extraction from the configuration files
real_defines = {}
all_defines = []
for header in files_to_keep:
defines = extract_defines(header)
# To filter only the define we want
all_defines = all_defines + defines
# To remember from which file it cames from
real_defines[header.split('/')[-1]] = defines
r = re.compile(r"\(+(\s*-*\s*_.*)\)+")
# First step is to collect all valid macros
defines = {}
for line in complete_cfg:
# Split the define from the value
key_val = line[8:].strip().decode().split(' ')
key, value = key_val[0], ' '.join(key_val[1:])
# Ignore values starting with two underscore, since it's low level
if len(key) > 2 and key[0:2] == "__" :
continue
# Ignore values containing a parenthesis (likely a function macro)
if '(' in key and ')' in key:
continue
# Then filter dumb values
if r.match(value):
continue
defines[key] = value if len(value) else ""
if not 'CONFIGURATION_EMBEDDING' in defines:
return
# Second step is to filter useless macro
resolved_defines = {}
for key in defines:
# Remove all boards now
if key[0:6] == "BOARD_" and key != "BOARD_INFO_NAME":
continue
# Remove all keys ending by "_NAME" as it does not make a difference to the configuration
if key[-5:] == "_NAME" and key != "CUSTOM_MACHINE_NAME":
continue
# Remove all keys ending by "_T_DECLARED" as it's a copy of not important system stuff
if key[-11:] == "_T_DECLARED":
continue
# Remove keys that are not in the #define list in the Configuration list
if not (key in all_defines) and key != "DETAILED_BUILD_VERSION" and key != "STRING_DISTRIBUTION_DATE":
continue
# Don't be that smart guy here
resolved_defines[key] = defines[key]
# Generate a build signature now
# We are making an object that's a bit more complex than a basic dictionary here
data = {}
data['__INITIAL_HASH'] = hashes
# First create a key for each header here
for header in real_defines:
data[header] = {}
# Then populate the object where each key is going to (that's a O(N^2) algorithm here...)
for key in resolved_defines:
for header in real_defines:
if key in real_defines[header]:
data[header][key] = resolved_defines[key]
# Append the source code version and date
data['VERSION'] = {}
data['VERSION']['DETAILED_BUILD_VERSION'] = resolved_defines['DETAILED_BUILD_VERSION']
data['VERSION']['STRING_DISTRIBUTION_DATE'] = resolved_defines['STRING_DISTRIBUTION_DATE']
try:
curver = subprocess.check_output(["git", "describe", "--match=NeVeRmAtCh", "--always"]).strip()
data['VERSION']['GIT_REF'] = curver.decode()
except:
pass
with open(marlin_json, 'w') as outfile:
json.dump(data, outfile, separators=(',', ':'))
# Compress the JSON file as much as we can
compress_file(marlin_json, marlin_zip)
# Generate a C source file for storing this array
with open('Marlin/src/mczip.h','wb') as result_file:
result_file.write(b'#warning "Generated file \'mc.zip\' is embedded"\n')
result_file.write(b'const unsigned char mc_zip[] PROGMEM = {\n ')
count = 0
for b in open(os.path.join(build_dir, 'mc.zip'), 'rb').read():
result_file.write(b' 0x%02X,' % b)
count += 1
if (count % 16 == 0):
result_file.write(b'\n ')
if (count % 16):
result_file.write(b'\n')
result_file.write(b'};\n')