2016-05-12 15:33:47 -05:00
|
|
|
/**
|
|
|
|
* Marlin 3D Printer Firmware
|
|
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
|
*
|
|
|
|
* Based on Sprinter and grbl.
|
|
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
*
|
|
|
|
* This program is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
/**
|
|
|
|
* planner_bezier.cpp
|
|
|
|
*
|
|
|
|
* Compute and buffer movement commands for bezier curves
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2017-09-06 06:28:32 -05:00
|
|
|
#include "../inc/MarlinConfig.h"
|
2016-05-12 15:33:47 -05:00
|
|
|
|
|
|
|
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
|
|
2017-09-07 22:33:16 -05:00
|
|
|
#include "planner.h"
|
|
|
|
#include "motion.h"
|
|
|
|
#include "temperature.h"
|
|
|
|
|
2017-09-06 06:28:32 -05:00
|
|
|
#include "../Marlin.h"
|
|
|
|
#include "../core/language.h"
|
2017-09-07 22:33:16 -05:00
|
|
|
#include "../gcode/queue.h"
|
2016-05-12 15:33:47 -05:00
|
|
|
|
|
|
|
// See the meaning in the documentation of cubic_b_spline().
|
2018-07-01 15:20:28 -05:00
|
|
|
#define MIN_STEP 0.002f
|
|
|
|
#define MAX_STEP 0.1f
|
|
|
|
#define SIGMA 0.1f
|
2016-05-12 15:33:47 -05:00
|
|
|
|
2017-11-18 02:08:03 -06:00
|
|
|
// Compute the linear interpolation between two real numbers.
|
2018-08-13 23:55:12 -05:00
|
|
|
static inline float interp(const float &a, const float &b, const float &t) { return (1 - t) * a + t * b; }
|
2016-05-12 15:33:47 -05:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Compute a Bézier curve using the De Casteljau's algorithm (see
|
|
|
|
* https://en.wikipedia.org/wiki/De_Casteljau%27s_algorithm), which is
|
|
|
|
* easy to code and has good numerical stability (very important,
|
|
|
|
* since Arudino works with limited precision real numbers).
|
|
|
|
*/
|
2018-08-13 23:55:12 -05:00
|
|
|
static inline float eval_bezier(const float &a, const float &b, const float &c, const float &d, const float &t) {
|
|
|
|
const float iab = interp(a, b, t),
|
|
|
|
ibc = interp(b, c, t),
|
|
|
|
icd = interp(c, d, t),
|
|
|
|
iabc = interp(iab, ibc, t),
|
|
|
|
ibcd = interp(ibc, icd, t);
|
|
|
|
return interp(iabc, ibcd, t);
|
2016-05-12 15:33:47 -05:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* We approximate Euclidean distance with the sum of the coordinates
|
|
|
|
* offset (so-called "norm 1"), which is quicker to compute.
|
|
|
|
*/
|
2018-08-13 23:55:12 -05:00
|
|
|
static inline float dist1(const float &x1, const float &y1, const float &x2, const float &y2) { return ABS(x1 - x2) + ABS(y1 - y2); }
|
2016-05-12 15:33:47 -05:00
|
|
|
|
|
|
|
/**
|
|
|
|
* The algorithm for computing the step is loosely based on the one in Kig
|
|
|
|
* (See https://sources.debian.net/src/kig/4:15.08.3-1/misc/kigpainter.cpp/#L759)
|
|
|
|
* However, we do not use the stack.
|
|
|
|
*
|
|
|
|
* The algorithm goes as it follows: the parameters t runs from 0.0 to
|
|
|
|
* 1.0 describing the curve, which is evaluated by eval_bezier(). At
|
|
|
|
* each iteration we have to choose a step, i.e., the increment of the
|
|
|
|
* t variable. By default the step of the previous iteration is taken,
|
|
|
|
* and then it is enlarged or reduced depending on how straight the
|
|
|
|
* curve locally is. The step is always clamped between MIN_STEP/2 and
|
|
|
|
* 2*MAX_STEP. MAX_STEP is taken at the first iteration.
|
|
|
|
*
|
|
|
|
* For some t, the step value is considered acceptable if the curve in
|
|
|
|
* the interval [t, t+step] is sufficiently straight, i.e.,
|
|
|
|
* sufficiently close to linear interpolation. In practice the
|
|
|
|
* following test is performed: the distance between eval_bezier(...,
|
|
|
|
* t+step/2) is evaluated and compared with 0.5*(eval_bezier(...,
|
|
|
|
* t)+eval_bezier(..., t+step)). If it is smaller than SIGMA, then the
|
|
|
|
* step value is considered acceptable, otherwise it is not. The code
|
|
|
|
* seeks to find the larger step value which is considered acceptable.
|
|
|
|
*
|
|
|
|
* At every iteration the recorded step value is considered and then
|
|
|
|
* iteratively halved until it becomes acceptable. If it was already
|
|
|
|
* acceptable in the beginning (i.e., no halving were done), then
|
|
|
|
* maybe it was necessary to enlarge it; then it is iteratively
|
|
|
|
* doubled while it remains acceptable. The last acceptable value
|
|
|
|
* found is taken, provided that it is between MIN_STEP and MAX_STEP
|
|
|
|
* and does not bring t over 1.0.
|
|
|
|
*
|
|
|
|
* Caveat: this algorithm is not perfect, since it can happen that a
|
|
|
|
* step is considered acceptable even when the curve is not linear at
|
|
|
|
* all in the interval [t, t+step] (but its mid point coincides "by
|
|
|
|
* chance" with the midpoint according to the parametrization). This
|
|
|
|
* kind of glitches can be eliminated with proper first derivative
|
|
|
|
* estimates; however, given the improbability of such configurations,
|
|
|
|
* the mitigation offered by MIN_STEP and the small computational
|
|
|
|
* power available on Arduino, I think it is not wise to implement it.
|
|
|
|
*/
|
2016-07-15 20:49:34 -05:00
|
|
|
void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS], const float offset[4], float fr_mm_s, uint8_t extruder) {
|
2016-05-12 15:33:47 -05:00
|
|
|
// Absolute first and second control points are recovered.
|
2017-11-01 12:04:18 -05:00
|
|
|
const float first0 = position[X_AXIS] + offset[0],
|
|
|
|
first1 = position[Y_AXIS] + offset[1],
|
|
|
|
second0 = target[X_AXIS] + offset[2],
|
|
|
|
second1 = target[Y_AXIS] + offset[3];
|
2018-07-01 15:20:28 -05:00
|
|
|
float t = 0;
|
2016-05-12 15:33:47 -05:00
|
|
|
|
2016-05-17 20:05:37 -05:00
|
|
|
float bez_target[4];
|
|
|
|
bez_target[X_AXIS] = position[X_AXIS];
|
|
|
|
bez_target[Y_AXIS] = position[Y_AXIS];
|
2016-05-12 15:33:47 -05:00
|
|
|
float step = MAX_STEP;
|
2016-05-14 19:41:16 -05:00
|
|
|
|
2016-05-14 19:37:42 -05:00
|
|
|
millis_t next_idle_ms = millis() + 200UL;
|
2016-05-14 19:41:16 -05:00
|
|
|
|
2018-07-01 15:20:28 -05:00
|
|
|
while (t < 1) {
|
2016-05-14 19:41:16 -05:00
|
|
|
|
2016-05-19 13:52:11 -05:00
|
|
|
thermalManager.manage_heater();
|
2016-05-14 19:41:16 -05:00
|
|
|
millis_t now = millis();
|
2016-05-14 19:37:42 -05:00
|
|
|
if (ELAPSED(now, next_idle_ms)) {
|
|
|
|
next_idle_ms = now + 200UL;
|
2016-05-19 13:52:11 -05:00
|
|
|
idle();
|
2016-05-14 19:41:16 -05:00
|
|
|
}
|
|
|
|
|
2016-05-12 15:33:47 -05:00
|
|
|
// First try to reduce the step in order to make it sufficiently
|
|
|
|
// close to a linear interpolation.
|
|
|
|
bool did_reduce = false;
|
|
|
|
float new_t = t + step;
|
2018-07-01 15:20:28 -05:00
|
|
|
NOMORE(new_t, 1);
|
2017-11-01 12:04:18 -05:00
|
|
|
float new_pos0 = eval_bezier(position[X_AXIS], first0, second0, target[X_AXIS], new_t),
|
|
|
|
new_pos1 = eval_bezier(position[Y_AXIS], first1, second1, target[Y_AXIS], new_t);
|
2016-05-12 15:33:47 -05:00
|
|
|
for (;;) {
|
|
|
|
if (new_t - t < (MIN_STEP)) break;
|
2018-07-01 15:20:28 -05:00
|
|
|
const float candidate_t = 0.5f * (t + new_t),
|
2017-11-01 12:04:18 -05:00
|
|
|
candidate_pos0 = eval_bezier(position[X_AXIS], first0, second0, target[X_AXIS], candidate_t),
|
|
|
|
candidate_pos1 = eval_bezier(position[Y_AXIS], first1, second1, target[Y_AXIS], candidate_t),
|
2018-07-01 15:20:28 -05:00
|
|
|
interp_pos0 = 0.5f * (bez_target[X_AXIS] + new_pos0),
|
|
|
|
interp_pos1 = 0.5f * (bez_target[Y_AXIS] + new_pos1);
|
2016-05-12 15:33:47 -05:00
|
|
|
if (dist1(candidate_pos0, candidate_pos1, interp_pos0, interp_pos1) <= (SIGMA)) break;
|
|
|
|
new_t = candidate_t;
|
|
|
|
new_pos0 = candidate_pos0;
|
|
|
|
new_pos1 = candidate_pos1;
|
|
|
|
did_reduce = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// If we did not reduce the step, maybe we should enlarge it.
|
|
|
|
if (!did_reduce) for (;;) {
|
|
|
|
if (new_t - t > MAX_STEP) break;
|
2018-07-01 15:20:28 -05:00
|
|
|
const float candidate_t = t + 2 * (new_t - t);
|
|
|
|
if (candidate_t >= 1) break;
|
2017-11-01 12:04:18 -05:00
|
|
|
const float candidate_pos0 = eval_bezier(position[X_AXIS], first0, second0, target[X_AXIS], candidate_t),
|
|
|
|
candidate_pos1 = eval_bezier(position[Y_AXIS], first1, second1, target[Y_AXIS], candidate_t),
|
2018-07-01 15:20:28 -05:00
|
|
|
interp_pos0 = 0.5f * (bez_target[X_AXIS] + candidate_pos0),
|
|
|
|
interp_pos1 = 0.5f * (bez_target[Y_AXIS] + candidate_pos1);
|
2016-05-12 15:33:47 -05:00
|
|
|
if (dist1(new_pos0, new_pos1, interp_pos0, interp_pos1) > (SIGMA)) break;
|
|
|
|
new_t = candidate_t;
|
|
|
|
new_pos0 = candidate_pos0;
|
|
|
|
new_pos1 = candidate_pos1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check some postcondition; they are disabled in the actual
|
|
|
|
// Marlin build, but if you test the same code on a computer you
|
|
|
|
// may want to check they are respect.
|
|
|
|
/*
|
|
|
|
assert(new_t <= 1.0);
|
|
|
|
if (new_t < 1.0) {
|
|
|
|
assert(new_t - t >= (MIN_STEP) / 2.0);
|
|
|
|
assert(new_t - t <= (MAX_STEP) * 2.0);
|
|
|
|
}
|
|
|
|
*/
|
|
|
|
|
|
|
|
step = new_t - t;
|
|
|
|
t = new_t;
|
|
|
|
|
|
|
|
// Compute and send new position
|
2016-05-17 20:05:37 -05:00
|
|
|
bez_target[X_AXIS] = new_pos0;
|
|
|
|
bez_target[Y_AXIS] = new_pos1;
|
2016-05-12 15:33:47 -05:00
|
|
|
// FIXME. The following two are wrong, since the parameter t is
|
|
|
|
// not linear in the distance.
|
2016-05-17 20:05:37 -05:00
|
|
|
bez_target[Z_AXIS] = interp(position[Z_AXIS], target[Z_AXIS], t);
|
|
|
|
bez_target[E_AXIS] = interp(position[E_AXIS], target[E_AXIS], t);
|
|
|
|
clamp_to_software_endstops(bez_target);
|
2018-05-08 11:10:45 -05:00
|
|
|
|
2018-09-16 21:24:15 -05:00
|
|
|
#if HAS_LEVELING && !PLANNER_LEVELING
|
|
|
|
float pos[XYZE] = { bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS] };
|
2018-05-08 11:10:45 -05:00
|
|
|
planner.apply_leveling(pos);
|
|
|
|
#else
|
2018-09-16 21:24:15 -05:00
|
|
|
const float (&pos)[XYZE] = bez_target;
|
2018-05-08 11:10:45 -05:00
|
|
|
#endif
|
2018-09-16 21:24:15 -05:00
|
|
|
|
|
|
|
if (!planner.buffer_line(pos, fr_mm_s, active_extruder, step))
|
|
|
|
break;
|
2016-05-12 15:33:47 -05:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // BEZIER_CURVE_SUPPORT
|