Marlin_Firmware/Marlin/Marlin.pde

2056 lines
62 KiB
Plaintext
Raw Normal View History

2011-08-12 15:28:35 -05:00
/*
Reprap firmware based on Sprinter and grbl.
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
2011-08-13 03:09:54 -05:00
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
2011-08-12 15:28:35 -05:00
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
2011-08-13 03:09:54 -05:00
2011-08-12 15:28:35 -05:00
This firmware is optimized for gen6 electronics.
*/
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Marlin.h"
#include "speed_lookuptable.h"
2011-10-18 12:13:30 -05:00
char version_string[] = "0.9.10";
2011-08-12 15:28:35 -05:00
#ifdef SDSUPPORT
#include "SdFat.h"
2011-08-13 03:09:54 -05:00
#endif //SDSUPPORT
2011-08-12 15:28:35 -05:00
#ifndef CRITICAL_SECTION_START
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli()
#define CRITICAL_SECTION_END SREG = _sreg
2011-08-13 03:09:54 -05:00
#endif //CRITICAL_SECTION_START
2011-08-12 15:28:35 -05:00
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//Implemented Codes
//-------------------
// G0 -> G1
// G1 - Coordinated Movement X Y Z E
// G4 - Dwell S<seconds> or P<milliseconds>
// G28 - Home all Axis
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to cordinates given
//RepRap M Codes
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Wait for extruder current temp to reach target temp.
// M114 - Display current position
//Custom M Codes
// M80 - Turn on Power Supply
// M20 - List SD card
// M21 - Init SD card
// M22 - Release SD card
// M23 - Select SD file (M23 filename.g)
// M24 - Start/resume SD print
// M25 - Pause SD print
// M26 - Set SD position in bytes (M26 S12345)
// M27 - Report SD print status
// M28 - Start SD write (M28 filename.g)
// M29 - Stop SD write
// M81 - Turn off Power Supply
// M82 - Set E codes absolute (default)
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
// M84 - Disable steppers until next move,
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M115 - Capabilities string
// M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp.
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000)
// M301 - Set PID parameters P I and D
//Stepper Movement Variables
char axis_codes[NUM_AXIS] = {
'X', 'Y', 'Z', 'E'};
float destination[NUM_AXIS] = {
0.0, 0.0, 0.0, 0.0};
float current_position[NUM_AXIS] = {
0.0, 0.0, 0.0, 0.0};
bool home_all_axis = true;
long feedrate = 1500, next_feedrate, saved_feedrate;
long gcode_N, gcode_LastN;
bool relative_mode = false; //Determines Absolute or Relative Coordinates
bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
// comm variables
#define MAX_CMD_SIZE 96
#define BUFSIZE 8
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
bool fromsd[BUFSIZE];
int bufindr = 0;
int bufindw = 0;
int buflen = 0;
int i = 0;
char serial_char;
int serial_count = 0;
boolean comment_mode = false;
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
// Manage heater variables.
int target_raw = 0;
int current_raw = 0;
unsigned char temp_meas_ready = false;
#ifdef PIDTEMP
double temp_iState = 0;
double temp_dState = 0;
double pTerm;
double iTerm;
double dTerm;
//int output;
double pid_error;
double temp_iState_min;
double temp_iState_max;
double pid_setpoint = 0.0;
double pid_input;
double pid_output;
bool pid_reset;
2011-08-13 03:09:54 -05:00
#endif //PIDTEMP
2011-08-12 15:28:35 -05:00
#ifdef WATCHPERIOD
int watch_raw = -1000;
unsigned long watchmillis = 0;
2011-08-13 03:09:54 -05:00
#endif //WATCHPERIOD
2011-08-12 15:28:35 -05:00
#ifdef MINTEMP
int minttemp = temp2analogh(MINTEMP);
2011-08-13 03:09:54 -05:00
#endif //MINTEMP
2011-08-12 15:28:35 -05:00
#ifdef MAXTEMP
int maxttemp = temp2analogh(MAXTEMP);
2011-08-13 03:09:54 -05:00
#endif //MAXTEMP
2011-08-12 15:28:35 -05:00
//Inactivity shutdown variables
unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0;
unsigned long stepper_inactive_time = 0;
#ifdef SDSUPPORT
Sd2Card card;
SdVolume volume;
SdFile root;
SdFile file;
uint32_t filesize = 0;
uint32_t sdpos = 0;
bool sdmode = false;
bool sdactive = false;
bool savetosd = false;
int16_t n;
void initsd(){
sdactive = false;
#if SDSS >- 1
if(root.isOpen())
root.close();
if (!card.init(SPI_FULL_SPEED,SDSS)){
//if (!card.init(SPI_HALF_SPEED,SDSS))
Serial.println("SD init fail");
}
else if (!volume.init(&card))
Serial.println("volume.init failed");
else if (!root.openRoot(&volume))
Serial.println("openRoot failed");
else
sdactive = true;
2011-08-13 03:09:54 -05:00
#endif //SDSS
2011-08-12 15:28:35 -05:00
}
inline void write_command(char *buf){
char* begin = buf;
char* npos = 0;
char* end = buf + strlen(buf) - 1;
file.writeError = false;
if((npos = strchr(buf, 'N')) != NULL){
begin = strchr(npos, ' ') + 1;
end = strchr(npos, '*') - 1;
}
end[1] = '\r';
end[2] = '\n';
end[3] = '\0';
//Serial.println(begin);
file.write(begin);
if (file.writeError){
Serial.println("error writing to file");
}
}
2011-08-13 03:09:54 -05:00
#endif //SDSUPPORT
2011-08-12 15:28:35 -05:00
void setup()
{
Serial.begin(BAUDRATE);
Serial.print("Marlin ");
Serial.println(version_string);
Serial.println("start");
for(int i = 0; i < BUFSIZE; i++){
fromsd[i] = false;
}
//Initialize Dir Pins
#if X_DIR_PIN > -1
SET_OUTPUT(X_DIR_PIN);
#endif
#if Y_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN);
#endif
#if Z_DIR_PIN > -1
SET_OUTPUT(Z_DIR_PIN);
#endif
#if E_DIR_PIN > -1
SET_OUTPUT(E_DIR_PIN);
#endif
//Initialize Enable Pins - steppers default to disabled.
#if (X_ENABLE_PIN > -1)
SET_OUTPUT(X_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
#endif
#if (Y_ENABLE_PIN > -1)
SET_OUTPUT(Y_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
#endif
#if (Z_ENABLE_PIN > -1)
SET_OUTPUT(Z_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
#endif
#if (E_ENABLE_PIN > -1)
SET_OUTPUT(E_ENABLE_PIN);
if(!E_ENABLE_ON) WRITE(E_ENABLE_PIN,HIGH);
#endif
//endstops and pullups
#ifdef ENDSTOPPULLUPS
#if X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
WRITE(X_MIN_PIN,HIGH);
#endif
#if X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
WRITE(X_MAX_PIN,HIGH);
#endif
#if Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
WRITE(Y_MIN_PIN,HIGH);
#endif
#if Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
WRITE(Y_MAX_PIN,HIGH);
#endif
#if Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
WRITE(Z_MIN_PIN,HIGH);
#endif
#if Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
WRITE(Z_MAX_PIN,HIGH);
#endif
2011-08-13 03:09:54 -05:00
#else //ENDSTOPPULLUPS
2011-08-12 15:28:35 -05:00
#if X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN);
#endif
#if X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN);
#endif
#if Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN);
#endif
#if Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN);
#endif
#if Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN);
#endif
#if Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN);
#endif
2011-08-13 03:09:54 -05:00
#endif //ENDSTOPPULLUPS
2011-08-12 15:28:35 -05:00
#if (HEATER_0_PIN > -1)
SET_OUTPUT(HEATER_0_PIN);
#endif
#if (HEATER_1_PIN > -1)
SET_OUTPUT(HEATER_1_PIN);
#endif
//Initialize Step Pins
#if (X_STEP_PIN > -1)
SET_OUTPUT(X_STEP_PIN);
#endif
#if (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN);
#endif
#if (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN);
#endif
#if (E_STEP_PIN > -1)
SET_OUTPUT(E_STEP_PIN);
#endif
for(int i=0; i < NUM_AXIS; i++){
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
}
#ifdef PIDTEMP
temp_iState_min = 0.0;
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
#endif //PIDTEMP
#ifdef SDSUPPORT
//power to SD reader
#if SDPOWER > -1
SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH);
2011-08-13 03:09:54 -05:00
#endif //SDPOWER
2011-08-12 15:28:35 -05:00
initsd();
2011-08-13 03:09:54 -05:00
#endif //SDSUPPORT
2011-08-12 15:28:35 -05:00
plan_init(); // Initialize planner;
st_init(); // Initialize stepper;
tp_init(); // Initialize temperature loop
}
void loop()
{
if(buflen<3)
get_command();
if(buflen){
#ifdef SDSUPPORT
if(savetosd){
if(strstr(cmdbuffer[bufindr],"M29") == NULL){
write_command(cmdbuffer[bufindr]);
Serial.println("ok");
}
else{
file.sync();
file.close();
savetosd = false;
Serial.println("Done saving file.");
}
}
else{
process_commands();
}
#else
process_commands();
2011-08-13 03:09:54 -05:00
#endif //SDSUPPORT
2011-08-12 15:28:35 -05:00
buflen = (buflen-1);
bufindr = (bufindr + 1)%BUFSIZE;
}
//check heater every n milliseconds
manage_heater();
manage_inactivity(1);
}
inline void get_command()
{
while( Serial.available() > 0 && buflen < BUFSIZE) {
serial_char = Serial.read();
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
{
if(!serial_count) return; //if empty line
cmdbuffer[bufindw][serial_count] = 0; //terminate string
if(!comment_mode){
fromsd[bufindw] = false;
if(strstr(cmdbuffer[bufindw], "N") != NULL)
{
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
Serial.println(gcode_LastN);
//Serial.println(gcode_N);
FlushSerialRequestResend();
serial_count = 0;
return;
}
if(strstr(cmdbuffer[bufindw], "*") != NULL)
{
byte checksum = 0;
byte count = 0;
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
Serial.print("Error: checksum mismatch, Last Line:");
Serial.println(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
//if no errors, continue parsing
}
else
{
Serial.print("Error: No Checksum with line number, Last Line:");
Serial.println(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
gcode_LastN = gcode_N;
//if no errors, continue parsing
}
else // if we don't receive 'N' but still see '*'
{
if((strstr(cmdbuffer[bufindw], "*") != NULL))
{
Serial.print("Error: No Line Number with checksum, Last Line:");
Serial.println(gcode_LastN);
serial_count = 0;
return;
}
}
if((strstr(cmdbuffer[bufindw], "G") != NULL)){
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
case 0:
case 1:
#ifdef SDSUPPORT
if(savetosd)
break;
2011-08-13 03:09:54 -05:00
#endif //SDSUPPORT
2011-08-12 15:28:35 -05:00
Serial.println("ok");
break;
default:
break;
}
}
bufindw = (bufindw + 1)%BUFSIZE;
buflen += 1;
}
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#ifdef SDSUPPORT
if(!sdmode || serial_count!=0){
return;
}
while( filesize > sdpos && buflen < BUFSIZE) {
n = file.read();
serial_char = (char)n;
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
{
sdpos = file.curPosition();
if(sdpos >= filesize){
sdmode = false;
Serial.println("Done printing file");
}
if(!serial_count) return; //if empty line
cmdbuffer[bufindw][serial_count] = 0; //terminate string
if(!comment_mode){
fromsd[bufindw] = true;
buflen += 1;
bufindw = (bufindw + 1)%BUFSIZE;
}
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
2011-08-13 03:09:54 -05:00
#endif //SDSUPPORT
2011-08-12 15:28:35 -05:00
}
inline float code_value() {
return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
}
inline long code_value_long() {
return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
}
inline bool code_seen(char code_string[]) {
return (strstr(cmdbuffer[bufindr], code_string) != NULL);
} //Return True if the string was found
inline bool code_seen(char code)
{
strchr_pointer = strchr(cmdbuffer[bufindr], code);
return (strchr_pointer != NULL); //Return True if a character was found
}
inline void process_commands()
{
unsigned long codenum; //throw away variable
char *starpos = NULL;
if(code_seen('G'))
{
switch((int)code_value())
{
case 0: // G0 -> G1
case 1: // G1
get_coordinates(); // For X Y Z E F
prepare_move();
previous_millis_cmd = millis();
//ClearToSend();
return;
//break;
case 4: // G4 dwell
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
codenum += millis(); // keep track of when we started waiting
while(millis() < codenum ){
manage_heater();
}
break;
case 28: //G28 Home all Axis one at a time
saved_feedrate = feedrate;
for(int i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i];
}
feedrate = 0;
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
st_synchronize();
current_position[X_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
feedrate = homing_feedrate[X_AXIS];
prepare_move();
st_synchronize();
current_position[X_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = -5 * X_HOME_DIR;
prepare_move();
st_synchronize();
destination[X_AXIS] = 10 * X_HOME_DIR;
feedrate = homing_feedrate[X_AXIS]/2 ;
prepare_move();
st_synchronize();
current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = current_position[X_AXIS];
feedrate = 0;
}
}
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
current_position[Y_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
feedrate = homing_feedrate[Y_AXIS];
prepare_move();
st_synchronize();
current_position[Y_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = -5 * Y_HOME_DIR;
prepare_move();
st_synchronize();
destination[Y_AXIS] = 10 * Y_HOME_DIR;
feedrate = homing_feedrate[Y_AXIS]/2;
prepare_move();
st_synchronize();
current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = current_position[Y_AXIS];
feedrate = 0;
}
}
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
feedrate = homing_feedrate[Z_AXIS];
prepare_move();
st_synchronize();
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = -2 * Z_HOME_DIR;
prepare_move();
st_synchronize();
destination[Z_AXIS] = 3 * Z_HOME_DIR;
feedrate = homing_feedrate[Z_AXIS]/2;
prepare_move();
st_synchronize();
current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = current_position[Z_AXIS];
feedrate = 0;
}
}
feedrate = saved_feedrate;
previous_millis_cmd = millis();
break;
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
if(!code_seen(axis_codes[E_AXIS]))
st_synchronize();
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) current_position[i] = code_value();
}
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
break;
}
}
else if(code_seen('M'))
{
switch( (int)code_value() )
{
#ifdef SDSUPPORT
case 20: // M20 - list SD card
Serial.println("Begin file list");
root.ls();
Serial.println("End file list");
break;
case 21: // M21 - init SD card
sdmode = false;
initsd();
break;
case 22: //M22 - release SD card
sdmode = false;
sdactive = false;
break;
case 23: //M23 - Select file
if(sdactive){
sdmode = false;
file.close();
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos!=NULL)
*(starpos-1)='\0';
if (file.open(&root, strchr_pointer + 4, O_READ)) {
Serial.print("File opened:");
Serial.print(strchr_pointer + 4);
Serial.print(" Size:");
Serial.println(file.fileSize());
sdpos = 0;
filesize = file.fileSize();
Serial.println("File selected");
}
else{
Serial.println("file.open failed");
}
}
break;
case 24: //M24 - Start SD print
if(sdactive){
sdmode = true;
}
break;
case 25: //M25 - Pause SD print
if(sdmode){
sdmode = false;
}
break;
case 26: //M26 - Set SD index
if(sdactive && code_seen('S')){
sdpos = code_value_long();
file.seekSet(sdpos);
}
break;
case 27: //M27 - Get SD status
if(sdactive){
Serial.print("SD printing byte ");
Serial.print(sdpos);
Serial.print("/");
Serial.println(filesize);
}
else{
Serial.println("Not SD printing");
}
break;
case 28: //M28 - Start SD write
if(sdactive){
char* npos = 0;
file.close();
sdmode = false;
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos-1) = '\0';
}
if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
{
Serial.print("open failed, File: ");
Serial.print(strchr_pointer + 4);
Serial.print(".");
}
else{
savetosd = true;
Serial.print("Writing to file: ");
Serial.println(strchr_pointer + 4);
}
}
break;
case 29: //M29 - Stop SD write
//processed in write to file routine above
//savetosd = false;
break;
2011-08-13 03:09:54 -05:00
#endif //SDSUPPORT
2011-08-12 15:28:35 -05:00
case 104: // M104
#ifdef PID_OPENLOOP
if (code_seen('S')) PidTemp_Output = code_value() * (PID_MAX/100.0);
if(pid_output > PID_MAX) pid_output = PID_MAX;
if(pid_output < 0) pid_output = 0;
#else //PID_OPENLOOP
if (code_seen('S')) {
target_raw = temp2analogh(code_value());
#ifdef PIDTEMP
pid_setpoint = code_value();
#endif //PIDTEMP
}
#ifdef WATCHPERIOD
if(target_raw > current_raw){
watchmillis = max(1,millis());
watch_raw = current_raw;
}
else{
watchmillis = 0;
}
#endif //WATCHPERIOD
#endif //PID_OPENLOOP
break;
case 105: // M105
Serial.print("ok T:");
Serial.println(analog2temp(current_raw));
return;
//break;
case 109: // M109 - Wait for extruder heater to reach target.
2011-08-14 15:15:33 -05:00
if (code_seen('S')) {
target_raw = temp2analogh(code_value());
#ifdef PIDTEMP
pid_setpoint = code_value();
#endif //PIDTEMP
}
2011-08-12 15:28:35 -05:00
#ifdef WATCHPERIOD
if(target_raw>current_raw){
watchmillis = max(1,millis());
watch_raw = current_raw;
}
else{
watchmillis = 0;
}
2011-08-13 03:09:54 -05:00
#endif //WATCHERPERIOD
2011-08-12 15:28:35 -05:00
codenum = millis();
while(current_raw < target_raw) {
if( (millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
Serial.print("T:");
Serial.println( analog2temp(current_raw));
codenum = millis();
}
manage_heater();
}
break;
case 190:
break;
case 82:
axis_relative_modes[3] = false;
break;
case 83:
axis_relative_modes[3] = true;
break;
case 84:
if(code_seen('S')){
stepper_inactive_time = code_value() * 1000;
}
else{
st_synchronize();
disable_x();
disable_y();
disable_z();
disable_e();
}
break;
case 85: // M85
code_seen('S');
max_inactive_time = code_value() * 1000;
break;
case 92: // M92
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
}
break;
case 115: // M115
Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
break;
case 114: // M114
Serial.print("X:");
Serial.print(current_position[X_AXIS]);
Serial.print("Y:");
Serial.print(current_position[Y_AXIS]);
Serial.print("Z:");
Serial.print(current_position[Z_AXIS]);
Serial.print("E:");
Serial.println(current_position[E_AXIS]);
break;
case 119: // M119
#if (X_MIN_PIN > -1)
Serial.print("x_min:");
Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (X_MAX_PIN > -1)
Serial.print("x_max:");
Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Y_MIN_PIN > -1)
Serial.print("y_min:");
Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Y_MAX_PIN > -1)
Serial.print("y_max:");
Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Z_MIN_PIN > -1)
Serial.print("z_min:");
Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Z_MAX_PIN > -1)
Serial.print("z_max:");
Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
Serial.println("");
break;
//TODO: update for all axis, use for loop
case 201: // M201
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#endif
#ifdef PIDTEMP
case 301: // M301
if(code_seen('P')) Kp = code_value();
if(code_seen('I')) Ki = code_value()*PID_dT;
if(code_seen('D')) Kd = code_value()/PID_dT;
Serial.print("Kp ");Serial.println(Kp);
Serial.print("Ki ");Serial.println(Ki/PID_dT);
Serial.print("Kd ");Serial.println(Kd*PID_dT);
temp_iState_min = 0.0;
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
break;
#endif //PIDTEMP
}
}
else{
Serial.println("Unknown command:");
Serial.println(cmdbuffer[bufindr]);
}
ClearToSend();
}
void FlushSerialRequestResend()
{
//char cmdbuffer[bufindr][100]="Resend:";
Serial.flush();
Serial.print("Resend:");
Serial.println(gcode_LastN + 1);
ClearToSend();
}
void ClearToSend()
{
previous_millis_cmd = millis();
#ifdef SDSUPPORT
if(fromsd[bufindr])
return;
2011-08-13 03:09:54 -05:00
#endif //SDSUPPORT
2011-08-12 15:28:35 -05:00
Serial.println("ok");
}
inline void get_coordinates()
{
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
else destination[i] = current_position[i]; //Are these else lines really needed?
}
if(code_seen('F')) {
next_feedrate = code_value();
if(next_feedrate > 0.0) feedrate = next_feedrate;
}
}
void prepare_move()
{
2011-09-15 10:37:58 -05:00
if (min_software_endstops) {
if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0;
if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0;
if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0;
}
if (max_software_endstops) {
if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH;
if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH;
if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
}
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60.0);
2011-08-12 15:28:35 -05:00
for(int i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
}
void manage_heater()
{
float pid_input;
float pid_output;
if(temp_meas_ready != true)
return;
CRITICAL_SECTION_START;
temp_meas_ready = false;
CRITICAL_SECTION_END;
#ifdef PIDTEMP
2011-08-13 03:09:54 -05:00
pid_input = analog2temp(current_raw);
2011-08-12 15:28:35 -05:00
#ifndef PID_OPENLOOP
pid_error = pid_setpoint - pid_input;
if(pid_error > 10){
pid_output = PID_MAX;
pid_reset = true;
}
else if(pid_error < -10) {
pid_output = 0;
pid_reset = true;
}
else {
if(pid_reset == true) {
temp_iState = 0.0;
pid_reset = false;
}
pTerm = Kp * pid_error;
temp_iState += pid_error;
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
iTerm = Ki * temp_iState;
#define K1 0.8
#define K2 (1.0-K1)
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
temp_dState = pid_input;
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
}
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
Serial.print(" Input ");
Serial.print(pid_input);
Serial.print(" Output ");
Serial.print(pid_output);
Serial.print(" pTerm ");
Serial.print(pTerm);
Serial.print(" iTerm ");
Serial.print(iTerm);
Serial.print(" dTerm ");
Serial.print(dTerm);
Serial.println();
#endif //PID_DEBUG
OCR2B = pid_output;
2011-08-13 03:09:54 -05:00
#endif //PIDTEMP
2011-08-12 15:28:35 -05:00
}
int temp2analogu(int celsius, const short table[][2], int numtemps) {
int raw = 0;
byte i;
for (i=1; i<numtemps; i++) {
if (table[i][1] < celsius) {
raw = table[i-1][0] +
(celsius - table[i-1][1]) *
(table[i][0] - table[i-1][0]) /
(table[i][1] - table[i-1][1]);
break;
}
}
// Overflow: Set to last value in the table
if (i == numtemps) raw = table[i-1][0];
return 16383 - raw;
}
float analog2tempu(int raw,const short table[][2], int numtemps) {
float celsius = 0.0;
byte i;
raw = 16383 - raw;
for (i=1; i<numtemps; i++) {
if (table[i][0] > raw) {
celsius = (float)table[i-1][1] +
(float)(raw - table[i-1][0]) *
(float)(table[i][1] - table[i-1][1]) /
(float)(table[i][0] - table[i-1][0]);
break;
}
}
// Overflow: Set to last value in the table
if (i == numtemps) celsius = table[i-1][1];
return celsius;
}
inline void kill()
{
target_raw=0;
#ifdef PIDTEMP
pid_setpoint = 0.0;
2011-08-13 03:09:54 -05:00
#endif //PIDTEMP
2011-08-12 15:28:35 -05:00
OCR2B = 0;
WRITE(HEATER_0_PIN,LOW);
disable_x();
disable_y();
disable_z();
disable_e();
}
inline void manage_inactivity(byte debug) {
if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
disable_x();
disable_y();
disable_z();
disable_e();
}
check_axes_activity();
}
// Planner
/*
Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
s == speed, a == acceleration, t == time, d == distance
Basic definitions:
Speed[s_, a_, t_] := s + (a*t)
Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
Distance to reach a specific speed with a constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
Speed after a given distance of travel with constant acceleration:
Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
m -> Sqrt[2 a d + s^2]
DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
When to start braking (di) to reach a specified destionation speed (s2) after accelerating
from initial speed s1 without ever stopping at a plateau:
Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
*/
// The number of linear motions that can be in the plan at any give time
#define BLOCK_BUFFER_SIZE 16
#define BLOCK_BUFFER_MASK 0x0f
static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
static volatile unsigned char block_buffer_tail; // Index of the block to process now
// The current position of the tool in absolute steps
static long position[4];
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
// given acceleration:
inline long estimate_acceleration_distance(long initial_rate, long target_rate, long acceleration) {
return(
(target_rate*target_rate-initial_rate*initial_rate)/
(2L*acceleration)
);
}
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
// a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
inline long intersection_distance(long initial_rate, long final_rate, long acceleration, long distance) {
return(
(2*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
(4*acceleration)
);
}
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) {
if(block->busy == true) return; // If block is busy then bail out.
float entry_factor = entry_speed / block->nominal_speed;
float exit_factor = exit_speed / block->nominal_speed;
long initial_rate = ceil(block->nominal_rate*entry_factor);
long final_rate = ceil(block->nominal_rate*exit_factor);
#ifdef ADVANCE
long initial_advance = block->advance*entry_factor*entry_factor;
long final_advance = block->advance*exit_factor*exit_factor;
#endif // ADVANCE
// Limit minimal step rate (Otherwise the timer will overflow.)
2011-08-15 12:26:40 -05:00
if(initial_rate <120) initial_rate=120;
if(final_rate < 120) final_rate=120;
2011-08-12 15:28:35 -05:00
// Calculate the acceleration steps
2011-09-14 11:56:45 -05:00
long acceleration = block->acceleration_st;
2011-08-12 15:28:35 -05:00
long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
// Calculate the size of Plateau of Nominal Rate.
long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort acceleration and start braking
// in order to reach the final_rate exactly at the end of this block.
if (plateau_steps < 0) {
accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);
plateau_steps = 0;
}
long decelerate_after = accelerate_steps+plateau_steps;
long acceleration_rate = (long)((float)acceleration * 8.388608);
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if(block->busy == false) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps;
block->decelerate_after = decelerate_after;
block->acceleration_rate = acceleration_rate;
block->initial_rate = initial_rate;
block->final_rate = final_rate;
#ifdef ADVANCE
block->initial_advance = initial_advance;
block->final_advance = final_advance;
#endif ADVANCE
}
CRITICAL_SECTION_END;
}
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
// acceleration within the allotted distance.
inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
return(
sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance)
);
}
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
// This method will calculate the junction jerk as the euclidean distance between the nominal
// velocities of the respective blocks.
inline float junction_jerk(block_t *before, block_t *after) {
return(sqrt(
2011-08-15 12:26:40 -05:00
pow((before->speed_x-after->speed_x), 2)+
2011-09-14 11:56:45 -05:00
pow((before->speed_y-after->speed_y), 2)));
2011-08-12 15:28:35 -05:00
}
// Return the safe speed which is max_jerk/2, e.g. the
// speed under which you cannot exceed max_jerk no matter what you do.
float safe_speed(block_t *block) {
float safe_speed;
2011-09-14 11:56:45 -05:00
safe_speed = max_xy_jerk/2;
if(abs(block->speed_z) > max_z_jerk/2) safe_speed = max_z_jerk/2;
2011-08-12 15:28:35 -05:00
if (safe_speed > block->nominal_speed) safe_speed = block->nominal_speed;
return safe_speed;
}
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!current) {
return;
}
float entry_speed = current->nominal_speed;
float exit_factor;
float exit_speed;
if (next) {
exit_speed = next->entry_speed;
}
else {
exit_speed = safe_speed(current);
}
// Calculate the entry_factor for the current block.
if (previous) {
// Reduce speed so that junction_jerk is within the maximum allowed
float jerk = junction_jerk(previous, current);
if((previous->steps_x == 0) && (previous->steps_y == 0)) {
entry_speed = safe_speed(current);
}
2011-09-14 11:56:45 -05:00
else if (jerk > max_xy_jerk) {
entry_speed = (max_xy_jerk/jerk) * entry_speed;
2011-08-12 15:28:35 -05:00
}
2011-09-14 11:56:45 -05:00
if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
}
2011-08-12 15:28:35 -05:00
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
if (entry_speed > exit_speed) {
2011-09-14 11:56:45 -05:00
float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
2011-08-12 15:28:35 -05:00
if (max_entry_speed < entry_speed) {
entry_speed = max_entry_speed;
}
}
}
else {
entry_speed = safe_speed(current);
}
// Store result
current->entry_speed = entry_speed;
}
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the reverse pass.
void planner_reverse_pass() {
char block_index = block_buffer_head;
2011-10-18 12:13:30 -05:00
block_index--;
block_t *block[3] = { NULL, NULL, NULL };
while(block_index != block_buffer_tail) {
block_index--;
if(block_index < 0) block_index = BLOCK_BUFFER_SIZE-1;
2011-08-12 15:28:35 -05:00
block[2]= block[1];
block[1]= block[0];
block[0] = &block_buffer[block_index];
planner_reverse_pass_kernel(block[0], block[1], block[2]);
}
2011-10-18 12:13:30 -05:00
planner_reverse_pass_kernel(NULL, block[0], block[1]);
2011-08-12 15:28:35 -05:00
}
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!current) {
return;
}
if(previous) {
// If the previous block is an acceleration block, but it is not long enough to
// complete the full speed change within the block, we need to adjust out entry
// speed accordingly. Remember current->entry_factor equals the exit factor of
// the previous block.
if(previous->entry_speed < current->entry_speed) {
2011-09-14 11:56:45 -05:00
float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);
2011-08-12 15:28:35 -05:00
if (max_entry_speed < current->entry_speed) {
current->entry_speed = max_entry_speed;
}
}
}
}
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the forward pass.
void planner_forward_pass() {
char block_index = block_buffer_tail;
block_t *block[3] = {
NULL, NULL, NULL };
while(block_index != block_buffer_head) {
block[0] = block[1];
block[1] = block[2];
block[2] = &block_buffer[block_index];
planner_forward_pass_kernel(block[0],block[1],block[2]);
block_index = (block_index+1) & BLOCK_BUFFER_MASK;
}
planner_forward_pass_kernel(block[1], block[2], NULL);
}
// Recalculates the trapezoid speed profiles for all blocks in the plan according to the
// entry_factor for each junction. Must be called by planner_recalculate() after
// updating the blocks.
void planner_recalculate_trapezoids() {
char block_index = block_buffer_tail;
block_t *current;
block_t *next = NULL;
while(block_index != block_buffer_head) {
current = next;
next = &block_buffer[block_index];
if (current) {
calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed);
}
block_index = (block_index+1) & BLOCK_BUFFER_MASK;
}
calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));
}
// Recalculates the motion plan according to the following algorithm:
//
// 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
// so that:
// a. The junction jerk is within the set limit
// b. No speed reduction within one block requires faster deceleration than the one, true constant
// acceleration.
// 2. Go over every block in chronological order and dial down junction speed reduction values if
// a. The speed increase within one block would require faster accelleration than the one, true
// constant acceleration.
//
// When these stages are complete all blocks have an entry_factor that will allow all speed changes to
// be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
// the set limit. Finally it will:
//
// 3. Recalculate trapezoids for all blocks.
void planner_recalculate() {
planner_reverse_pass();
planner_forward_pass();
planner_recalculate_trapezoids();
}
void plan_init() {
block_buffer_head = 0;
block_buffer_tail = 0;
memset(position, 0, sizeof(position)); // clear position
}
inline void plan_discard_current_block() {
if (block_buffer_head != block_buffer_tail) {
block_buffer_tail = (block_buffer_tail + 1) & BLOCK_BUFFER_MASK;
}
}
inline block_t *plan_get_current_block() {
if (block_buffer_head == block_buffer_tail) {
return(NULL);
}
block_t *block = &block_buffer[block_buffer_tail];
block->busy = true;
return(block);
}
void check_axes_activity() {
unsigned char x_active = 0;
unsigned char y_active = 0;
unsigned char z_active = 0;
unsigned char e_active = 0;
block_t *block;
if(block_buffer_tail != block_buffer_head) {
char block_index = block_buffer_tail;
while(block_index != block_buffer_head) {
block = &block_buffer[block_index];
if(block->steps_x != 0) x_active++;
if(block->steps_y != 0) y_active++;
if(block->steps_z != 0) z_active++;
if(block->steps_e != 0) e_active++;
block_index = (block_index+1) & BLOCK_BUFFER_MASK;
}
}
if((DISABLE_X) && (x_active == 0)) disable_x();
if((DISABLE_Y) && (y_active == 0)) disable_y();
if((DISABLE_Z) && (z_active == 0)) disable_z();
if((DISABLE_E) && (e_active == 0)) disable_e();
}
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters.
void plan_buffer_line(float x, float y, float z, float e, float feed_rate) {
// The target position of the tool in absolute steps
// Calculate target position in absolute steps
long target[4];
target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
2011-09-14 11:56:45 -05:00
2011-08-12 15:28:35 -05:00
// Calculate the buffer head after we push this byte
int next_buffer_head = (block_buffer_head + 1) & BLOCK_BUFFER_MASK;
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while(block_buffer_tail == next_buffer_head) {
manage_heater();
manage_inactivity(1);
}
// Prepare to set up new block
block_t *block = &block_buffer[block_buffer_head];
// Mark block as not busy (Not executed by the stepper interrupt)
block->busy = false;
// Number of steps for each axis
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
// Bail if this is a zero-length block
if (block->step_event_count == 0) {
return;
};
2011-09-14 11:56:45 -05:00
//enable active axes
if(block->steps_x != 0) enable_x();
if(block->steps_y != 0) enable_y();
if(block->steps_z != 0) enable_z();
if(block->steps_e != 0) enable_e();
2011-08-12 15:28:35 -05:00
float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));
unsigned long microseconds;
microseconds = lround((block->millimeters/feed_rate)*1000000);
// Calculate speed in mm/minute for each axis
float multiplier = 60.0*1000000.0/microseconds;
block->speed_z = delta_z_mm * multiplier;
block->speed_x = delta_x_mm * multiplier;
block->speed_y = delta_y_mm * multiplier;
block->speed_e = delta_e_mm * multiplier;
// Limit speed per axis
float speed_factor = 1;
float tmp_speed_factor;
if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
2011-08-13 03:09:54 -05:00
speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
2011-08-12 15:28:35 -05:00
}
if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
}
if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
2011-08-13 03:09:54 -05:00
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
2011-08-12 15:28:35 -05:00
}
if(abs(block->speed_e) > max_feedrate[E_AXIS]){
tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
2011-08-13 03:09:54 -05:00
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
2011-08-12 15:28:35 -05:00
}
multiplier = multiplier * speed_factor;
block->speed_z = delta_z_mm * multiplier;
block->speed_x = delta_x_mm * multiplier;
block->speed_y = delta_y_mm * multiplier;
block->speed_e = delta_e_mm * multiplier;
block->nominal_speed = block->millimeters * multiplier;
block->nominal_rate = ceil(block->step_event_count * multiplier / 60);
2011-09-14 11:56:45 -05:00
2011-08-15 12:26:40 -05:00
if(block->nominal_rate < 120) block->nominal_rate = 120;
2011-08-12 15:28:35 -05:00
block->entry_speed = safe_speed(block);
// Compute the acceleration rate for the trapezoid generator.
float travel_per_step = block->millimeters/block->step_event_count;
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
2011-10-18 12:13:30 -05:00
block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
2011-08-12 15:28:35 -05:00
}
else {
2011-09-14 11:56:45 -05:00
block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
2011-08-12 15:28:35 -05:00
// Limit acceleration per axis
2011-09-14 11:56:45 -05:00
if((block->acceleration_st * block->steps_x / block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
if((block->acceleration_st * block->steps_y / block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
if((block->acceleration_st * block->steps_e / block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
if(((block->acceleration_st / block->step_event_count) * block->steps_z ) > axis_steps_per_sqr_second[Z_AXIS])
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
2011-08-12 15:28:35 -05:00
}
2011-09-14 11:56:45 -05:00
block->acceleration = block->acceleration_st * travel_per_step;
2011-08-12 15:28:35 -05:00
#ifdef ADVANCE
// Calculate advance rate
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
block->advance_rate = 0;
block->advance = 0;
}
else {
2011-09-14 11:56:45 -05:00
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
2011-08-12 15:28:35 -05:00
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
(block->speed_e * block->speed_e * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
block->advance = advance;
if(acc_dist == 0) {
block->advance_rate = 0;
}
else {
block->advance_rate = advance / (float)acc_dist;
}
}
#endif // ADVANCE
// compute a preliminary conservative acceleration trapezoid
float safespeed = safe_speed(block);
calculate_trapezoid_for_block(block, safespeed, safespeed);
// Compute direction bits for this block
block->direction_bits = 0;
if (target[X_AXIS] < position[X_AXIS]) {
block->direction_bits |= (1<<X_AXIS);
}
if (target[Y_AXIS] < position[Y_AXIS]) {
block->direction_bits |= (1<<Y_AXIS);
}
if (target[Z_AXIS] < position[Z_AXIS]) {
block->direction_bits |= (1<<Z_AXIS);
}
if (target[E_AXIS] < position[E_AXIS]) {
block->direction_bits |= (1<<E_AXIS);
}
// Move buffer head
block_buffer_head = next_buffer_head;
// Update position
memcpy(position, target, sizeof(target)); // position[] = target[]
planner_recalculate();
st_wake_up();
}
void plan_set_position(float x, float y, float z, float e)
{
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
}
// Stepper
// intRes = intIn1 * intIn2 >> 16
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (charIn1), \
"d" (intIn2) \
: \
2011-08-15 12:26:40 -05:00
"r26" \
2011-08-12 15:28:35 -05:00
)
// intRes = longIn1 * longIn2 >> 24
// uses:
// r26 to store 0
// r27 to store the byte 1 of the 48bit result
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r27 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
: \
"=&r" (intRes) \
: \
"d" (longIn1), \
"d" (longIn2) \
: \
"r26" , "r27" \
)
// Some useful constants
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
static block_t *current_block; // A pointer to the block currently being traced
// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output
static long counter_x, // Counter variables for the bresenham line tracer
counter_y,
counter_z,
counter_e;
static unsigned long step_events_completed; // The number of step events executed in the current block
static long advance_rate, advance, final_advance = 0;
static short old_advance = 0;
static short e_steps;
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
static long acceleration_time, deceleration_time;
2011-08-15 12:26:40 -05:00
static long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
2011-08-12 15:28:35 -05:00
static unsigned short acc_step_rate; // needed for deccelaration start point
// __________________________
// /| |\ _________________ ^
// / | | \ /| |\ |
// / | | \ / | | \ s
// / | | | | | \ p
// / | | | | | \ e
// +-----+------------------------+---+--+---------------+----+ e
// | BLOCK 1 | BLOCK 2 | d
//
// time ----->
//
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated with the leib ramp alghorithm.
void st_wake_up() {
// TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT();
}
inline unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer;
if(step_rate < 32) step_rate = 32;
step_rate -= 32; // Correct for minimal speed
2011-08-15 12:26:40 -05:00
if(step_rate >= (8*256)){ // higher step rate
2011-08-12 15:28:35 -05:00
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
MultiU16X8toH16(timer, tmp_step_rate, gain);
timer = (unsigned short)pgm_read_word_near(table_address) - timer;
}
else { // lower step rates
unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
table_address += ((step_rate)>>1) & 0xfffc;
timer = (unsigned short)pgm_read_word_near(table_address);
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
}
if(timer < 100) timer = 100;
return timer;
}
// Initializes the trapezoid generator from the current block. Called whenever a new
// block begins.
inline void trapezoid_generator_reset() {
accelerate_until = current_block->accelerate_until;
decelerate_after = current_block->decelerate_after;
acceleration_rate = current_block->acceleration_rate;
initial_rate = current_block->initial_rate;
final_rate = current_block->final_rate;
2011-08-15 12:26:40 -05:00
nominal_rate = current_block->nominal_rate;
2011-08-12 15:28:35 -05:00
advance = current_block->initial_advance;
final_advance = current_block->final_advance;
deceleration_time = 0;
advance_rate = current_block->advance_rate;
2011-09-14 11:56:45 -05:00
2011-08-12 15:28:35 -05:00
// step_rate to timer interval
acc_step_rate = initial_rate;
acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time;
}
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect)
{
if(busy){ /*Serial.println("BUSY")*/;
return;
} // The busy-flag is used to avoid reentering this interrupt
busy = true;
sei(); // Re enable interrupts (normally disabled while inside an interrupt handler)
// If there is no current block, attempt to pop one from the buffer
if (current_block == NULL) {
// Anything in the buffer?
current_block = plan_get_current_block();
if (current_block != NULL) {
trapezoid_generator_reset();
counter_x = -(current_block->step_event_count >> 1);
counter_y = counter_x;
counter_z = counter_x;
counter_e = counter_x;
step_events_completed = 0;
e_steps = 0;
}
else {
DISABLE_STEPPER_DRIVER_INTERRUPT();
}
}
if (current_block != NULL) {
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
out_bits = current_block->direction_bits;
#ifdef ADVANCE
// Calculate E early.
counter_e += current_block->steps_e;
if (counter_e > 0) {
counter_e -= current_block->step_event_count;
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
CRITICAL_SECTION_START;
e_steps--;
CRITICAL_SECTION_END;
}
else {
CRITICAL_SECTION_START;
e_steps++;
CRITICAL_SECTION_END;
}
}
// Do E steps + advance steps
CRITICAL_SECTION_START;
e_steps += ((advance >> 16) - old_advance);
CRITICAL_SECTION_END;
old_advance = advance >> 16;
#endif //ADVANCE
// Set direction en check limit switches
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
WRITE(X_DIR_PIN, INVERT_X_DIR);
if(READ(X_MIN_PIN) != ENDSTOPS_INVERTING) {
step_events_completed = current_block->step_event_count;
}
}
else // +direction
WRITE(X_DIR_PIN,!INVERT_X_DIR);
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
if(READ(Y_MIN_PIN) != ENDSTOPS_INVERTING) {
step_events_completed = current_block->step_event_count;
}
}
else // +direction
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
if(READ(Z_MIN_PIN) != ENDSTOPS_INVERTING) {
step_events_completed = current_block->step_event_count;
}
}
else // +direction
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
#ifndef ADVANCE
if ((out_bits & (1<<E_AXIS)) != 0) // -direction
WRITE(E_DIR_PIN,INVERT_E_DIR);
else // +direction
WRITE(E_DIR_PIN,!INVERT_E_DIR);
#endif //!ADVANCE
counter_x += current_block->steps_x;
if (counter_x > 0) {
WRITE(X_STEP_PIN, HIGH);
counter_x -= current_block->step_event_count;
WRITE(X_STEP_PIN, LOW);
}
counter_y += current_block->steps_y;
if (counter_y > 0) {
WRITE(Y_STEP_PIN, HIGH);
counter_y -= current_block->step_event_count;
WRITE(Y_STEP_PIN, LOW);
}
counter_z += current_block->steps_z;
if (counter_z > 0) {
WRITE(Z_STEP_PIN, HIGH);
counter_z -= current_block->step_event_count;
WRITE(Z_STEP_PIN, LOW);
}
#ifndef ADVANCE
counter_e += current_block->steps_e;
if (counter_e > 0) {
WRITE(E_STEP_PIN, HIGH);
counter_e -= current_block->step_event_count;
WRITE(E_STEP_PIN, LOW);
}
#endif //!ADVANCE
// Calculare new timer value
unsigned short timer;
unsigned short step_rate;
if (step_events_completed < accelerate_until) {
MultiU24X24toH16(acc_step_rate, acceleration_time, acceleration_rate);
acc_step_rate += initial_rate;
// upper limit
2011-08-15 12:26:40 -05:00
if(acc_step_rate > nominal_rate)
acc_step_rate = nominal_rate;
2011-08-12 15:28:35 -05:00
// step_rate to timer interval
timer = calc_timer(acc_step_rate);
advance += advance_rate;
acceleration_time += timer;
OCR1A = timer;
}
2011-08-15 12:26:40 -05:00
else if (step_events_completed >= decelerate_after) {
2011-08-12 15:28:35 -05:00
MultiU24X24toH16(step_rate, deceleration_time, acceleration_rate);
if(step_rate > acc_step_rate) { // Check step_rate stays positive
step_rate = final_rate;
}
else {
step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
}
// lower limit
if(step_rate < final_rate)
step_rate = final_rate;
// step_rate to timer interval
timer = calc_timer(step_rate);
#ifdef ADVANCE
advance -= advance_rate;
if(advance < final_advance)
advance = final_advance;
#endif //ADVANCE
deceleration_time += timer;
OCR1A = timer;
}
// If current block is finished, reset pointer
step_events_completed += 1;
if (step_events_completed >= current_block->step_event_count) {
current_block = NULL;
plan_discard_current_block();
}
}
busy=false;
}
#ifdef ADVANCE
unsigned char old_OCR0A;
// Timer interrupt for E. e_steps is set in the main routine;
// Timer 0 is shared with millies
ISR(TIMER0_COMPA_vect)
{
// Critical section needed because Timer 1 interrupt has higher priority.
// The pin set functions are placed on trategic position to comply with the stepper driver timing.
WRITE(E_STEP_PIN, LOW);
// Set E direction (Depends on E direction + advance)
if (e_steps < 0) {
WRITE(E_DIR_PIN,INVERT_E_DIR);
e_steps++;
WRITE(E_STEP_PIN, HIGH);
}
if (e_steps > 0) {
WRITE(E_DIR_PIN,!INVERT_E_DIR);
e_steps--;
WRITE(E_STEP_PIN, HIGH);
}
old_OCR0A += 25; // 10kHz interrupt
OCR0A = old_OCR0A;
}
#endif // ADVANCE
void st_init()
{
// waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13);
TCCR1B |= (1<<WGM12);
TCCR1A &= ~(1<<WGM11);
TCCR1A &= ~(1<<WGM10);
// output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0);
TCCR1A &= ~(3<<COM1B0);
TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10); // 2MHz timer
OCR1A = 0x4000;
DISABLE_STEPPER_DRIVER_INTERRUPT();
#ifdef ADVANCE
e_steps = 0;
TIMSK0 |= (1<<OCIE0A);
#endif //ADVANCE
sei();
}
// Block until all buffered steps are executed
void st_synchronize()
{
while(plan_get_current_block()) {
manage_heater();
manage_inactivity(1);
}
}
// Temperature loop
void tp_init()
{
DIDR0 = 1<<5; // TEMP_0_PIN for GEN6
ADMUX = ((1 << REFS0) | (5 & 0x07));
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; // ADC enable, Clear interrupt, 1/128 prescaler.
TCCR2B = 0; //Stop timer in case of running
#ifdef PIDTEMP
TCCR2A = 0x23; //OC2A disable; FastPWM noninverting; FastPWM mode 7
#else
TCCR2A = 0x03; //OC2A disable; FastPWM noninverting; FastPWM mode 7
2011-08-13 03:09:54 -05:00
#endif //PIDTEMP
2011-08-12 15:28:35 -05:00
OCR2A = 156; //Period is ~10ms
OCR2B = 0; //Duty Cycle for heater pin is 0 (startup)
TIMSK2 = 0x01; //Enable overflow interrupt
TCCR2B = 0x0F; //1/1024 prescaler, start
}
static unsigned char temp_count = 0;
static unsigned long raw_temp_value = 0;
ISR(TIMER2_OVF_vect)
{
// uint8_t low, high;
// low = ADCL;
// high = ADCH;
raw_temp_value += ADC;
// raw_temp_value = (ADCH <<8) | ADCL;
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; // ADC enable, Clear interrupt, Enable Interrupt, 1/128 prescaler.
// raw_temp_value += (high <<8) | low;
temp_count++;
if(temp_count >= 16)
{
current_raw = 16383 - raw_temp_value;
temp_meas_ready = true;
temp_count = 0;
raw_temp_value = 0;
#ifdef MAXTEMP
if(current_raw >= maxttemp) {
target_raw = 0;
#ifdef PIDTEMP
OCR2B = 0;
#else
WRITE(HEATER_0_PIN,LOW);
2011-08-13 03:09:54 -05:00
#endif //PIDTEMP
2011-08-12 15:28:35 -05:00
}
2011-08-13 03:09:54 -05:00
#endif //MAXTEMP
2011-08-12 15:28:35 -05:00
#ifdef MINTEMP
if(current_raw <= minttemp) {
target_raw = 0;
#ifdef PIDTEMP
OCR2B = 0;
#else
WRITE(HEATER_0_PIN,LOW);
2011-08-13 03:09:54 -05:00
#endif //PIDTEMP
2011-08-12 15:28:35 -05:00
}
2011-08-13 03:09:54 -05:00
#endif //MAXTEMP
2011-08-12 15:28:35 -05:00
#ifndef PIDTEMP
if(current_raw >= target_raw)
{
WRITE(HEATER_0_PIN,LOW);
}
else
{
WRITE(HEATER_0_PIN,HIGH);
}
2011-08-13 03:09:54 -05:00
#endif //PIDTEMP
2011-08-12 15:28:35 -05:00
}
}