231 lines
7.5 KiB
C++
Raw Normal View History

2017-09-06 06:28:32 -05:00
/**
* Marlin 3D Printer Firmware
2020-02-03 08:00:57 -06:00
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
2017-09-06 06:28:32 -05:00
*
* Based on Sprinter and grbl.
2019-06-27 23:57:50 -05:00
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
2017-09-06 06:28:32 -05:00
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
2020-07-23 05:20:14 +02:00
* along with this program. If not, see <https://www.gnu.org/licenses/>.
2017-09-06 06:28:32 -05:00
*
*/
#include "../inc/MarlinConfig.h"
#if EITHER(NOZZLE_CLEAN_FEATURE, NOZZLE_PARK_FEATURE)
#include "nozzle.h"
Nozzle nozzle;
#include "../MarlinCore.h"
#include "../module/motion.h"
#if ENABLED(NOZZLE_CLEAN_FEATURE)
/**
* @brief Stroke clean pattern
* @details Wipes the nozzle back and forth in a linear movement
*
2019-09-29 04:25:39 -05:00
* @param start xyz_pos_t defining the starting point
* @param end xyz_pos_t defining the ending point
* @param strokes number of strokes to execute
*/
2019-09-29 04:25:39 -05:00
void Nozzle::stroke(const xyz_pos_t &start, const xyz_pos_t &end, const uint8_t &strokes) {
2020-04-22 16:35:03 -05:00
TERN_(NOZZLE_CLEAN_GOBACK, const xyz_pos_t oldpos = current_position);
// Move to the starting point
#if ENABLED(NOZZLE_CLEAN_NO_Z)
2019-09-29 04:25:39 -05:00
do_blocking_move_to_xy(start);
#else
2019-09-29 04:25:39 -05:00
do_blocking_move_to(start);
#endif
// Start the stroke pattern
2020-03-13 23:18:16 -05:00
LOOP_L_N(i, strokes >> 1) {
2019-09-29 04:25:39 -05:00
do_blocking_move_to_xy(end);
do_blocking_move_to_xy(start);
}
2020-04-22 16:35:03 -05:00
TERN_(NOZZLE_CLEAN_GOBACK, do_blocking_move_to(oldpos));
}
/**
* @brief Zig-zag clean pattern
* @details Apply a zig-zag cleaning pattern
*
2019-09-29 04:25:39 -05:00
* @param start xyz_pos_t defining the starting point
* @param end xyz_pos_t defining the ending point
* @param strokes number of strokes to execute
* @param objects number of triangles to do
*/
2019-09-29 04:25:39 -05:00
void Nozzle::zigzag(const xyz_pos_t &start, const xyz_pos_t &end, const uint8_t &strokes, const uint8_t &objects) {
const xy_pos_t diff = end - start;
if (!diff.x || !diff.y) return;
2020-04-22 16:35:03 -05:00
TERN_(NOZZLE_CLEAN_GOBACK, const xyz_pos_t back = current_position);
#if ENABLED(NOZZLE_CLEAN_NO_Z)
2019-09-29 04:25:39 -05:00
do_blocking_move_to_xy(start);
#else
2019-09-29 04:25:39 -05:00
do_blocking_move_to(start);
#endif
const uint8_t zigs = objects << 1;
2019-09-29 04:25:39 -05:00
const bool horiz = ABS(diff.x) >= ABS(diff.y); // Do a horizontal wipe?
const float P = (horiz ? diff.x : diff.y) / zigs; // Period of each zig / zag
const xyz_pos_t *side;
2020-03-13 23:18:16 -05:00
LOOP_L_N(j, strokes) {
for (int8_t i = 0; i < zigs; i++) {
side = (i & 1) ? &end : &start;
if (horiz)
do_blocking_move_to_xy(start.x + i * P, side->y);
else
do_blocking_move_to_xy(side->x, start.y + i * P);
}
for (int8_t i = zigs; i >= 0; i--) {
side = (i & 1) ? &end : &start;
if (horiz)
do_blocking_move_to_xy(start.x + i * P, side->y);
else
do_blocking_move_to_xy(side->x, start.y + i * P);
}
}
2020-04-22 16:35:03 -05:00
TERN_(NOZZLE_CLEAN_GOBACK, do_blocking_move_to(back));
}
/**
* @brief Circular clean pattern
* @details Apply a circular cleaning pattern
*
2019-09-29 04:25:39 -05:00
* @param start xyz_pos_t defining the middle of circle
* @param strokes number of strokes to execute
* @param radius radius of circle
*/
2019-09-29 04:25:39 -05:00
void Nozzle::circle(const xyz_pos_t &start, const xyz_pos_t &middle, const uint8_t &strokes, const float &radius) {
if (strokes == 0) return;
2020-04-22 16:35:03 -05:00
TERN_(NOZZLE_CLEAN_GOBACK, const xyz_pos_t back = current_position);
TERN(NOZZLE_CLEAN_NO_Z, do_blocking_move_to_xy, do_blocking_move_to)(start);
2020-03-13 23:18:16 -05:00
LOOP_L_N(s, strokes)
LOOP_L_N(i, NOZZLE_CLEAN_CIRCLE_FN)
do_blocking_move_to_xy(
middle.x + sin((RADIANS(360) / NOZZLE_CLEAN_CIRCLE_FN) * i) * radius,
middle.y + cos((RADIANS(360) / NOZZLE_CLEAN_CIRCLE_FN) * i) * radius
);
// Let's be safe
2019-09-29 04:25:39 -05:00
do_blocking_move_to_xy(start);
2020-04-22 16:35:03 -05:00
TERN_(NOZZLE_CLEAN_GOBACK, do_blocking_move_to(back));
}
/**
* @brief Clean the nozzle
* @details Starts the selected clean procedure pattern
*
* @param pattern one of the available patterns
* @param argument depends on the cleaning pattern
*/
void Nozzle::clean(const uint8_t &pattern, const uint8_t &strokes, const float &radius, const uint8_t &objects, const uint8_t cleans) {
xyz_pos_t start[HOTENDS] = NOZZLE_CLEAN_START_POINT, end[HOTENDS] = NOZZLE_CLEAN_END_POINT, middle[HOTENDS] = NOZZLE_CLEAN_CIRCLE_MIDDLE;
const uint8_t arrPos = ANY(SINGLENOZZLE, MIXING_EXTRUDER) ? 0 : active_extruder;
#if HAS_SOFTWARE_ENDSTOPS
#define LIMIT_AXIS(A) do{ \
LIMIT( start[arrPos].A, soft_endstop.min.A, soft_endstop.max.A); \
LIMIT(middle[arrPos].A, soft_endstop.min.A, soft_endstop.max.A); \
LIMIT( end[arrPos].A, soft_endstop.min.A, soft_endstop.max.A); \
}while(0)
2020-04-29 03:25:35 -05:00
if (soft_endstops_enabled) {
LIMIT_AXIS(x);
LIMIT_AXIS(y);
LIMIT_AXIS(z);
const bool radiusOutOfRange = (middle[arrPos].x + radius > soft_endstop.max.x)
|| (middle[arrPos].x - radius < soft_endstop.min.x)
|| (middle[arrPos].y + radius > soft_endstop.max.y)
|| (middle[arrPos].y - radius < soft_endstop.min.y);
if (radiusOutOfRange && pattern == 2) {
SERIAL_ECHOLNPGM("Warning: Radius Out of Range");
return;
}
}
#endif
if (pattern == 2) {
if (!(cleans & (_BV(X_AXIS) | _BV(Y_AXIS)))) {
SERIAL_ECHOLNPGM("Warning: Clean Circle requires XY");
return;
}
}
else {
if (!TEST(cleans, X_AXIS)) start[arrPos].x = end[arrPos].x = current_position.x;
if (!TEST(cleans, Y_AXIS)) start[arrPos].y = end[arrPos].y = current_position.y;
}
if (!TEST(cleans, Z_AXIS)) start[arrPos].z = end[arrPos].z = current_position.z;
switch (pattern) {
case 1: zigzag(start[arrPos], end[arrPos], strokes, objects); break;
case 2: circle(start[arrPos], middle[arrPos], strokes, radius); break;
default: stroke(start[arrPos], end[arrPos], strokes);
}
}
#endif // NOZZLE_CLEAN_FEATURE
#if ENABLED(NOZZLE_PARK_FEATURE)
2019-09-29 04:25:39 -05:00
void Nozzle::park(const uint8_t z_action, const xyz_pos_t &park/*=NOZZLE_PARK_POINT*/) {
2019-09-26 01:28:09 -05:00
constexpr feedRate_t fr_xy = NOZZLE_PARK_XY_FEEDRATE, fr_z = NOZZLE_PARK_Z_FEEDRATE;
switch (z_action) {
case 1: // Go to Z-park height
do_blocking_move_to_z(park.z, fr_z);
break;
case 2: // Raise by Z-park height
2019-09-29 04:25:39 -05:00
do_blocking_move_to_z(_MIN(current_position.z + park.z, Z_MAX_POS), fr_z);
break;
2020-04-25 05:39:08 +02:00
default: {
// Apply a minimum raise, overriding G27 Z
const float min_raised_z =_MIN(Z_MAX_POS, current_position.z
#ifdef NOZZLE_PARK_Z_RAISE_MIN
+ NOZZLE_PARK_Z_RAISE_MIN
#endif
);
do_blocking_move_to_z(_MAX(park.z, min_raised_z), fr_z);
} break;
}
do_blocking_move_to_xy(
TERN(NOZZLE_PARK_Y_ONLY, current_position, park).x,
TERN(NOZZLE_PARK_X_ONLY, current_position, park).y,
fr_xy
);
report_current_position();
}
#endif // NOZZLE_PARK_FEATURE
#endif // NOZZLE_CLEAN_FEATURE || NOZZLE_PARK_FEATURE